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YOLOv8‑PD: an improved road 
damage detection algorithm based 
on YOLOv8n model
Jiayi Zeng  & Han Zhong *

Road damage detection is an crucial task to ensure road safety. To tackle the issues of poor 
performance on multi‑scale pavement distresses and high costs in detection task, this paper presents 
an improved lightweight road damage detection algorithm based on YOLOv8n, named YOLOv8‑PD 
(pavement distress). Firstly, a BOT module that can extract global information of road damage images 
is proposed to adapt to the large‑span features of crack objects. Secondly, the introduction of the 
large separable kernel attention (LKSA) mechanism enhances the detection accuracy of the algorithm. 
Then, a C2fGhost block is constructed in the neck network to strengthen the feature extraction 
of complex road damages while reducing the computational load. Furthermore, we introduced 
lightweight shared convolution detection head (LSCD‑Head) to improve feature expressiveness and 
reduce the number of parameters. Finally, extensive experiments on the RDD2022 dataset yield a 
model with parametric and computational quantities of 2.3M and 6.1 GFLOPs, which are only 74.1% 
and 74.3% of the baseline, and the mAP reaches an improvement of 1.4 percentage points from the 
baseline. In addition, experimental results on the RoadDamage dataset show that the mAP increased 
by 4.2% and this algorithm has good robustness. This method can provide a reference for the 
automatic detection method of pavement distress.
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Road networks are the foundation of economic  development1, a good transport system can meet people ’s travel 
needs, business and industrial development. However, these highways face challenges from infrastructure dete-
rioration. To maintain the momentum of national economic development, it is necessary to protect transporta-
tion infrastructure. Pavement cracks are common road damages, which can affect road safety and driving safety. 
Maintaining high-quality pavements is one of the keys to ensuring road safety, and road damage detection can 
play an important role in preventing road damage and maintaining traffic road  safety2. Traditional manual inspec-
tions are costly in terms of time, with long monitoring periods and low efficiency. Therefore, the development of 
efficient and lightweight technology for pavement distress detection is of great significance.

Road damage target detection technology is mainly divided into traditional target detection algorithms and 
target detection algorithms based on deep learning. Traditional crack detection methods mostly rely on manual 
 inspection3–5 or image segmentation techniques that recognize pavement distress by extracting features. It is 
difficult for artificial methods to extract features effectively when the road environment changes. Because of that, 
the robustness of these algorithms is poor and the detect process is  tedious6.

In recent years, with the rapid development of deep learning technology, deep learning has gained widespread 
attention in many  fields7–10, as well as target detection. Deep learning networks offer exceptional speed and accu-
racy in target detection tasks, demonstrating strong robustness and generalization capabilities. By circumventing 
the need for manual feature extraction and intricate feature segmentation operations, deep learning minimizes 
the risk of misclassifying or omitting crucial target features during pre-feature  sampling11. In order to solve the 
bottleneck of cell instance segmentation and tracking based on cosine embedding, Zhao et al.12 proposed a faster 
mean shift algorithm. This algorithm provides a plug-and-play model suitable for cluster reasoning based on 
pixel embedding and makes the road defect detection based on neural network can be widely used.

Target detection technology is mainly divided into single-stage algorithms and two-stage algorithms. Typi-
cal examples of two-stage algorithms are R-CNN13, Fast R-CNN14, Faster R-CNN15 and SPP-Net16. Kang D 
et al.17 used an ensemble of the Faster R-CNN algorithm to detect crack regions. Haciefendio et al.18 used Faster 
R-CNN to detect defects in concrete pavements. Pei et al.19 used the Cascade R-CNN model and various data 
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augmentation techniques, achieving an F1 score of 0.635 in global road damage detection. Yamaguchi  et al.20 
developed a method for accurately assessing road cracks using U-Net through LiDAR data enhancement and 
morphological transformation. Arya et al.21 used the lightweight network MobileNet to detect road damage 
images from the RDD2020 datasets, achieving an F1 score of 0.52. Zhong et al.53 proposed a multi-scale feature 
fusion deep neural network structure w-SegNet based on the SegNet network, which has strong robustness for 
crack detection in various scenarios. The aforementioned studies has made contributions to road damage detec-
tion, but there is still a lot of room for improvement in accuracy and detection speed.

Single-stage object detection algorithms include the You Only Look Once (YOLO)  series22,23, Single Shot 
MultiBox Detector (SSD)24, and  Retinanet25, etc. Although single-stage algorithms have slightly lower detection 
accuracy compared to two-stage algorithms, they excel in detection speed. Therefore, single-stage algorithms 
received more attention in road damage detection. Mandal et al.26 proposed the use of YOLO CSPDarknet53 
network for road defect detection, but there is still much room for improvement in both accuracy and detection 
speed. Fang Wan et al.27 proposed a lightweight road defect detection algorithm, YOLO-LRDD, which used the 
novel backbone network Shuffle-ECANet to reduce the model size while maintaining accuracy. It is suitable 
for deploying on mobile devices. Zhang et al.28 described a multi-level attention mechanism, called multi-level 
attention block, to strengthen the utilization of essential features by the YOLOv3. Zhong et al52 introduces an 
enhanced Wasserstein Generative Adversarial Network with gradient penalty (WGAN-GP) to generate realistic 
512 × 512 pixel images of grooved cement concrete pavement cracks. The model improves detection robustness, 
with YOLOv3 achieving a 6% higher mean average precision using the augmented dataset.  Yu29 proposed a road 
crack detection algorithm based on YOLOv5 and made a lightweight improvement, which significantly reduced 
the size of the model parameters and improved the detection speed. YOLOv5 also proves to be a perfect fit for 
real-time  detection30,31 due to its speed and considerable accuracy. Zhong et al.32 proposed an pavement distress 
detection algorithm named PDDNet which utilizes three algorithms, YOLOv4, YOLOv5, and YOLOv7, for object 
detection and localization in UAV images. The experimental data showed that the accuracy of this algorithm 
was better than R-CNN and U-Net. Roy et al.33 presented an DenseSPH-YOLOv5 road damage detection model 
by using Swin-Transformer Prediction Head that can improve efficient detection of multiscale object sizes and 
simultaneously reduce the computational complexity. The YOLO algorithm, as one of the classic single-stage 
detection algorithms, has been updated to YOLOv8, which has significant advantages in both detection accuracy 
and efficiency. Therefore, we choose to optimize the model based on YOLOv8, to further improve its accuracy 
and reduce its size.

Methodologies
YOLOv8n
In recent years, the YOLO algorithm has been continuously optimized and updated. In 2023, the Ultralytics team 
introduced the YOLOv8 model, which incorporates new features and improvements to further enhance perfor-
mance and flexibility. Firstly, the new model replaced the C3 structure of YOLOv5 with the gradient-rich C2f. 
structure and adjusted the number of channels. The C2f.structure retains the advantages of the ELAN structure 
in  YOLOv734. This structure reduces a standard convolutional layer and uses the Bottleneck module to enhance 
the gradient branch. Secondly, the head section was also modified to separate classification and detection using 
the decoupling head technique. Furthermore, the loss function utilized positive-negative matching of samples 
instead of IOU matching. These improvements streamline the YOLOv8n network structure, increasing detec-
tion speed and improving detection accuracy. The Yolov8n model has proved to be the most lightweight road 
defect target detection model in recent years, especially suitable for deployment on resource-constrained devices 
such as drones and on-board devices. The overall structure of the Yolov8n detection model is shown in Fig. 1.

YOLOv8‑PD
To tackle issues associated with inaccurate detection of pavement distress in conventional networks, excessive 
model parameters, and large model sizes, this study introduces a novel pavement distress detection model termed 
YOLOv8-PD (Pavement Distress) , illustrated in Fig. 2. This model can improve the detection accuracy of four 
pavement distresses (longitudinal cracks, transverse cracks, mesh cracks and potholes), especially for longitudinal 
cracks. This model has four key enhancement points. Firstly, the introduction of BOT  Transformer35 enables 
better capture of long-range dependencies in road damage images, obtaining more global information. Secondly, 
the LSKA  mechanism36 is introduced at the end of the backbone network and the neck network, enhancing the 
extraction of road defect features and improving the algorithm’s detection accuracy. Then, the C2fGhost  block37 
is constructed in the neck network of YOLOv8n, strengthening the feature extraction of complex road defects 
while simultaneously reducing computational load. Furthermore, a lightweight detection head module, LSCD-
Head, is proposed to enhance feature expressiveness. Lastly, The loss function of this model is consistent with 
the YOLOv8n model which is composed of several parts, including VFL loss function in classification task and 
CIOU loss function combined with DFL loss function in regression task.

BOT module
BoTNet35 is a collaborative exploration by researchers from Berkeley and Google into combining convolutional 
networks with Transformers. It employs a hybrid approach, replacing spatial convolutional layers with multi-head 
self-attention (MHSA) layers from Transformers, while leveraging the feature extraction capabilities of CNNs 
to achieve better performance than using CNNs or Transformers alone. Figure 3 illustrates the structure of the 
multi-head self-attention (MHSA) layer, while Fig. 4 shows the structure of Bottleneck Transformer (BoTNet).

Most current deep learning methods for road damage detection struggle to grasp the global information of 
road damages. To address this issue, this paper combines the BoTNet network framework with the C2f. structure 
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and proposes the BOT module. This module is only used in the backbone’s terminal structure, achieving a slight 
increase in detection accuracy with minimal computational cost. By combining the strengths of CNN and 
Transformer, the paper bridges the gap between them, enabling the comprehensive extraction of global and local 
features, thus enhancing the model’s detection accuracy. The structure of BOT module is illustrated in Fig. 5.

Large separable kernel attention
Attention mechanisms are effective in enhancing neural representations due to their simplicity and efficiency. 
In the field of computer vision, many excellent attention mechanisms have been developed, including channel 
attention mechanisms such as  SE38, spatial attention mechanisms such as  GeNet39,GcNet40 and  SGE41 and com-
bined spatial and channel attention mechanisms such as  CBAM42 and  CPCA43 .The  SKNet44 network introduces 
multiple convolution kernels to aggregate feature information along the channel dimension. Building upon 
SKNet, LSKA adaptively aggregates feature information from large kernels in the spatial dimension, instead of 
aggregating information along the channel dimension.

Due to the complex and dynamic environment in which pavement distresses are located, in order to enhance 
the model’s ability to extract key crack features, LSKA decomposes large-kernel convolution operations to capture 
long-range dependencies and adaptability. This improves the extraction of long crack features while reducing 
computational complexity and memory requirements. The structure of LSKA is illustrated in Fig. 6.

Figure 1.  YOLOv8n network architecture.
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To dynamically select suitable spatial kernels, the input feature map is divided into multiple sub-feature maps. 
Subsequently, different-sized convolutional kernels are applied to each sub-feature map, generating multiple 
output feature maps. These sub-output feature maps are then concatenated, as shown in Eq. (1). This concatena-
tion leads to an increase in the channel dimension of the output feature map.

Whereafter, the concatenated feature map undergoes average pooling and maxpooling operations along the 
channel dimension to extract spatial relationship descriptors namely SAavg and SAmax . The specific operation is 
illustrated in the following formulas:

(1)Ũ =

[
Ũ1; . . . ; Ũi

]

Figure 2.  Model structure of YOLOv8-PD.
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Figure 3.  Multi head self attention layer (MHSA).

Figure 4.  Bottleneck transformer structure.

Figure 5.  BOT module.

Figure 6.  LSKA module.
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Subsequently, following the concatenation of SAavg and SAmax , convolutional layers are utilized to transform 
them into spatial attention maps, ensuring they possess the same number of depth convolutions N. This conver-
sion is mathematically expressed by the following formula:

By using the sigmoid activation function to each spatial attention map, the spatial selection weights for each 
depth convolution are obtained. The weighted depth convolution feature maps are subsequently acquired by 
element-wise multiplication of the weights and the corresponding depth convolutions. Finally, a convolutional 
layer is employed to fuse these feature maps and produce the final attention feature. This process is mathemati-
cally demonstrated through the following formulas:

GhostNet
GhostNet37 is a lightweight network designed by Huawei Noah’s Ark Lab in 2020. Ghostconv is a convolutional 
module within the GhostNet network that can replace ordinary convolutions. As shown in Fig. 7, the GhostNet 
network can reduce network computation and parameter volume while maintaining the channel size of the 
original convolution output feature map.

As shown in Fig. 8, the “Cheap operation” is a type of cost-effective linear operation. GhostConv first uses a 
convolution with half the size of the original convolution to generate half of the feature map. Then, it continues 
through a 5 × 5 convolution kernel with a stride of 1, performing a cost-effective calculation called “Cheap 
operation” to obtain the other half of the feature map. Finally, the two parts of the feature map are concatenated 
together through Concatenation operation to form the complete feature map.

As shown in Fig. 9, GhostBottleneck first passes through the first GhostConv, which acts as an expansion 
layer to increase the number of channels. Then, it undergoes regularization and SiLU activation function. Next, it 
passes through the second GhostConv to reduce the number of output feature map channels to match the input 
channel number. Ultimately, the feature map obtained from the previous step is added to the residual edge for fea-
ture fusion. Compared to Bottleneck, GhostBottleneck achieves higher feature extraction with fewer parameters.

The C2fGhost module replaces the Bottleneck layer with the GhostBottleneck layer, effectively reducing the 
redundant computations introduced by ordinary convolutions in Bottleneck. This reduction in parameters does 

(2)SAavg = Pavg(Ũ), SAmax = Pmax(Ũ),

(3)ˆSA = F2→N
([
SAavg; SAmax

])

(4)S̃Ai =Sigmoid
(
ŜAi

)

(5)S =F

(
N∑

i=1

(
S̃Ai · Ũi

))

Figure 7.  GhostNet design core.

Figure 8.  GhostConv module.
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not weaken the feature extraction capability. This enables the model to be deployed on mobile devices, facilitating 
edge computing detection of road cracks. The specific structure is illustrated in Fig. 10.

Lightweight shared convolution detection head
The original detection head of YOLOv8 has some limitations. Firstly, the number of parameters of the detection 
head is large, accounting for one-fifth of the calculation amount of the entire algorithm. All three detection heads 
need to extract image information through two 3 × 3 convolutions and a 1 × 1 convolution, respectively. This 
structure results in a significant increase in the number of parameters of the algorithm. Secondly, the traditional 
single-scale prediction structure adopted by the original algorithm cannot deal with multi-scale targets well. It 
only predicts from one scale of the feature map, ignoring the contribution of other scale features to the detection.

In order to solve the above two problems, we propose a new head structure, named LSCD-Head (Lightweight 
Shared Convolutional Detection Head). We introduce GroupNorm convolution in this head structure, which has 
been proved in FOCS  papers45 to greatly enhance the localization and classification performance. The structure 
is shown in Fig. 11.

The core idea of this structure design is to replace the two common convolutions used by the three heads 
with a shared GroupNorm convolution ( as shown in the green and yellow parts of Fig. 11 ). At the same time, in 
order to deal with the problem that the target scale detected by each detection head is inconsistent, the scale layer 
is used to scale the features. Through the above structure, we can effectively reduce the number of parameters 
while allowing the detection head to have higher multi-scale sensing capabilities for deployment on resource-
constrained devices.

Figure 9.  GhostBottleneck module.

Figure 10.  C2fGhost module.

Figure 11.  LSCD-Head module.
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Datasets and evaluation parameters
RDD2022
This paper utilizes the open-source RDD 2022  dataset46 for model training. RDD 2022, released by the University 
of Tokyo, consists of 47,420 road images from six countries: Japan, India, Czech Republic, Norway, the United 
States and China. These images have been annotated with over 55,000 road damage incidents. The dataset cap-
tures four types of road damage: D00 (longitudinal cracks), D10 (transverse cracks), D20 (alligator cracks), and 
D40 (potholes). In the experiment, 10,000 photos were randomly selected from the RDD 2022 dataset from the 
six countries. Then, 8000 photos were chose for training and 2000 photos for validation. The ratio of the training 
set to the validation set is 8:2.

Evaluation parameters
The development language of this model is mainly Python, using the open-source deep learning framework 
PyTorch as the network framework, and accelerating training using CUDA 11.8. The hardware testing environ-
ment of this model includes an Intel(R) Core(TM) i7-10750H CPU and an NVIDIA RTX 2060 GPU with 6GB of 
memory. During training, the input images are set to 640 × 640, and SGD is used as the optimization function for 
model training. The model training epoch is set to 300, with a batch size of 16, and an initial learning rate of 0.01.

The evaluation metrics used in this paper include F1 score, mean Average Precision (mAP), number of 
parameters (Params), and Giga Floating Point Operations per Second (GFLOPs). Among these, precision and 
recall are used as basic metrics, with F1 score and mAP calculated serving as the final evaluation metrics to 
measure the model’s recognition accuracy. The subsequent equations can be utilized to compute these metrics.

In the aforementioned formulas, the meanings of each variable are as follows:
Precision refers to the ratio of correctly predicted positive samples among all samples predicted as positive.
Recall is calculated based on the proportion of all targets correctly predicted.
TP represents the number of correct targets in the detection results, FP represents the number of incorrect 

targets in the detection results and FN represents the number of missing targets among the correct targets.
The mAP refers to the average accuracy of n categories.
The F1-score comprehensively considers precision and recall, reflecting the overall performance of the net-

work more comprehensively.

Model training
When training the network model for road damage detection, the dimensions of input images were uniformly 
adjusted to 640 × 640 × 3. The SGD optimizer was utilized for a total of 300 epochs. Additionally, to enhance 
detection capabilities, Mosaic data augmentation technique was employed in the last 10 training epochs. This 
adjustment aims to improve the model’s robust performance in detecting road damage, as depicted in Fig. 12, 
illustrating the training results. The effectiveness of the algorithm was also verified experimentally, as shown in 
Fig. 13, demonstrating the detection performance.

Results
Ablation experiment
In order to investigate whether the improvement modules of YOLOv8-PD are effective, this paper conducted 
ablation experiments on the RDD2022 dataset, and the experimental results are shown in Table 1. The improved 
algorithm utilizes a more efficient network structure to enhance the YOLOv8n architecture, thereby improv-
ing accuracy while reducing the model’s parameters and computational complexity. It also demonstrates that 
the C2fGhost module does not reduce the algorithm’s accuracy, but reduces the model’s parameters and com-
putational complexity. The introduction of the LSKA attention mechanism only increases a small number of 
parameters but effectively improves detection accuracy. Combining the above improvements with the YOLOv8n 
algorithm minimizes the model size, with the model parameters reduced to only 2.3M and computational com-
plexity to only 6.2G, reducing by 27.6% and 25%, respectively. This effectively reduces the difficulty and cost of 
deploying the model on mobile terminals while significantly improving accuracy to meet real-time requirements.

(6)Precision =
TP

TP+ FP

(7)Recall =
TP

TP+ FN

(8)mAP =
1

n

n∑

i=1

∫ 1

0
Precison( Recall)d(Recall)

(9)F1 =2
Precision× Recall

Precision+ Recall
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Comparison experiment on attention mechanisms
The experiment also utilized other attention mechanism modules, such as EMA  attention47 and CA  attention48. 
The experimental results are shown in Table 2. From Table 2, it can be seen that compared to other attention 
mechanism modules, the LSKA module has the highest detection accuracy, with a 0.9% increase in mAP50.

Comparison experiment on detect head
The LSCD-Head, designed by combining the advantages of GroupNorm and shared convolution, is more light-
weight and retains the advantages of detecting small objects. Table 3 presents a performance comparison experi-
ment among LSCD-head, Efficient-Head, and Seam-Head. It can be observed that the detection accuracy is 
highest when using the LSCD-head module, which is also lighter, with a 1.03% increase in mAP50, and a decrease 
in the number of parameters and computational cost by 31.36% and 26.15%, respectively.

Figure 12.  Training results of the proposed YOLOv8-PD.

Table 1.  Ablation experiment on each improved module.

C2fGhost LSCD-Head LSKA BOT mAP50 mAP50:95 F1-score Params/M GFLOPs

0.692 0.38 0.67 3.1 8.2

� 0.694 0.39 0.67 2.6 7.2

� 0.705 0.385 0.68 2.36 6.5

� 0.695 0.391 0.67 3.17 8.4

� 0.701 0.39 0.68 3.25 8.5

� � 0.693 0.38 0.67 2.58 6.7

� � � 0.702 0.391 0.68 2.13 5.8

� � � � 0.706 0.395 0.68 2.3 6.1

Table 2.  Comparison experiment on attention mechanisms.

YOLOv8n mAP50 mAP50:95 F1-score Params/M GFLOPs

+CBAM 0.686 0.376 0.66 3.35 9.1

+CA 0.694 0.391 0.67 3.03 8.1

+EMA 0.69 0.389 0.67 3.04 8.5

+LSKA (ours) 0.695 0.391 0.67 3.17 8.4
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Comparison experiment on different convolutions in neck
The C2fGhost module, designed to leverage the advantages of GhostNet and C2f. convolutions, is lighter while 
maintaining the accuracy of the original convolution. Table 4 presents a performance comparison experiment 
among C2fGhost, C2fGhostDynamicConv, and C2fReVitBlock, revealing that the detection accuracy is highest 
when using the C2fGhost module, with mAP50 increasing by 0.4 percentage points.

Comparison experiment of different models
The ablation experiment results have confirmed the effectiveness of YOLOv8-PD. Furthermore, This paper com-
pares with other algorithms: Faster-RCNN, Cascade-RCNN, YOLOv3-tiny, YOLOv4-tiny, YOLOv5n, YOLOv5s, 
YOLOv5l, YOLOv7, YOLOv8n and YOLOv8-RD49. The YOLOv8-RD algorithm is a lightweight road damage 
detection algorithm proposed by Song Li. It is one of the advanced papers on road defect detection in recent years. 
The experiment was carried out under the same experimental conditions as the YOLOv5 model improved by 
 Guo50 and the YOLOv7 model improved by Pham  V51. Compared to the aforementioned algorithms, YOLOv8-
PD achieves the best performance in terms of mAP50, mAP50:95, and F1-Score. Considering both accuracy 
and speed metrics, the proposed algorithm balances detection accuracy and real-time performance, performing 
better in road defect detection tasks. The comparison results are shown in Table 5.

Generalization experiment
To evaluate the generalization capability of the YOLOv8-PD model, this paper employs the publicly available 
RoadDamage dataset, which consists of 3321 actual road damage images captured using smartphone cameras, 
with a resolution of approximately 1080P. Similar to previous experimental designs, road damage targets are 
categorized into four classes: D00 (longitudinal cracks), D10 (transverse cracks), D20 (alligator cracks), and D40 
(potholes), with a training-to-validation ratio of 8:2. The generalization experiment results on this dataset, as 
shown in Table 6, indicate that the performance of YOLO-PD remains superior to YOLOv8n. Due to variations 
in target quantity and image quality across different datasets, the degree of improvement in evaluation metrics 
also varies. On the RoadDamage dataset, mAP50, mAP50:95 and F-Score see improvements of 4.1, 2.1 and 0.5 

Table 3.  Comparison experiment on detect head.

YOLOv8n mAP50 mAP50:95 F1-score Params/M GFLOPs

+Efficient-Head 0.699 0.386 0.67 3.86 8.2

+SEAM-Head 0.701 0.386 0.68 2.91 7.4

+MultiSEAM-Head 0.695 0.386 0.68 4.92 7.4

+LSCD-Head (ours) 0.705 0.385 0.68 2.36 6.5

Table 4.  Comparison experiment on different convolutions in neck.

YOLOv8n mAP50 mAP50:95 F1-score Params/M GFLOPs

+C2fGhostDynamicConv 0.69 0.386 0.68 2.17 6

+C2fReVitBlock 0.692 0.389 0.68 2.4 6.3

+C2fGhost (ours) 0.694 0.395 0.68 2.3 6.1

Table 5.  Comparison of evaluation index among diferent models.

Algorithms mAP50 mAP50:95 F1-score Params/M GFLOPs

Faster-RCNN 0.512 0.225 0.494 137.1 370.2

Cascade-RCNN 0.548 0.25 0.564 81.9 110.6

YOLOv3-tiny 0.58 0.225 0.57 8.67 12.9

YOLOv4-tiny 0.427 0.159 0.39 6.1 9.8

YOLOv5n 0.595 0.254 0.6 1.7 4.2

YOLOv5s 0.672 0.355 0.67 7.03 16

YOLOv5l 0.647 0.305 0.64 64.1 108.3

YOLOv7-tiny 0.648 0.312 0.64 6.02 13.2

YOLOv8n 0.692 0.38 0.67 3.1 8.2

YOLOv8-RD 0.693 0.386 0.66 2.56 7.2

YOLOv8-PD (ours) 0.706 0.395 0.68 2.3 6.1
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percentage points, respectively. Taken together, these results confirm the strong generalization capability of the 
proposed algorithm.

Comparative experiment on the detection effect of different categories of road damages
The RDD2022 dataset captures four types of road damage, namely D00 (longitudinal cracks), D10 (transverse 
cracks), D20 (alligator cracks) and D40 (potholes). Figure 13 shows the detection effect of YOLOv8-PD algorithm 
on RDD2022 dataset compared with YOLOv8n algorithm. The improved algorithm shows better results than 
the original algorithm in the following four scenarios. In the first image, the original algorithm of D20 target is 
incomplete, and the detection of the improved algorithm is more accurate. In the second graph, the improved 
algorithm detects a D00 target that the original algorithm does not detect. In the third image, the improved 
algorithm detects two D20 targets that the original algorithm does not detect. In the forth image, both algorithms 
identify the D00 target, but the improved algorithm detects the D40 target additionally.

Figure 14 shows some failed test samples detected by YOLOv8-PD algorithm. D40 (potholes) targets were 
not detected in the two images displayed. This shows that the algorithm has the problem of missed detection in 
face of multi-hole scene and small hole scene. Because the algorithms for extracting crack features and extracting 
hole features are not well compatible, this provides an improved space for subsequent algorithms.

In order to further verify the detection effect of the model on different targets, Table 7 shows the performance 
of YOLOv8n and the improved model YOLOv8-PD under different damage conditions. The data show that the 
detection accuracy of YOLOv8-PD in four categories is higher than that of YOLOv8n, and the detection effect 
of category D00 (longitudinal cracks) is the most obvious. Compared with YOLOv8n, mAP50 and mAP50-90 
increased by 2.0% and 1.1%, respectively. It should be noted that among all road crack targets, D40 (potholes) 
has the lowest detection accuracy. This is because the D40 target is tiny and the number of training samples is 
small, and the model is difficult to learn more features. These experimental results show that the YOLOv8-PD 
algorithm can effectively detect road damage targets and accurately identify their location and category, showing 
strong robustness and accuracy.

Discussion
Object detection algorithms using deep learning have proven to be effective in achieving high accuracy in a 
variety of tasks, making them a popular choice for machine learning practitioners. However, the complexity and 
computational requirements of incredible deep networks can make it challenging to deploy them in real-world 
applications where resources may be limited or the need for quick decision-making is crucial. Given this, it’s 
important to consider deep learning models using fewer trainable parameters that may not have the same level 

Table 6.  Generalization experiment on RoadDamage dataset.

Dataset Algorithms mAP50 mAP50:95 F1-score

RoadDamage
YOLOv8n 0.601 0.272 0.58

YOLOv8-PD 0.642 0.293 0.63

RDD2022
YOLOv8n 0.692 0.38 0.67

YOLOv8-PD 0.706 0.395 0.68

Figure 13.  The detection effect of YOLOv8-PD and YOLOv8n.
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of accuracy but are more practical for deployment in the real world. While deeper networks still hold potential 
for improving accuracy, it may be necessary to balance that with considerations of practicality and feasibility in 
road damage detection tasks.

Pavement distress detection plays a crucial role in road protection. In this study, we present an efficient and 
lightweight YOLOv8-PD model designed specifcally for the detection of pavement distress. To decrease the size of 
the model, we introduce the C2fGhost module and the LSCD-Head detection head. Furthermore, the BOT trans-
former structure is introduced to boost accuracy in detecting long-range cracks. Additionally, the introduction 
of the LSKA mechanism comprehensively extracts local crack feature information in complex road environment.

The experimental results of the proposed YOLOv8-PD model on RDD2022 dataset for pavement distress 
detection indicate advantages compared to some current mainstream object detection and lightweight meth-
ods. It excels in evaluation metrics such as Precision, Recall, mAP, Parameters, Model size, and FPS. Although 
the accuracy of this algorithm in detecting pothole is only 53.1% and missing detection of D40 targets occured 
occasionally.The proposed approach still achieves an mAP of 70.6% and a speed of 111.9 frames per second, 
demonstrating its competence in pavement distress detection tasks.

Conclusion
This paper proposes an improved road damage detection algorithm based on YOLOv8n, addressing the chal-
lenges faced by traditional YOLOv8n in object detection applications. In the proposed method, firstly, to enhance 
road crack detection accuracy, we use the BOT transformer structure. Then we use the LSKA Attention module 
to optimize the network to improve the model detection accuracy. Thirdly, the C2fGhost block is constructed in 
the neck network of YOLOv8-PD, strengthening the ability of feature extraction while simultaneously reducing 
computational load. Finally, a lightweight detection head module, LSCD-Head, is proposed to reduces the size 
of the model while maintaining detection accuracy and speed.

Experiments show that YOLOv8-PD has advantages such as low computational load and higher detection 
accuracy, meeting real-time requirements. Compared with existing models, this method achieves higher detec-
tion accuracy while reducing requirements for platform computing and storage capacity, making it easy to deploy 

Figure 14.  Undetected small potholes using YOLOv8-PD algorithm.

Table 7.  Comparison of detection results for various types of damage in the RDD2022 dataset.

Algorithms Type mAP50 (%) mAP50:95 (%)

YOLOv8

D00 74.2 37

D10 79.3 39.5

D20 71.9 35.9

D40 51.2 25.6

ALL 69.2 38

YOLOv8-PD

D00 76.2(+2.0) 38.1(+1.1)

D10 79.7(+0.4) 39.8(+0.3)

D20 73.3(+1.4) 36.7(+0.7)

D40 53.1(+1.9) 26.5(+0.9)

ALL 70.6(+1.4) 39.5(+1.5)
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on resource-constrained devices. Future research will focus on deploying the improved model on resource-
constrained embedded detection devices and refining the proposed algorithm for practical applications.

Data availability
The data utilized in this paper is obtained through self-gathering and is made publicly available to make the study 
reproducible. It can be accessed at https:// github. com/ sekil ab/ RoadD amage Detec tor. If you want to request the 
complete dataset and code, please email the corresponding author.
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