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A multi‑objective optimisation 
approach with improved 
pareto‑optimal solutions 
to enhance economic 
and environmental dispatch 
in power systems
Muhammad Ilyas Khan Khalil 1, Izaz Ur Rahman 1, Muhammad Zakarya 1,2,5, 
Ashraf Zia 1,5, Ayaz Ali Khan 3, Mohammad Reza Chalak Qazani 2,5, Mahmood Al‑Bahri 2 & 
Muhammad Haleem 4,5*

This work implements the recently developed nth state Markovian jumping particle swarm 
optimisation (PSO) algorithm with local search (NS‑MJPSOloc) awareness method to address 
the economic/environmental dispatch (EED) problem. The proposed approach, known as the 
Non‑dominated Sorting Multi‑objective PSO with Local Best (NS‑MJPSOloc), aims to enhance 
the performance of the PSO algorithm in multi‑objective optimisation problems. This is achieved 
by redefining the concept of best local candidates within the search space of multi‑objective 
optimisation. The NS‑MJPSOloc algorithm uses an evolutionary factor‑based mechanism to identify 
the optimum compromise solution, a Markov chain state jumping technique to control the Pareto‑
optimal set size, and a neighbourhood’s topology (such as a ring or a star) to determine its size. 
Economic dispatch refers to the systematic allocation of available power resources in order to 
fulfill all relevant limitations and effectively meet the demand for electricity at the lowest possible 
operating cost. As a result of heightened public consciousness regarding environmental pollution and 
the implementation of clean air amendments, nations worldwide have compelled utilities to adapt 
their operational practises in order to comply with environmental regulations. The (NS‑MJPSOloc) 
approach has been utilised for resolving the EED problem, including cost and emission objectives that 
are not commensurable. The findings illustrate the efficacy of the suggested (NS‑MJPSOloc) approach 
in producing a collection of Pareto‑optimal solutions that are evenly dispersed within a single 
iteration. The comparison of several approaches reveals the higher performance of the suggested 
(NS‑MJPSOloc) in terms of the diversity of the Pareto‑optimal solutions achieved. In addition, a 
measure of solution quality based on Pareto optimality has been incorporated. The findings validate 
the effectiveness of the proposed (NS‑MJPSOloc) approach in addressing the multi‑objective EED 
issue and generating a trade‑off solution that is both optimal and of high quality. We observed that 
our approach can reduce ∼6.4% of fuel costs and ∼9.1% of computational time in comparison to the 
classical PSO technique. Furthermore, our method can reduce ∼9.4% of the emissions measured in 
tons per hour as compared to the PSO approach.
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In the power industry, recent research has been driven to focus on issues related to reviewing industrial design 
or operations in order to lower pollution and emissions to the environment. These ecological effects usually 
appear from thermal power  stations1–3 due to the growing public awareness of environmental protection. This 
is due to the fact that these power stations consume significant amount of fuel and, most recently, the world 
has seen rising fuel costs along with its environmental impacts. The emission dispatching option, which aims 
to reduce both emissions and fuel costs, is a desirable short-term alternative. This strategy has attracted a lot of 
interest  recently4–8 because it only needs a slight modification to the fundamental economic dispatch to account 
for emissions.

In power systems, one of the most important optimisation problems is known as Economic Environmental 
Dispatch (EED) that is sometimes referred to as Economic Emission Dispatch (EED). The EED’s primary objec-
tive is to ascertain which configurations of components within a power generation system result in the most 
efficient generation of power. The catch is, however, that the solution needs to be both economically viable and 
environmentally friendly in order to be considered acceptable. The significance of the EED problem has been 
growing substantially as people all over the world become more aware of the need to preserve the natural envi-
ronment. The goal is crystal clear: to simultaneously cut down on the overall expense of fuel and the pollution 
that it causes to our environment. The PSO has become an increasingly popular method for addressing the EED 
problem over the course of the past several years. This is mostly attributable to the fact that it is a straightforward 
method that is both effective and good at locating global optimal solutions to similar optimisation problems.

The ELD problem of power systems has been successfully resolved by using PSO techniques as discussed in 
section Related work. In the existing literature, PSO algorithms iteratively modify the parameters of a swarm 
of particles to converge toward the ideal solution by maximizing the distribution of power generation across 
numerous units while taking into account several restrictions including fuel cost, power demand, and generator 
limits. To meet the real-time requirements for dynamic power system operation, however, more developments 
are still required to improve the performance of PSO methods for ELD, particularly in handling larger and more 
complex power systems, integrating renewable energy sources, taking uncertainties into account, and increas-
ing computational efficiency. Furthermore, we believe that there still exists a gap to concentrate on creating 
advanced PSO-based strategies that combine PSO’s advantages with other optimisation methods to get around 
traditional PSO algorithms’ drawbacks and produce more durable and dependable solutions for the ELD issue 
in contemporary power systems.

This paper proposes and employs a novel nth state Markovian jumping PSO algorithm with a local search 
(NS-MJPSOloc) method to solve the economic/environmental dispatch problem. Subsequently, the newly devel-
oped algorithm implies the theory of local search capability. Using this capability, the problem search space hav-
ing multiple optima is thoroughly explored. It is known that the canonical versions of the PSO algorithms are 
based on global search. Similarly to other multi-objective evolutionary algorithms, an evolutionary factor-based 
mechanism is used to identify the optimum compromise solution, and a Markov chain state jumping technique 
is used to control the Pareto-optimal set size. The results of several runs on the common IEEE topology test 
system are compared to other methods described in the literature. The efficacy and potential of the proposed 
(NS-MJPSOloc) approach are shown to solve the multi-objective EED problem. The major contributions of this 
research are as follows:

• we propose and employ a novel nth state Markovian jumping PSO algorithm with local search (NS-MJPSO-
loc) method to solve the economic/environmental dispatch problem;

• the proposed algorithm uses an evolutionary factor-based mechanism to identify the optimum compromise 
solution;

• a Markov chain state jumping technique is used to control the Pareto-optimal set size along with a neighbour-
hood’s topology (such as a ring or a star) to determine its size; and

• the algorithm is implemented for the economic dispatch problem in the domain of power systems. The 
experimental outcomes of the proposed NS-MJPSOloc approach has been verified on IEEE 30 Bus and 15-unit 
Systems.

The rest of the paper is organized as follows. A summary of the related work is offered in Section Related work. 
The problem statement along with the constraints is explained in section Problem statements. The optimisa-
tion problem is formulated in section Problem formulation. The concept of the multi-objective optimisation 
is elaborated in section The concept of multi-objective optimisation. The proposed multi-objective optimisa-
tion algorithm is explained in section The proposed NS-MJPSOloc algorithm. Performance evaluation of the 
proposed algorithm is discussed in section Performance evaluation. The experimental setup is explained in 
section Experimental setup and evaluation metrics are given in section Evaluation metrics. The obtained results 
and findings are illustrated in section Results and discussion. Finally, the concluding remarks along with future 
research directions are summarized in section Conclusions and future work.

Nomenclature
The list of abbreviations shown in Table 1 and the list of mathematical notations shown in Table 3 are used in 
the rest of the paper. We believe that these tables will help all readers to quickly understand all the mathematical 
formulas mentioned in this paper.
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Related work
In 2014 Han et al.9 delved deep into the environmental and economic dispatch of a micro-grid, encompassing 
diverse energy sources like photovoltaic generation, wind turbines, and more. The study underscored the efficacy 
of an improved linearly decreasing weight PSO algorithm, emphasizing its theoretical and practical feasibility. In 
2016 Tlijani et al.10 presented an extended version of the conventional DEED (dynamic economic environmental 
dispatch), aiming to mitigate ramp rate violations across consecutive dispatch periods. The goal was clear: to 
consistently meet periodic load demands. In  201711 illuminated the potential of a multi-objective PSO algorithm, 
leveraging both the Pareto criterion and fuzzy logic, to address environmental pollution in economic dispatch. In 
 201812 elegantly formulated the power dispatch challenge as a dual-objective optimisation problem. The mission 
was dual-pronged: simultaneous minimization of fuel cost and emissions.

Considering its concealed nature, false data injection attacks (FDIAs) have attracted a lot of attention in 
the field of cyber-physical power systems (CPPS). Improving CPPS cybersecurity requires an understanding 
of likely attacker actions. Nonetheless, the majority of FDIA models now in use frequently concentrate on the 
implications of attacks or the effects of attackers alone. In response, a unique multi-objective stealthy FDIA 
strategy is presented  in13 within the framework of an AC grid model. In order to maximize the impact of the 
attack and minimize tainted measurements while keeping stealth, the suggested attack model is presented as a 
multi-objective optimisation problem. Additionally, in order to improve the attack vector’s generation efficiency, 
a novel representation mechanism is proposed to characterize the positions and parameters of injected  states13.

In  201914 proposed a refined version of PSO to tackle the EED conundrum of thermal electric power units. 
The innovative Space Reduction strategy was employed to pinpoint the Pareto optimal solution within the 
designated search space. In  202015 integrated DE with Quantum PSO (QPSO) to address the short-term EED 
challenge of microgrids. In another study, Mehrpour et al.16 focused on the dynamic load and emission dispatch 
in daily cycles, especially considering the potential impacts of renewable energy sources. In  202217 showcased 
the Perfectly Convergent PSO (PCPSO) for addressing combined economic and multiple emissions dispatch 
challenges. The study meticulously considered the ramifications of various pollutants, employing cubic functions 
with seven price penalty factors. The history of EED when viewed through the perspective of these research 
articles, presents a picture of continuous innovation and development. Microgrids and other forms of renewable 
energy are only two examples of how this industry has expanded its scope in pursuit of solutions that are good 
for the economy while also being friendly to the environment. The application and refining of PSO have been the 
constant thread spinning throughout this exploration, establishing its strength as a solid tool for EED difficulties.

Table 1.  List of Abbreviations.

Abbreviation Description

PSO Particle swarm optimisation

ELD Economic load dispatch

NS-MJPSOloc N-states Markovian jumping particle swarm optimisation with local-best

EED Economic and Emission Dispatch

CPPS Cyber-Physical Power System

FIDA False Data Injections Attack

CMOPEO-EED Constrained multi-objective population extremal optimisation based economic-emission dispatch

PCPSO Perfectly convergent particle swarm optimisation

MOP Multiobjective optimisation problem

MOEA Multiobjective optimisation evolutionary algorithm

MaOP Many objective optimisation problem

MPSO Modified particle swarm optimisation

VEPSO Vector evaluated particle swarm optimisation

DEED Dynamic economic environmental dispatch

CSA Cuckoo search algorithm

HFA Hybrid firefly algorithm

ACO Ant colony optimisation

GA Genetic algorithm

EP Evolutionary programming

ES Evolutionary strategies

DE Differential evolution

SA Simulated annealing

HCA Hill climbing algorithm

NS-MJPSO N-states Markovian jumping particle swarm optimisation

NS-SPSO N-states switching particle swarm optimisation

CEED Combined economic emission dispatch
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Environmental/economic dispatch (EED) problems have been resolved in a variety of  ways4–8,18–22. In general, 
there are three methods to resolve the EED issue. The first approach involves considering the level of emissions 
as a constraint with a tolerable  limit4. However, demonstrating the relationship between cost and emissions in 
this formulation is quite difficult.

The second method addresses the emission as a separate objective beside the traditional cost  objective5–8. 
However, the EED problem was simplified to a single objective function by linearly combining the two objec-
tives or only taking into account a single objective at each stage of optimisation. inevitably, this method finds 
marginally non-dominated solutions and necessitates more runs than the required number of Pareto-optimal 
solutions. In power systems, the Economic Emission Dispatch (EED) problem is a well-known constrained 
multi-objective optimisation problem. It strives to meet a variety of operational requirements while concurrently 
minimizing expenses and emissions. Even though a lot of solutions have been devised to deal with it, however, 
this problem remains difficult and challenging because of the unpredictable and inconsistent nature of renewable 
energy sources (RES) like wind and solar, in particular, when they are integrated into the system. The authors 
 in23 present a novel constrained multi-objective optimisation technique called CMOPEO-EED, with the goal of 
improving EED performance in the presence of renewable power generation.

The third method treats fuel cost and emission as dual objectives at the same time. For the EED issue, multi-
objective search heuristic and fuzzy membership-based optimisation approaches have been  explored18,19,  and20, 
whereas, algorithmic approaches do not offer a logical framework for guiding the search to the Pareto-optimal 
front, and it is extremely hard to expand these methods to include other objectives. These methods need a lot 
of computational power and, subsequently, take a lot of time. Numerous non-dominated alternatives can be 
observed in a single run using strategies based on multi-objective genetic algorithms, as described  in21,22. Pre-
mature convergence is a problem with genetic algorithm-based methods, and the method described  in21 requires 
a lot of computational work because of the ranking process that takes place throughout the fitness assignment 
phase.

The PSO approach provides an adaptable and diverse strategy to enhance and evolve global and local explo-
ration capabilities, despite genetic algorithms and heuristic approaches. Compared to the genetic algorithm, 
it typically produces faster convergence  rates24. PSO has been applied with remarkable popularity in the past 
decade to a variety of power system problems, such as the economic power dispatch  issue25,26,  and27. It has been 
shown and documented that PSO has the potential to deal with non-smooth and non-convex economic power 
dispatch  problems26,27. subsequently, the fuel cost was the only factor taken into account for optimisation when 
the problem was defined as an ordinary dispatch problem.

In order to obtain an edge of optimal solutions, it is predominantly necessary to redefine global and local best 
persons when switching from a uni-objective to a multi-objective PSO. There is a set of non-dominated solutions 
rather than an absolute global best in multi-objective PSO. Additionally, there could not be a single local best 
individual for every swarm particle. In a multi-objective domain, selecting the global and local best for steering 
the swarm particles turns into a challenging problem.

Numerous real-world problems can be formulated as multi-objective optimisation problems (MOPs), in 
which it is necessary to simultaneously optimize several, frequently conflicting objectives. Finding a set of 
solutions that are unable to be enhanced in one area without compromising another is the aim of addressing a 
mixed optimal problem (MOP). MOEAs, or multi-objective evolutionary algorithms, have become a popular 
and successful method for handling  MOPs28. As MOEAs may produce roughly optimum solutions in a single 
run and do not require specific assumptions like continuity or differentiability, they are used in the majority of 
the related works. Furthermore, these methods are based on randomised search algorithms that draw inspira-
tion from Darwin’s theory of natural selection. Although MOEAs have obvious benefits, it is vital to remember 
that they require a large number of objective function evaluations, which could make them unfeasible for some 
applications requiring a lot of computational power.

The computational complexity of evaluating the objective functions and the flexibility of the input parameters 
are the two main determinants of the computational cost of MOEAs at each  iteration29,30. Since many MOPs in 
the first instance are unable to be represented analytically, evaluations must be done through laborious simula-
tions. Though there have been several attempts to reduce the MOEA execution time by utilizing the knowledge 
collected throughout the search process, these approaches usually lead to a consensus regarding the accuracy level 
of the final findings. Applications using high-dimensional spaces, including multi-objective programming (MOP) 
problems with four or more objectives or those with hundreds or thousands of decision variables, fall under the 
second instance. Large-scale MOPs and many-objective optimisation problems (MaOPs) are the terms used to 
describe these kinds of  MOPs31. They considerably increase MOEAs’  runtime32. Furthermore, large population 
size is needed for some applications in order to improve accuracy or cover more ground in the search  space33–35. 
While the majority of MOEAs function within an expected polynomial time for the size of their population, 
storage capacity limitations can provide  difficulties36,37.

Recent reports indicate that PSO variants including NS-MJPSOloc implementation require only a small 
amount of work to resolve power system issues. In order to handle the EED problem with thermal dispatch and 
various renewable energy sources, Wang and  Singh38 proposed a fuzzified MOPSO. The method offers a fuzzi-
fication process for choosing the world’s top person while considering the world’s top as an entire area rather 
than simply a single spot. On the other hand, each particle is maintained with a single local best solution. This 
will reduce search efficiency and is against the multi-objective optimisation principle. By breaking down the 
original optimisation problem into smaller problems, Kitamura et al.39 presented a modified MOPSO to opti-
mize an energy management system. This method, however, faces serious limitations when there is a significant 
interaction between the constraints in several sub-problems. In their MOPSO-based solution to the congestion 
management issue, Hazra and  Sinha40 demonstrated how to reduce both costs and congestion at the same time. 
The sigma  method41 is used in this strategy to identify the ideal local particle guide. However, the use of the 
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sigma values heightens the PSO’s already considerable selection pressure. In some situations, such as multifrontal 
difficulties, this may lead to early convergence.

In order to calculate the contributions of generators to the transmission system, a vector-evaluated PSO 
(VEPSO) was suggested and  studied42. Depending on each objective independently, VEPSO selects portions 
of the future generation from the older generation. However, choosing people who excel in one area without 
considering the other areas raises the issue of eliminating those with average performance, who might be very 
helpful in finding compromise  solutions43.  In44,45, the authors have proposed solutions for enhancements in evo-
lutionary algorithms and optimization  techniques44 outlines a strategy for improving the effectiveness of SAEAs 
(Surrogate-assisted evolutionary algorithms) utilizing unevaluated solutions. A crucial element of MOEA, the 
offspring generator, has received little attention and lacks a design concept. In order to overcome this problem, 
regularity evolution (RE), an offspring generation model for MOEAs, is introduced  in45. The authors  in46 pro-
posed an adaptive algorithm for control system optimizations to address the issue of selecting optimal starting 
values for connection weight parameters in MPIDNN (multivariable PID neural network). The authors suggested 
a constrained optimization problem and an adaptive population extremal optimization-based MPIDNN method 
called PEO-MPIDNN, which minimizes exponential time and system errors.

In47,48, the authors have proposed novel approaches in multi-objective optimization and algorithm efficiency 
within machine learning environments. For online sequential learning machines,  in47 a multi-objective model 
selection approach is suggested to enhance the target output error, control quality, and channel equalization. To 
build channel equalization models and accomplish classification selection and equalization, the proposed method 
makes use of feedback compensation and adaptive equalization control. The authors  in48 suggest ASDNSGA-
II, an improved fast NSGA-II based on an adaptive crossover technique and unique congestion strategy. The 
proposed approach balances the convergence and variety of the decision and object spaces, hence improving 
the selection strategy.

49 discusses the application of federated learning (FL) and blockchain technology in IIoT. To lower energy 
usage and application latency, the study focuses on FL Aware Multi-Objective Modeling in Decentralized Micros-
ervices Assisted IIoT Systems. To optimize workload allocation and application delay, the Blockchain-Enabled 
FL Algorithm Framework (DLEBAF) is designed with three strategies: (i) deadline-efficient task sequencing 
and scheduling (DETS), (ii) latency-efficient task scheduling (LETS), and (iii) energy-efficient task scheduling 
(EETS). Table 2 shows the advantages and disadvantages of the existing works. We believe the data in Table 2 
will help our reader to quickly identify what is missing in the current literature and what is further needed to 
improve the efficiency of EED problems in power systems.

Problem statements
In order to solve the EED problem, the fuel cost and emission objective functions should be minimized while 
adhering to a number of equality and inequality constraints. In section Problem objectives, we describe the 
objectives of EED problem. In section Problem constraints, various constraints are explained. Finally, the EED 
problem is mathematically described in section Problem formulation. Table 3 describes a list of all mathemati-
cal notations and their brief description. We believe that this table will help all readers to quickly understand all 
the mathematical formulas.

The problem in question is typically formulated as follows.

Problem objectives
We consider two objectives for the EED problem in our optimisation problem i.e. fuel cost and carbon emissions. 
The mathematical foundations of both objectives are described in subsequent subsections.

Smooth cost minimization
The goal of the ELD problem is to generate electricity while satisfying all system constraints at the lowest possible 
cost per unit (fuel cost in US dollars). The cost of each generator is calculated using the quadratic function in the 
smooth or simplified ELD problems. The equality and inequality constraints are the fundamental limitations of 
the simplified cost functions. The total cost of fuel in US dollars per hour, F(P), is represented as:

The objective function is a minimisation problem and is given by:

where C represents the total generation cost and Fi represents the objective function of generator i. Furthermore, 
N is the total number of generators, ai , bi , and ci are the ith generator’s cost coefficients, and PGi is the generator’s 
real power output of the ith generator. PGi , which is described as follows.

The index of a particle is represented by n, while the number of units or generators is represented by D. For exam-
ple, Pi1 denotes the power produced by unit 1. The dimension of the problem in this function is [Population times 
Number of systems units]. However, on the basis of instances, appropriate constraints are taken into account.

(1)
N
∑

i=1

Fi(PGi) =

m
∑

i=1

ai + biPGi + ciPG
2
i

(2)min(C.F) =

N
∑

i=1

Fi(PGi) =

m
∑

i=1

ai + biPGi + ciPG
2
i

(3)PGi = [Pi1, Pi2, Pi3, · · · , PiD], i = 1, 2, · · · , n
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Carbon emission minimization
In order to develop a mathematical model for emission reduction in a power system, the challenges including 
power generation, emission factors, and various constraints are being considered. A generalized mathematical 
model for minimizing emissions is provided here:

Decision variables: In the emission reduction model, we define the following decision variables.
PGi : Power generated by the ith generator.
Ei : Emission factor caused by (per unit generated power) by the ith generator.
Hence, the total sum of emissions produced by the entire committed unit (power system) is formulated as 

follows:

(4)
m
∑

i=1

Ei =
∑

(PGi × Ei)

Table 2.  Advantages and disadvantages of existing works.

Ref Methods used Strengths Weaknesses

50 Hybrid firefly algorithm (HFA)
Genetic algorithm (GA)

 Hybrid FA-GA algorithm for environmental economic 
dispatch
 Improved criteria for determining global and local 
optima

The research does not address the issue of scalability in 
relation to the algorithm’s performance when applied to 
larger power systems that encompass a greater number 
of thermal power plants. The provided analysis lacks a 
comprehensive examination of the algorithm’s compu-
tational efficiency, specifically in terms of the duration 
necessary for convergence to the best solution.

51  Cuckoo Search Algorithm (CSA)
 Solving economic dispatch problem using Cuckoo 
Search Algorithm 
Testing the method on western Algerian electrical power 
system

The work lacks an investigation of the computational 
complexity of the CSA as well as any discussion on its 
convergence features. Furthermore, the paper fails to 
address the CSA’s ability to effectively manage uncertain-
ties or fluctuations within the power system, a critical 
aspect for practical implementation.

52  Crow search algorithm (CSA)
Eagle strategy (ES)

Hybridization of crow search algorithm with eagle 
strategy
 Proposed solution for economic dispatch problem 
(EDP).

The operational expenses associated with pumped 
storage systems are minimal. Simultaneous operation 
of pumping and producing processes is not feasible in 
pumped storage units.

53  Bald Eagle Search (BES) optimisation algorithm
WOA, GA, PSO, and GSA optimisation methods

Introducing the Bald Eagle Search (BES) optimisation 
algorithm
 Comparing the BES algorithm with other optimisation 
methods

The BES algorithm has the potential for expansion to 
encompass more categories of renewable energy sources, 
such as hydropower or biomass, thereby offering a more 
holistic approach to optimising power systems. The 
algorithm’s effectiveness can be improved by incorporat-
ing supplementary restrictions and parameters, such 
as transmission losses, voltage stability, and ramp rate 
limits, hence enhancing its suitability for real-world 
power systems.

54 Harmony search algorithm
Ant colony optimisation (ACO)

Proposed hybrid algorithm (HSA-ACO) for EED 
problems
Comparative analysis with other optimisation tech-
niques

The study solely evaluates the efficacy of the suggested 
algorithm on power systems with 3-unit and 6-unit 
configurations, perhaps limiting its applicability to large-
scale power systems. The publication lacks a comprehen-
sive analysis of other optimisation approaches, which 
hinders the evaluation of the algorithm’s efficacy in 
comparison to established methods.

55

Levy-based glowworm swarm optimisation (LGSO)
GA, Grey wolf optimisation, whale optimisation algo-
rithm (WOA), dragonfly algorithm (DA) and glowworm 
swarm optimisation (GSO)

Introducing a meta-heuristic algorithm for CEED
Proposing a novel algorithm called Levy-based glow-
worm swarm optimisation (LGSO).

The potential of the LGSO algorithm can be further 
optimised by integrating supplementary elements, such 
as grid constraints, ramp rate limits, and system stability 
considerations. Comparative analyses can be undertaken 
to assess the efficacy of the LGSO algorithm in compari-
son to other cutting-edge optimisation algorithms when 
addressing CEED concerns.

56

Multi-objective squirrel search algorithm (MOSSA)
Squirrel search algorithm based weighted sum approach 
(SSA-WSA) with price penalty factors, artificial bee 
colony (ABC), and exchange market algorithm (EMA)

Introducing multi-objective squirrel search algorithm 
(MOSSA)
Achieving preferred trade-off solutions over other 
algorithms.

The research does not address the constraints or poten-
tial disadvantages associated with the MOSSA approach, 
such as its computing complexity or susceptibility to 
variations in problem size and complexity. Furthermore, 
the analysis conducted utilising the MOSSA technique 
lacks comprehensiveness in terms of evaluating the sta-
tistical significance and robustness of the acquired data.

57

Metaheuristic optimisation techniques: moth-flame 
optimisation, salp swarm algorithm, improved grey wolf 
optimizer, and multi-verse optimizer
Weighted sum strategy using the analytic hierarchy 
process (AHP)

ETED model for IEEE 30-bus system with RESs
Metaheuristic optimisation techniques for cost, losses, 
and emissions.

System restrictions encompass equality and inequal-
ity limits that involve banned operation zones (POZs). 
Metaheuristic optimisation approaches are utilised in 
order to identify the optimal solution for several factors 
such as generation cost, losses, and emissions.

58
Hybrid Multi-verse Optimizer (MVO) hybridized with 
sequential quadratic programming (SQP) is proposed 
for the solution of multi-constrained ED problem

The presented mechanism demonstrates improved con-
vergence features, numerical proficiency, and robustness 
in solving the multi-constrained ED problem.

Comparative analyses can be undertaken to assess the 
efficacy of the HMVO approach in relation to other 
advanced optimisation techniques, including GAs, 
PSO, and DE. These evaluations aim to ascertain the 
competitiveness and superiority of the HMVO approach 
in addressing the Economic Dispatch problem.
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Emission pollutants that are produced by fossil-fuelled thermal units, comprising sulphur oxides SOx and nitro-
gen oxides NOx , could be analysed independently. However, in order to provide an illustration, the aggregate 
ton/h emission E(Pi) among these particles is equal to Eq. (5): as described  in5  and8.

whereas, α,β , γ , δ and ǫ are various parameters describing different emission coefficients for each generator in 
the power system.

Problem constraints
We consider three constraints for the EED problem in our multi-objective optimisation problem i.e. power 
generation (lower and upper limits), power stability (production meets demand), and security constraints. The 
mathematical foundations of these constraints are described in subsequent subsections.

Power generation constraints
Every single generator’s realistic power output is constrained by its upper and lower limits for reliable operation 
in the manner described below:

The generated power at time t must be equal to the demand from the total loads side as given below:

(5)E(PG) =

m
∑

i=1

10−2(αi + βiPGi + γiP
2
Gi)+ δi exp(ǫiPGi)

(6)PG
min
i ≤ PGi ≤ PG

max
i , i = 1, . . . ,M

(7)
m
∑

j=1

PGjt = PDload,t

Table 3.  List of mathematical symbols and notations.

Notation Description

j Particle

vj Particle velocity

xj Particle position

D Problem’s dimensionality

w Scaling factor

rand1 , rand2 Random numbers, uniformly distributed, between [0, 1]

c1 , c2 Cognitive and social acceleration coefficients

Pbestj Best solution identified by particle jth

Gbestj Best solution for particle jth throughout the swarm

P = (pij)JJ The probability transition matrix

Ef Evolutionary factor

δ Auxiliary parameter

ω inertia weight

N Number of states

n Population size

f Benchmark function for evaluation

Pd(min) Minimum mean distance of all particles Pd(i)

Pd(max) Maximum mean distance of all particles Pd(i)

pbest Particle local best position

gbest Particle global best position

loc Local search mechanism

S Evolutionary state

PG Generator Power

PD Consumed Power

E Emission

θ Voltage phase angle

Ploss Power loss
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Power stability constraints
The power stability constraint means that the total amount of generated power PGi must be equal to the total 
amount of demand PD plus the actual transmission line losses Ploss . Hence, mathematically it is given by:

In practice, there are numerous ways to determine transmission line losses, including the power flow and the 
Bmatrix technique. Another approach has been used in our implementation, and it entails solving the load flow 
problem with equality bounds on both reactive and real power at each bus in the way that is described below.

where i refers to a particular bus index, designating the bus at where power is produced (PGi) , consumed (PDi) , 
or where the magnitude of the voltage (Vi) and phase angle (i) are obtained. However, j indicates an additional 
bus index that designates a different bus in the network. The equations take into account the contributions from 
many buses (from j = 1 to j = n) , as indicated by the summation (

∑

) over j, where n represents the total number 
of buses in the system. Subsequently, PGi indicates the power generated by source i, PDi is the power consumed by 
load i, Vi is the voltage magnitude at bus i, Gij is the conductance between buses i and j. Similarly, Bij determines 
the susceptance between buses i and j. Eventually, θi and θj illustrates the voltage phase angles at buses i and j, 
respectively. Thus, the actual power transmission losses can be measured with the following equation.

In this equation, the power loss can be calculated by combining the inputs of every element (indexed by k). 
Moreover, gk is used to denote the electrical conductance within the kth line connecting bus i to bus j, and N 
represents the total number of transmission lines.

Security constraints
Security and integrity constraints can be expressed empirically to define the limits or requirements that must 
be met for safe and reliable operation. Hence, the transmission line loading S is constrained by its upper limit 
for secure operation as follows:

It is important to operate any generator within its minimum and maximum capacity. This should be noted that 
going above the capacity limit will compromise the system’s security, reliability, and dependability.

Problem formulation
This problem ought to be mathematically represented as a non-linear constrained MOPs by combining both 
constraints and objectives simultaneously.

Minimize(PG) in terms of:

The equality constraint g is dependent on the variables PG , F(PG) , and E(PG) . This condition makes sure that 
specific requirements are fulfilled. However, the parameter h is represented as the inequality constraint that is 
further dependent on P, which ensures that some specific requirements are met.

The concept of multi‑objective optimisation
In the real-world, simultaneous optimisation of multiple objective functions occurs in many problems. These 
functions usually have incommensurate, predominantly opposing, and contradictory objectives. Considering 
such competing objective functions, multi-objective optimisation produces a set of optimal solutions instead of 
just one. Numerous solutions are optimal because no one can be said to be superior to any other with regard to 
all objective functions. Pareto-optimal solutions are exactly these optimal approaches that have been referred 
to, as discussed  in59.

The two competing solutions, x1 and x2 , associated with a MOP, can either dominate the other or else, depend-
ing on the situation. If the subsequent two conditions are met, a solution x1 to a minimising problem dominates 
x2 regardless of compromising clarity:

(8)
m
∑

i=1

PGi = PD + Ploss

(9)PGi − PDi − Vi

n
∑

j=1

Vj[Gij cos(θi − θj)+ Bij sin(θi − θj)] = 0

(10)QGi − QDi − Vi

n
∑

j=1

Vj[Gij sin(θi − θj)+ Bij cos(θi − θj)] = 0

(11)Ploss =

N
∑

k=1

gk

[

V2
i + V2

j − 2ViVj cos(θi − θj)

]

(12)|Sli| ≤ Smaxli , i = 1, 2, . . . ,N

(13)g(PG , F(PG),E(PG)) = 0

(14)h(P) ≤ 0
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In case, any of the preceding conditions are compromised, the outcome x1 fails to dominate over the solution 
x2 . The non-dominated solution is x1 if it dominates the solution x2 . The Pareto-optimal set is defined as the set 
of solutions that are non-dominated across the whole search space. The Pareto optimal front is another name 
for this set.

The proposed NS‑MJPSOloc algorithm
General overview
In recent years, study on evolutionary approaches illustrates that population-based algorithms are well-suited 
for solving multi-objective optimisation problems. They can also be effectively used to overcome many of the 
limitations of traditional single objective strategies, including their sensitivity to the Pareto-optimal front’s shape 
and their requirement of numerous runs to find various Pareto-optimal solutions.

Traditionally, the main goal of a MOP algorithm is to maintain population diversity in the set of Pareto 
optimal solutions, besides steering the search towards the Pareto-optimal front.

PSO has been inspired as a promising social heuristic method with an adaptable and diverse strategy to 
improve and modify the capabilities of both local and global exploration in recent years. In contrast, considering 
that there is not a definite global best in multi-objective PSO, only a set of non-dominated solutions, transform-
ing classical single objective-based to a multi-objective-based PSO necessitates redefining global and local best 
candidates. Additionally, there could not be a single local best solution with every swarm particle. In a multi-
objective space, selecting the global and local best for steering the population turns into a challenging problem.

The challenges of evolving a multi-objective variant of the standard PSO are resolved by the proposed 
approach, which involves a process for choosing between the global and local best candidates. It is important to 
note that the suggested MOPSO technique has been applied with remarkable success to a number of challenging 
standard test problems in the field of multi-objective  optimisation60.

Core concepts and notions
The brief descriptions, definitions, and terminologies of the proposed NS-MJPSOloc algorithm are given as 
follows:

• Particle, current position: Xi(t) is a candidate solution, where d is the total number of optimized parameters, 
and is represented by an d-dimensional vector. Xi,d(t) = [x1,d(t), ..., xn,d(t)] , where Xi,d(t) represents the 
position of the particle ith with respect to the dimension d, or the value of the dimension parameter d in the 
candidate solution ith, describes the particle ith at time t.

• Swarm size, population: S(t), represents a distinct set of n particles in time t, whereas, S(t) = [x1(t), ..., xn(t)]
• Velocity vector, Vi(t) : The parameter identified as velocity adjusts how each particle Vi,d(t) moves in the 

d-dimensional search space. In order to identify optimal or near-optimum solutions, it coordinates the ways 
to exploit and explore the swarm in the search space. Vi,d(t) = [v1,d(t), ..., vn,d(t)] , where the parameter t 
represents time.

• N states Markov Jumping: It is a mathematical illustration of a series of occurrences or states where the next 
state is solely dependent upon the current state. Furthermore, it relates to a particular type of Markov chain 
with a set of states represented by N.

• Evolutionary factor, Ef  : In order to automatically adjust the inertia weight and acceleration coefficients, an 
evolutionary factor was developed that determines four specific evolutionary stages such as convergence, 
exploitation, exploration, and jumping out in each  generation61–65. The evolutionary factor is able to consider 
data about population distribution. In this paper, we define four states using the evolutionary factor. The 
following expression represents the mean distance of each particle in the whole swarm: 

 wherein Eq. (17), S represents population size and D represents the dimension of the search space and Eq. 
(18), Pdg denotes the global best particle among the Pd(i) , Pd(min) and Pd(max) are particles with minimum 
and maximum distances, respectively.

• Inertia weight, ω(t) : The control parameter known as inertia weight, or ω(t) , serves to determine how sig-
nificantly the preceding velocities influence the current velocity. As a result, it influences the balance between 
the global and local exploring capacities. A large inertia weight is recommended for the early stages of the 
search process to improve global exploration, however, a smaller inertia weight is proposed for the later 
stages to improve local exploration. It is assumed that Ef  is significantly large in the jump state and small in 
the convergence state. The evolutionary factor Ef  and the inertia weight ω share several characteristics. As a 
result, the mapping ω(Ef ) is defined as follows: 

(15)∀i ∈ {1, 2, . . . ,Nobj} : fi(x1) ≤ fi(x2)

(16)∃j ∈ {1, 2, . . . ,Nobj} : fj(x1) < fj(x2)

(17)Pd(i) =
1

N − 1

N
∑

j=1,j �=i

√

√

√

√

D
∑

k=1

(xi(k)− x̄j(k))2

(18)Ef =
Pdg − Pd(min)

Pd(max) − Pd(min)
∈ [0, 1]
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• Neighbourhood Ki , Lbest: A subgroup of neighbouring particles, labelled Ki , this group is known as the 
neighbourhood of particle i. Based on the neighbourhood’s topology (such as a ring or a star), its size can 
be determined. Within its defined neighbourhood search space, Ki indicates the indexes of neighbouring 
particles for each particle i. Considering the Lbest strategy, the velocity update model for particle i at time 
t + 1 can be expressed as follows: 

 Whereas, the Lbesti(t) indicates the particle’s best position with the best fitness value observed in its imme-
diate neighbourhood.

Computational stream
In the computational steam of the proposed NS-MJPSOloc algorithm, we have n number of particles with D 
dimensional parameters and neighbourhood Ki . It can be described in the following Algorithm 1, Algorithm 2, 
and Algorithm 3.

Initialize particles’ positions, velocities, personal bests, and local bests

while termination condition is not met do

for each particle i do
Update particle’s velocity:

Vi(t+1) = w ·Vi(t)+ c1 · r1 · (Pbesti(t)−Xi(t))+ c2 · r2 · (Lbesti(t)−Xi(t))

Update particle’s position:

Xi(t+1) = Xi(t)+Vi(t+1)

Update personal best:

if fitness(Xi(t+1)) < fitness(Pbesti(t)) then
Pbesti(t+1) = Xi(t+1)

end

Update local best:

Calculate Lbesti(t) as the best position among the neighboring particles in Ki:

Lbesti(t) = arg min{fitness(Xj(t)) | j ∈ Ki}

end

Update Markovian jumping states for particles

end

Algorithm 1.  Neighbourhood-aware strategy.

(19)ω(Ef ) = 0.5Ef + 0.4 ∈ [0.4, 0.9],∀Ef [0, 1]

(20)vi(t + 1) = ωvi(t)+ c1(δ(t))r1(t)(Pbesti(t)− xi(t))+ c2(δ(t))r2(t)(Lbesti(t)− xi(t))

(21)xi(t + 1) = xi(t)+ vi(t + 1)
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function Population Distribution(i,N,D,X)
totalDistance 0

for j = 1 to N do
if j �= i then

end
distance 0
for k = 1 to D do

distance distance+(X [i][k]−Mean distance(X , j,D,k))2
end

totalDistance totalDistance+
√
distance

end

populationDistribution totalDistance
N−1

return populationDiversity

function average parameters(X , j,D,k)
sum 0

for i= 1 to D do

sum sum+X [ j][i]
end

average sum
D

return average

Algorithm 2.  Population Diversity Measure.

procedure transitionProbabilities(S,N,P0)
Initialize matrix P of size N×N with zeros

for i 1 to N do
Initialize a variable maxTransitions with 0

for j 1 to N do

Generate a random transition rate P0(i, j) from state i to state j
P[i][ j] P0(i, j)
totalTransitions totalTransitions+P0(i, j)

end

Normalize row i of P by dividing each element by totalTransitions
end

return matrix P
end procedure

Algorithm 3.  Markov Transition Probability Matrix.

The mechanism of selecting acceleration coefficients
In this work, the acceleration coefficients c1(δ(0)) and c2(δ(0)) with initial values of 2 are discussed in this study. 
Then, on the basis of the evolutionary state, these coefficients are automatically updated in the following phases.

• Jumping-out-state The primary goal of the jumping-out state is to allow the particles to escape local optima 
and get closer to a more advantageous global optima. The acceleration coefficients c1 and c2 are adjusted 
appropriately to enable this operation. Figure 1 shows the Markov switching based on the transition prob-
ability. Usually, a higher value of c2 and a lesser value of c1 are employed in this phase. These changes are 
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made to encourage particles to move more quickly in the direction of the best particle overall. A greater c2 
accelerates convergence by amplifying the effects of the particle’s individual best position and the global best 
position. However, a smaller c1 minimises the influence of the particle’s previous velocity, enabling it to more 
successfully explore new regions. The values for c1 and c2 in the aforementioned case are set to c1(δ(4)) = 
1.8 and c2(δ(4)) = 2.2, respectively. These parameters are selected to allow escape from local optima and to 
encourage quick progress towards the particle that performs best globally.

• Exploration state In the exploration state, the focus is on analysing new optima while avoiding getting stuck 
in existing ones. In this phase, c1 is used with a greater value, whereas c2 is used with a relatively smaller value. 
By favouring the past velocity of the particle c1 over the impact of the global best position c2 , these changes 
aim to promote individual exploration. The values for c1 and c2 in the precise instance are set at c1(δ(3)) = 
2.2 and c2(δ(3)) = 1.8, respectively. By letting the particle rely more on its own velocity to explore new areas 
of the search space, these values are set to encourage individual exploration. To establish a balance between 
exploration and exploitation, acceleration coefficients are frequently dynamically adjusted throughout the 
optimisation process.

• Exploitation state The main purpose of the exploitation phase is to employ the local knowledge that the 
particles have while looking for the best solutions in the potential region. Typically, this state comes after the 
exploration state and before the convergence state. In this state, c1 serves a substantially bigger value, whereas 
c2 is used with a relatively smaller value. With these adjustments, the particle’s own best position (local infor-
mation) will be given more weight, but the impact of the global best position will still be taken into account. 
The values for c1 and c2 in the precise instance are set at c1(δ(2)) = 2.1 and c2(δ(2)) = 1.9, respectively. These 
values were selected to strike a compromise between using each particle’s local information and investigating 
the prospective region as a whole.

• Convergence state Finally, in the convergence state, the swarm has a tendency to form dense clusters and 
become close to the overall best solution. The proposed neighbourhood’s topology is shown in Fig. 2. How-
ever, there is a chance of early convergence, in which the particles may become trapped in less-than-ideal 
solutions and stop further exploring the search space. The acceleration coefficients c1 and c2 are modified to 
address this problem and maintain search diversity. The values for c1 and c2 in the exact scenario are set at 
c1(δ(1)) = 2 and c2(δ(1)) = 2, respectively, in the convergence stage. These parameters have been selected to 
promote exploration and preserve search diversity within the swarm, while also pointing the particles in the 
direction of the present global area. The particles strike a compromise between exploration and exploitation 
by setting c1 and c2 to the same value. This method enables the swarm to carry on searching and maybe find 
better solutions, preventing premature convergence.

Performance evaluation
Experimental setup
In this paper, the goal was to effectively solve nonlinear constrained optimisation problems using the NS-MJP-
SOloc algorithm. In order to do this, an additional method of neighbourhood awareness (as shown in Fig. 2) was 
added to the proposed algorithm to evaluate the viability of potential solutions at each stage of the search. This 
process is used in the study to guarantee that the non-dominated solutions are both optimal and compliant with 
the set of constraints. The proposed NS-MJPSOloc algorithm can successfully handle a challenging optimisation 
problem with several objectives given various constraints. Table 4 describes various experimental parameter 
settings for all compared algorithms.

A desktop PC Corei5 with 3.30GHz, 8GB RAM, Windows 10 Enterprise was used to carry out the evaluation 
of the proposed NS-MJPSOloc approach. Furthermore, the MATLAB R2018b application is used for algorithm 
development, data analysis, visualization and production of results. A collection of parameters from Table 4 with 
generators data in Table 5 was used during the optimisation runs.

The maximum number of generations was established at 1000, the number of particles was decided to be 100 
and the tests were repeated 30 times. The results shown in various tables are averaged over these multiple runs. 
The datasets used in the experiments were taken from previous published  sources63 and online open source code 
repositries (https:// github. com/P- N- Sugan than). Furthermore, the power system, bus unit, and other datasets 
generated and/or analysed during the current study are publicly available in the Github repository, and can be 
accessed at (https:// github. com/ evgen ytsyd enov/ ieee1 18_ power_ flow_ data). Moreover, various IEEE bus systems 
for power systems used within the experimental work are publicly available online.

A threshold of 25 solutions was placed in place to keep the Pareto-optimal set at a suitable size. The neigh-
bourhood-best set has a maximum size of 10 solutions as well. In order to manage and regulate the size of these 

Figure 1.  Illustration of the the jumping-out state.

https://github.com/P-N-Suganthan
https://github.com/evgenytsydenov/ieee118_power_flow_data
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solution sets, a neighbourhood strategy is used if the number of non-dominated Pareto-optimal solutions in 
either the global best set or the neighbourhood-best set exceeds their respective boundaries.

Evaluation metrics
The proposed algorithm is compared with other closest rivals using several performance evaluation metrics such 
as fuel costs (measured in US dollars per hour), electricity/power generation through each generator (MW), 
carbon emission (measured in tons per hour), and computational time (measured in seconds).

Results and discussion
The proposed NS-MJPSOloc technique was used for the first time on the typical IEEE 30-bus 6-generator test 
system to assess its efficacy. This system is frequently referenced in the literature, and numerous strategies have 
already been tried on it with promising results.

Figure 3 shows the single-line diagram of the IEEE test system, and  references5,8 provide in-depth information 
about the system. Table 5 lists the values of the fuel costs and the emission coefficients related to the generators.

Three cases with different levels of complexity were taken into account in order to demonstrate the efficacy 
of the proposed algorithm. These examples were chosen to show how well the algorithm performed under vari-
ous conditions and tasks.

Figure 2.  The neighbourhood’s topology using four different structures.

Table 4.  Parameter settings for all the compared algorithms.

Algorithm Parameter

GA N = 50, cp = 0.01,mp = 0.05

EP N = 50, lrate

DE N = 50

PSO N = 50, c1, c2 = 1.9,w = 0.9

NS-MJPSO N = 50,N − States = 4,φ = 0.9

NS-MJPSOloc N = 50,Neighbourhoods = 6,w = 0.9φ = 0.9, c1 = {1.8, 2.2, 2.1, 2}

c2 = {2.2, 1.8, 1.9, 2}
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• With PLoss : In this scenario, transmission losses Ploss are considered along with power balancing and genera-
tion capacity constraints.

• Without PLoss : Here transmission losses Ploss are ignored, while power balancing and generation capacity 
constraints are taken into consideration.

• All constraints: In this case, all relevant constraints were considered as described in the problem constraints, 
i.e., Section Problem constraints.

The aim of this study is to provide a smart solution to the ELD problem with line flow and emission limits. Con-
sidering the IEEE 30-bus system, the EED problem in power systems is investigated and evaluated with several 
plausible assumptions. Furthermore, to achieve the EED schedule with the least amount of generation and cost 

Table 5.  Generator  data66.

Generator no. Min. (MW) Max. (MW) a ($/MW2h) b ($/MW h) c ($/h)

1 50 200 0.003750 2.000 0

2 20 80 0.017500 1.700 0

3 15 50 0.062500 1.000 0

4 10 35 0.008340 3.250 0

5 10 30 0.025000 3.000 0

6 12 40 0.025000 3.000 0

Figure 3.  IEEE 30-bus test  system63.
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of the generating units, this paper uses a variety of PSO variants, such as GA, EP, PSO, and DE. The performance 
of a newly developed PSO variant i.e., NS-MJPSOloc is also investigated and compared with other methods. The 
IEEE 30-bus system’s generating characteristics are listed in Table 5.

The study rendered employing a variety of intelligent algorithms mentioned earlier, and the results of the 
transitional cost analysis for the IEEE 30-bus system are shown in Table 6. The results shown that our proposed 
NS-MJPSOloc technique can approximately 2.3%, 3.0%, 2.5%, 2.4%, and 0.4% fuel costs per hour as compared 
to GA, EP, DE, PSO, and NS-MJPSO techniques, respectively. Tables 7, 8, 10 also show the IEEE 30-bus system’s 
convergence criteria, given that line flow constraints are taken into consideration. Table 10 compares the minimal 
total production costs attained utilizing the above algorithms for a demand of 283.4 MW.

The data summarized in Table 6 shows that, when compared to the overall minimal production costs obtained 
by using (EP) technique, the costs obtained in the research are noticeably higher. The (EP) algorithm requires 
more generations to reach convergence than the other techniques (GA, PSO, and DE). This shows that finding 
the best solution for (EP) might require additional iterations.

The (GA) needs additional solution time compared to the other methods evaluated in the research. The 
parameters that the aforementioned methods such as (GA, EP, PSO, and DE) apply at various times are detailed 

Table 6.  Method Comparison with closest rivals.

Method Penalty factor ($/lb) P1 (MW) P2 (MW) P3 (MW) P4 (MW) P5 (MW) P6 (MW)
Total fuel cost 
($/h)

GA 3.480 58.413 76.270 47.826 33.448 28.759 39.980 2107.195

EP 3.480 121.565 156.582 36.303 28.910 22.880 21.900 2122.521

DE 3.650 120.324 152.875 34.34 27.12 21.19 20.789 2112.530

PSO 3.480 104.730 46.600 27.930 35.000 30.000 40.000 2109.470

NS-MJPSO 3.480 101.565 126.582 34.303 27.910 25.880 25.432 2087.786

NS-MJPSOloc 3.480 94.290 55.380 30.190 32.780 29.360 30.660 2079.390

Table 7.  Algorithm Performance on IEEE 30 Bus and 15-unit Systems.

Algorithm GA EP DE PSO NS-MJPSO NS-MJPSOloc

Population size (NP) 10/10 10/10 10/10 10/10 10/10 10/10

Chromosome length (bits) 20/20 – – – – –

Max. iterations 500/4000 500/4000 500/4000 500/4000 100 100

Crossover probability (cP) 0.895/0.895 – – 0.895/0.895 – –

Mutation probability (mP) 0.0053/0.008349 – – – – –

Scaling factor, transition prob ( β ,φ) – 0.008/0.0016 – 1.9/1.9 0.9/0.9 0.9/0.9

Time taken (s) for the IEEE 30 Bus system 27.970 16.344 15.703 15.469 14.54 14.27

Time taken (s) for the 15-unit system 35.605 18.063 14.609 20.235 16.32 12.02

Table 8.  Generator characteristics of 15-unit systems.

Unit Pmini(MW) Pmaxi(MW) ai($/MW2h) bi($/MWh) ci($/h)

1 150 455 0.000299 10.1 671

2 150 455 0.000183 10.2 574

3 20 130 0.001126 8.8 374

4 20 130 0.001126 8.8 374

5 150 470 0.000205 10.4 461

6 135 460 0.000301 10.1 630

7 135 465 0.000364 9.8 548

8 60 300 0.000338 11.2 227

9 25 162 0.000807 11.2 173

10 25 160 0.001203 10.7 175

11 20 80 0.003586 10.2 186

12 20 80 0.005513 9.9 230

13 25 85 0.000371 13.1 225

14 15 55 0.001929 12.1 309

15 15 55 0.004447 12.4 323
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in Table 7. We observed that the proposed algorithm could save significant computational times as compared 
to other closest rivals. For example, for a 15-unit bus system, NS-MJPSOloc runs approximately 49%, 12.7%, 
9.1%, 7.8%, and 1.9% more efficiently than GA, EP, DE, PSO, and NS-MJPSO algorithms, respectively. Similarly, 
these values were noted as 66.2%, 33.5%, 17.7%, 40.6%, and 26.3% for a 30-unit bus system. The effectiveness 
and efficiency of each method in solving the ELD problem are greatly influenced by these parameters. Figures 4 
and 5 show the convergence rates of the proposed NS-MJPSOloc’s and DE’s evolutionary processes throughout 
a 6-unit bus system, respectively. Furthermore, Figs. 6 and 7 show the results of the NS-MJPSOloc’s and DE’s 
optimal dispatch load analysis for the 6-unit power system, respectively.

Moreover, the study shows that the (EP) technique works better than other algorithms in terms of reaching 
a lower overall production cost for the specified demand. To achieve convergence, though, more generations 
must be produced. The (GA), in contrast, takes longer to solve problems than the other methods. The parameter 
settings of each method are presumably revealed in Table 4, which explains why each algorithm performed dif-
ferently in the article.

The generator attributes for the 15-unit system are presented in Table 8. Furthermore, Table 9 provides an 
overview of the comparison of ELD with line flow constraints using different intelligent techniques for a 15-unit 
system. We observed that our approach can reduce ∼ 6.4% of fuel costs in comparison to the classical PSO 
technique. Furthermore, approximately 0.3%, 0.61%, 4.7%, and 0.07% fuel costs can be saved by the proposed 

Figure 4.  Convergence of the proposed algorithm over a 6-unit system.

Figure 5.  Convergence of the DE evolutionary process throughout a 6-unit system.
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NS-MJPSOloc techniques in comparison to GA, EP, DE, and NS-MJPSO techniques, respectively. Table 10 rep-
resents the actual power generation output of the 15-unit system and the transition cost of the 15-unit system, 
determined by a variety of intelligent techniques. Table 7 demonstrates the convergence conditions for the 
15-unit system concerning emission and line flow constraints using GA, EP, PSO, and DE. A breakdown of the 
minimum total production costs for demand of 2630 MW using smart techniques like GA, EP, PSO, and DE is 
shown in Table 10. A description of the cost estimation is given in the Smooth cost minimization section. As 

Figure 6.  Results of NS-MJPSOloc optimal dispatch load analysis for the 6-unit power system.

Figure 7.  Using DE, the determined optimal dispatch load for a 6-unit power system.
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reported in Table 10, our method can reduce approximately 9.4% of the emissions measured in tons per hour 
as compared to the PSO approach.

The results in Table 7 to Table 8 show that for both the IEEE 30-bus system and the 15-unit systems, the PSO 
algorithm exhibits rapid convergence and requires less time. Although GA requires more time for convergence, 
it outperforms other intelligent techniques for the 15-unit system when the total minimum generation cost is 
taken into account. Table 11 shows the solutions for cost and emission optimized using the proposed multi-
objective algorithm.

Conclusions and future work
In this paper, the environmental/economic power dispatch (EED) optimisation problem was addressed using 
a newly developed, neighbourhood-aware, n-states Markovian jumping PSO (NS-MJPSOloc) algorithm. The 
(NS-MJPSOloc) algorithm is a variant of the conventional PSO approach that was created specifically to handle 
MOPs. The fuel cost and environmental impact were two competing objectives, taken into account when for-
mulating the EED problem. The results derived show the significant potential and effectiveness of the proposed 
method (NS-MJPSOloc) in solving the multi-objective EED problem. The method also demonstrated a significant 
capacity to generate a variety of evenly distributed solutions within the non-dominated set. While comparing 
the simulation results, it was obvious that the (NS-MJPSOloc) method outperformed other variants of the PSO 
algorithm in the diversity and quality of the Pareto-optimal solutions achieved. These findings indicate that the 
proposed method holds promise in enhancing the optimisation process and facilitating better decision-making 
in power dispatch optimisation, considering both economic and environmental aspects. The evaluation of the 
proposed approach demonstrated that it can reduce ∼6.4% of fuel costs and ∼9.1% of computational time, and 
∼9.4% of the emissions measured in tons per hour, in comparison to the classical PSO technique.

The following are limitations and potential future directions for this research.

Table 9.  Comparison of ELD with line flow constraints using different intelligent techniques for the 15-unit 
system.

Intelligent
Techniques GA EP DE PSO NS-MJPSO NS-MJPSOloc

P1 (MW) 455 283.6025 219.4531 168.9527 142.3432 144.8345

P2 (MW) 303.7664 151.6028 150.0000 150.0000 135.5649 132.8716

P3 (MW) 75.4567 130.0000 130.0000 130.0000 197.2647 171.7489

P4 (MW) 75.4567 130.0000 130.0000 130.0000 191.3441 158.3831

P5 (MW) 311.3287 236.9869 183.4387 150.0000 181.8172 147.5173

P6 (MW) 298.8495 460.0000 460.0000 460.0000 450.2432 448.3729

P7 (MW) 301.3702 305.1626 465.0000 465.0000 453.7198 445.2437

P8 (MW) 180.9965 257.3319 216.2897 300.0000 298.1379 288.1428

P9 (MW) 94.0688 162.0000 162.0000 162.0000 160.1455 157.1319

P10 (MW) 93.0605 160.0000 160.0000 160.0000 158.1278 152.2912

P11 (MW) 50.2491 79.9141 80.0000 80.0000 77.1489 74.8733

P12 (MW) 50.2491 80.0000 80.0000 80.0000 77.1274 73.2539

P13 (MW) 55.2491 85.0000 85.0000 85.0000 80.1182 82.2479

P14 (MW) 35.166097 55.0000 55.0000 55.0000 54.2567 52.4653

P15 (MW) 35.166097 55.0000 55.0000 55.0000 53.1444 50.2381

Fuel cost ($/h) 64046.5172 64246.000 66993.000 68231.000 63901.000 63855.000

Table 10.  The optimal solutions for cost and emission are optimized separately (in terms of fuel costs and 
carbon emissions).

Case 1 Case 2 Case 3

Cost Emission Cost Emission Cost Emission

PG1 0.1189 0.4016 0.1176 0.4128 0.1553 0.4511

PG2 0.2976 0.4556 0.3187 0.4617 0.3401 0.5167

PG3 0.5265 0.5380 0.5921 0.5499 0.7811 0.6534

PG4 1.1198 0.3852 0.9825 0.3843 1.0123 0.4387

PG5 0.5222 0.5363 0.5112 0.5498 0.1031 0.1923

PG6 0.3527 0.5143 0.3512 0.5123 0.4738 0.6167

Cost (US$/h) 600.1100 638.2400 607.7800 645.2300 618.4800 656.7300

Emission (ton/h) 0.2221 0.1942 0.2198 0.1942 0.2302 0.2013
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The primary limitation of the proposed version is the complexity is increased exponentially as compared 
to the simplified framework of the PSO algorithm. The (NS-MJPSOloc) algorithm could potentially be further 
improved and optimized to increase its effectiveness and efficiency in resolving multi-objective EED problems. 
Robust mechanisms for the adjustment of various parameters, other neighbourhood topologies, dynamic adap-
tive mechanisms, constraints handling, multi-objective optimisation metrics, and merging with other algorithms. 
By following these research directions, the (NS-MJPSOloc) algorithm can be further enhanced, and its adapt-
ability to different scenarios can be improved.

Implementing the proposed approach in a real-world power dispatch environment would provide useful 
information about its usefulness and efficacy. Furthermore, the incorporation of renewable energy sources into 
power networks expands the EED problem formulation to consider these sources and their irregular role. This 
would overcome the hassle created by the integration of renewable energy sources and make the optimisation 
procedure more analogous to contemporary power systems. Ultimately, these efforts can contribute to more 
effective and reliable solutions for multi-objective EED optimisation problems, advancing sustainable energy 
management practices in power systems. In the future, we will extend this work to an effective energy manage-
ment system within the domain of smart grids.

Data availability
The datasets generated and/or analysed during the current study are publicly available in the Github repository, 
and can be accessed at [https:// github. com/ evgen ytsyd enov/ ieee1 18_ power_ flow_ data]. Moreover, various IEEE 
bus systems for power systems used within the experimental work are publicly available online.
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