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Development and validation 
of a reliable DNA 
copy‑number‑based machine 
learning algorithm (CopyClust) 
for breast cancer integrative cluster 
classification
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The Integrative Cluster subtypes (IntClusts) provide a framework for the classification of breast 
cancer tumors into 10 distinct groups based on copy number and gene expression, each with unique 
biological drivers of disease and clinical prognoses. Gene expression data is often lacking, and accurate 
classification of samples into IntClusts with copy number data alone is essential. Current classification 
methods achieve low accuracy when gene expression data are absent, warranting the development 
of new approaches to IntClust classification. Copy number data from 1980 breast cancer samples from 
METABRIC was used to train multiclass XGBoost machine learning algorithms (CopyClust). A piecewise 
constant fit was applied to the average copy number profile of each IntClust and unique breakpoints 
across the 10 profiles were identified and converted into ~ 500 genomic regions used as features for 
CopyClust. These models consisted of two approaches: a 10‑class model with the final IntClust label 
predicted by a single multiclass model and a 6‑class model with binary reclassification in which four 
pairs of IntClusts were combined for initial multiclass classification. Performance was validated on 
the TCGA dataset, with copy number data generated from both SNP arrays and WES platforms. 
CopyClust achieved 81% and 79% overall accuracy with the TCGA SNP and WES datasets, respectively, 
a nine‑percentage point or greater improvement in overall IntClust subtype classification accuracy. 
CopyClust achieves a significant improvement over current methods in classification accuracy of 
IntClust subtypes for samples without available gene expression data and is an easily implementable 
algorithm for IntClust classification of breast cancer samples with copy number data.

Heterogeneity is one of the main characteristics of breast cancer, and this is present both in the biology of the 
disease and the clinical management of patients. Starting from the basic estrogen receptor (ER) and human epi-
dermal growth factor 2 (Her2) tumor stratification, which led to targeted treatment for breast cancer (hormone 
therapy and anti-Her2 therapy), efforts have moved to molecular stratification of tumors. In a landmark  study1 
five intrinsic subtypes were defined based in patterns of RNA expression, named Basal, Her2, Luminal A, Luminal 
B and Normal-like. A classifier system called PAM50 was later derived to assign one of these groups to any tumor 
based on its expression  profile2. Other taxonomies were later proposed, for example to subdivide ER- tumors,3 
to add a new group, claudin-low to the intrinsic  subtypes4 or to refine ER +  tumors5 using multi-omic data.

The rationale employed to select the features that will be used to identify subgroups will guide the taxonomy 
features. With the aim of identifying different cancer driver genes, we selected 1,000 genes that showed a paired 
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copy number aberration and differential expression on the METABRIC  cohort6. Using an integrative clustering 
 approach7 we identified 10 unique breast cancer tumor subtypes (Integrative Clusters [IntClusts]) each with 
characteristic genomic and transcriptomic architecture and genomic driver  events6. In subsequent studies, we 
fully characterized these subtypes in terms of miRNAs  activity8, somatic  mutations9, methylation  profiles10, and 
relapse  patterns11. A classifier that uses a set of copy number and expression profiles was developed and validated 
in several  cohorts12 and made available as an R package (iC10)13.

These studies show that the IntClusts are distinct biological entities with different molecular features and 
clinical outcomes, possibly benefiting from individualized treatments, and provide a framework for personalized 
breast cancer therapeutic strategies with extensive clinical  utility14,15. For clinical application, new samples, which 
are initially unlabelled, must be assigned to a class. However, the current recommended approach to classify 
unlabelled tumor samples into IntClusts rely on using a combined copy number and gene expression focused 
 approach12, limiting classification accuracy among cancer samples without transcriptomic data. Although the R 
package iC10 allows classification with only copy number data, performance is lower compared to using expres-
sion  data12. With the increase in cancer genomics consortia and widespread availability of public data without 
gene expression profiling, the need for a novel method to subtype tumors from independent cohorts based on 
copy number data alone is warranted. Here, we present the development and validation of a reliable, flexible, 
platform-independent copy number-driven machine learning algorithm (CopyClust) for IntClust classification 
as an open-source R package.

Methods
The 1980 breast cancer samples from METABRIC (internal validation) and the 1075 samples from TCGA (exter-
nal validation) with available copy number and gene expression data were used to train and validate multiclass 
hyperparameter-optimized  XGBoost16 machine learning algorithms. For METABRIC, IntClust label was assigned 
from the original  manuscript6, while for TCGA, label was assigned via the iC10  classifier12,13 using copy number 
and gene expression data. To reduce noise, a piecewise constant fit (PCF) was applied to the copy number pro-
files of the METABRIC samples in each IntClust and unique breakpoints across the 10 profiles were identified 
and converted into 478 genomic regions. The mean copy number in each region was calculated, and these were 
used as features for XGBoost models. METABRIC samples were split into a training cohort (80%) and validation 
cohort (20%). Sixteen intra-IntClust outliers were identified via local outlier factor (LOF) and removed from the 
training cohort prior to model training.

XGBoost modeling was performed using the framework provided by the xgboost R package (v1.7.3.1)17. To 
perform hyperparameter optimization, the XGBoost machine learning models were subjected to stratified five-
fold cross-validation in which 20% of the training dataset was excluded from each fold and used as validation. 
Each sample only appeared in a single fold and each fold contained an equal distribution of IntClusts. These 
folds were iterated through treating each one as the validation set in each iteration, with the remaining four folds 
combined as the training set. The performance of the hyperparameters was assessed using the independent, 
unseen, held-out validation fold. These iterations were repeated for various sets of hyperparameters selected 
via random search optimization, which performs better than grid search or manual search  optimization18. The 
hyperparameters that resulted in the lowest mean objective value (log-loss score for multiclass models and root 
square mean error for binary models) were selected for use in the final models and these models were trained 
using the entire training dataset.

Two model approaches were implemented: a 10-class model with the final IntClust label predicted by a 
single multiclass model and a 6-class model with binary reclassification in which four pairs of IntClusts were 
combined for initial multiclass classification, then assigned an IntClust label based on the prediction of a second 
binary classifier trained on that pair. As a reduction in the number of classes and combination of similar classes 
in a multiclass model has been shown to increase  performance19, and multiple binary models tend to perform 
better than multiclass  models20, pairs of IntClusts with similar mean copy number profiles were combined and 
binary models were trained and optimized using only samples from the training cohort that belonged to the two 
IntClust groups of interest. Multiclass models with different numbers of combined IntClust pairs were assessed, 
and a 6-class model with four pairs of combined IntClusts was selected due to superior performance. These pairs 
consisted of: IntClusts 1 and 5, IntClusts 3 and 8, IntClusts 4 and 7, and IntClusts 9 and 10 and were selected 
based on their similar copy number profiles (Supplementary Figures S6–S15) and frequent misclassification in the 
10-class model (Supplementary Figure S1). The 6-class model with binary reclassification model was selected for 
final model implementation due to superior performance (Supplementary Table S1). Scaling of feature values was 
performed prior to model implementation on external cohorts. Model performance was internally validated on 
392 (20%) held-out METABRIC samples and externally validated on the TCGA dataset, with copy number data 
generated from both single nucleotide polymorphism (SNP) arrays and whole exome sequencing (WES) (Fig. 1). 
More details of the methodology used and results for this study can be found in the Supplemental Methods and 
Supplemental Tables S1–S7 and Supplemental Figures S1–S19.

Results and discussion
When compared to other hyperparameter-optimized classifier algorithms including Random Forest, Support 
Vector Machine, LightGBM, and Prediction Analysis of Microarrays, XGBoost performed best in terms of overall 
recall and Matthews Correlation Coefficient (MCC) (Table 1) and was selected as the approach for CopyClust. 
CopyClust achieved high classification performance across both the TCGA SNP and WES datasets (Table 1 and 
Fig. 2). The classifier produced an overall recall of 81%, precision of 82%, and balanced accuracy of 89% when 
applied to the TCGA SNP dataset with an F1 Score of 0.811 and MCC of 0.787. Applied to the TCGA WES data-
set, CopyClust produced an overall recall of 79%, precision of 80%, balanced accuracy of 88%, F1 Score of 0.786, 
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and MCC of 0.759 (Table 2). Across both datasets, IntClust 3 and IntClust 8 were the most misclassified pair of 
IntClusts, likely due to their similar copy number profiles. IntClust 6 experienced the lowest individual recall, 
which could be due to differences in the distribution of IntClusts between cohorts (Supplementary Figure S2), 
leading to model  miscalibration21.

Compared to the current gold standard copy number-only iC10 classifier, CopyClust achieved a nine-percent-
age point greater overall recall when applied to METABRIC (82% vs. 73%) and a 22% and 20% greater overall 
recall when applied to the TCGA SNP and WES datasets, respectively (81% and 79% vs. 59%) (Supplemental 
Table 1). This increase in the performance of CopyClust compared to the iC10 classifier can likely be attributed 
to the dominance of gene expression features in the selected probes of the iC10  classifier12. Features in the iC10 
classifier were taken from the original IntClust  manuscript6, and only 38 out of 714 (5.3%) of the probes used 
are gene copy number; therefore, the bulk of the features are gene expression values. The iC10 classifier is trained 
using the prediction analysis of microarrays shrunken centroids approach, which was developed for gene expres-
sion  analysis22. Rather than using a small subset of copy number probes, CopyClust was trained using features 
comprising the entire length of the genome. Many IntClusts have key features of their copy number profiles 
that are characteristic for a given  IntClust15 (e.g. IntClust 5 [chromosome 17q12 amplification] and IntClust 6 
[chromosome 8p12 amplification]). The copy number probes used by the iC10 classifier do cover some of these 
key regions, but they do not cover the characteristics of the entire copy number profile, indicating the superiority 
of CopyClust in the absence of gene expression profiling.

Intricacies of the specific datasets used to train and validate CopyClust somewhat limit its generalizability. 
METABRIC did not set a minimum tumor  cellularity6, while TCGA set a minimum of 60%23. The TCGA cohort 
may be composed of tumors with a greater average percentage of neoplastic cells; this difference may also account 
for the stronger signal observed in the TCGA copy number profiles relative to the METABRIC copy number 
profiles (Supplementary Figure S18), which necessitated feature scaling before model training. Additionally, the 
need to apply feature scaling across samples limits performance when there are only a single or few samples to 
classify. Manual curation of genomic ranges developed from PCF was only performed to ensure that ranges did 
not span multiple chromosomes but ranges still cover regions of telomeres and centromeres. Finally, CopyClust 

Figure 1.  Workflow of algorithm development for internal and external validation.

Table 1.  Overall recall of different classifier approaches. a Models were applied to TCGA SNP cohort unless 
otherwise specified. b Overall recall is reported as micro-average across all IntClusts.

Model  approacha Overall recall (95% confidence interval)b Matthews correlation coefficient

Random forest 68.4% (65.5%, 71.1%) 0.651

Support vector machine 68.6% (65.7%, 71.3%) 0.645

LightGBM 71.4% (68.5%, 74.0%) 0.677

Prediction analysis of microarrays 66.8% (63.9%, 69.6%) 0.628

XGBoost – TCGA SNP Cohort 81.1% (78.7%, 83.4%) 0.787

XGBoost – TCGA WES Cohort 78.6% (76.0%, 81.0%) 0.759
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was only trained using a single cohort and validated externally on a single cohort, therefore, replication on 
additional datasets may further improve performance.

CopyClust provides an accurate and easily implementable framework for IntClust classification using copy 
number data and achieves a nine-percentage point or greater improvement in overall classification recall com-
pared to the current gold standard approach. Furthermore, CopyClust can flexibly handle missing features, is 
agnostic to differences in genomic profiling platforms, and is easily implementable in an open-source environ-
ment, allowing for seamless application to external genomic datasets. The CopyClust R package is currently 
available for download on GitHub (https:// github. com/ camyo ung54/ CopyC lust).

Figure 2.  Performance of CopyClust on IntClust Label Assignment of TCGA SNP and WES Cohorts. (A) 
Confusion matrix of true IntClust label of TCGA SNP cohort (x-axis) and CopyClust prediction (y-axis). Values 
represent percentage of true IntClust label predicted to be in each class by CopyClust. The diagonal represents 
the percent of samples correctly predicted as a particular IntClust and is equivalent to recall. (B) Model 
performance metrics, where recall = percentage of correctly classified samples per IntClust; precision = percent of 
correctly classified samples amongst samples predicted as a particular IntClust; and balanced accuracy = mean of 
recall and specificity. (C) Confusion matrix of true IntClust label of TCGA WES cohort (x-axis) and CopyClust 
prediction (y-axis). Values represent percentage of true IntClust label predicted to be in each class by CopyClust. 
The diagonal represents the percent of samples correctly predicted as a particular IntClust and is equivalent 
to recall. (D) Model performance metrics as in B. Overall performance metrics above the “All” column are 
reported as micro-averages across all IntClusts.

Table 2.  Performance metrics of CopyClust model on TCGA SNP and WES cohorts. Metrics reported as 
micro-average across all IntClusts.

Sample cohort Recall Precision Balanced accuracy Specificity F1 Score Matthews correlation coefficient

TCGA SNP 0.811 0.823 0.893 0.975 0.811 0.787

TCGA WES 0.786 0.796 0.879 0.971 0.786 0.759

https://github.com/camyoung54/CopyClust
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Data availability
The datasets generated and/or analyzed during the current study are available in cBioPortal (METABRIC: https:// 
www. cbiop ortal. org/ study/ summa ry? id= brca_ metab ric; TCGA: https:// www. cbiop ortal. org/ study/ summa ry? 
id= brca_ tcga).

Code availability
The underlying code for this study is available in GitHub and can be accessed via this link https:// github. com/ 
camyo ung54/ CopyC lust.
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