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Integrated analysis identified
the role of three family members

of ARHGAP in pancreatic
adenocarcinoma
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Wei Hu'™

The Rho GTPase activating protein family (ARHGAPs) is expressed in pancreatic adenocarcinoma
(PAAD) but its function is unclear. The aim of this study was to explore the role and potential clinical
value of ARHGAPs in PAAD. Using TCGA and GEO databases to analyze expression of ARHGAPs in
PAAD and normal tissues. Survival curve was drawn by Kaplan-Meier. ARHGAPs were integrated
analyzed by GEPIA2, TIMER, UCLCAN, cBioPortal and R language. Protein level and prognostic value
were evaluated via IHC staining or survival analysis. We totally identify 18 differentially expressed
(DE) ARHGAPs in PAAD. Among the 18 DE genes, 8 were positively correlated with tumor grade;
abnorrmal expression of 5 was positively correlated with copy number variation; expression of 4

was positively correlated with promoter hypomethylation. Multivariate Cox regression identified
ARHGAPS5, ARHGAP11A, and ARHGAP12 as independent prognostic factors of PAAD. The function

of ARHGAPs was mainly related to GTPase activity and signaling, axon guidance, proteoglycansin
cancer and focal adhesion. Expression of 7 ARHGAPs was strongly correlated with immune infiltration.
Immunohistochemistry showed increased protein levels of ARHGAP5, ARHGAP11A, and ARHGAP12
in PAAD tissues. Survival analysis confirmed a negative correlation between ARHGAP5, ARHGAP11A,
and ARHGAP12 expression and patient prognosis. Multivariate Cox regression proved ARHGAP5,
ARHGAP11A, and ARHGAP12 could serve as independent prognostic indicators for PAAD. Finally, this
study verified ARHGAP5, ARHGAP11A, and ARHGAP12 as independent prognostic factors in PAAD,
suggesting their significance for the diagnosis and treatment of PAAD.

Pancreatic adenocarcinoma (PAAD), one of the common malignant tumors of the digestive tract, is charac-
terized by late diagnosis and poor prognosis'. Despite improvements in tumor treatment technology and the
increasingly better prognosis of cancer patients, the treatment of PAAD still faces great challenges, especially in
patients with advanced disease at diagnosis. No effective prognostic biomarkers are available that can be used for
PAAD diagnosis’ therefore, searching for good predictive indicators and exploring their roles in PAAD remain
significant research focuses.

The Rho GTPase activating protein family members (ARHGAPs) may be one group of potential PAAD indi-
cators. ARHGAPs i one of the major regulators of Rho GTPase, an important intracellular signaling molecule
that perceives a variety of stimulation signals and participates in cytoskeleton reorganization, the cell cycle, cell
adhesion and migration, substance transport, and regulation of several physiological processes®. ARHGAPs are
negative mediators of Rho GTPases and exert their functions by catalyzing the conversion of the active GTP-
bound state of Rho GTPases to the inactive GDP-bound state. Recently, abnormal expression of ARHGAPs
was reported in a variety of tumors and was closely related to the occurrence and development of tumors.
One ARHGAP, DLC1 (ARHGAP7), suppresses cell proliferation, anchorage-independent growth, and in vivo
tumorigenicity of hepatocellular carcinoma by negatively regulating the activity of Rho proteins’.Conversely,
by gaining fusion genes, ARHGAP6/ARHGAP26 fusions decrease cell apoptosis in gastric cancer®. Roles for
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several ARHGAP family members have been identified in several types of cancer’-'%, but the precise function
of ARHGAP family members in PAAD, and especially in the immunological microenvironment of PAAD, has
not been elucidated.

Current advancements in computer technology and the availability of public databases have allowed the study
of cancer genomics with sequencing data and clinical information contained in these databases. Two of the most
used bioinformatics databases are the cancer genome atlas (TCGA) and the gene expression omnibus (GEO)*1°.
These databases provide the ability to conduct a wide range of genomic analyses, such as expression analysis,
survival analysis, and immunological microenvironment analysis'¢. The present study was an investigation of
the expression, prognostic significance, and immunological connection of the entire range of ARHGAP family
members in PAAD. Our findings could lead to new approaches to PAAD treatment.

Results

Differential expression of ARHGAP family members in PAAD patients

Based on the data from the GSE16515, GSE15471, and TCGA, we first explored the expression of 49 ARHGAP
members in PAAD tumor and normal tissues. The GSE16515 data revealed increased expression of 27 ARHGAPs,
the GSE15471 data revealed increased expression of 35 ARHGAPs, and the TCGA data revealed increased expres-
sion of 26 ARHGAPs in tumor tissues. A total of 18 ARHGAPs were upregulated in all three datasets (Fig. 1A):
ARHGAPI, ARHGAP5, ARHGAP6, ARHGAP7 (DLC1), ARHGAPY, ARHGAP11A, ARHGAP12, ARHGAP21,
ARHGAP22, ARHGAP26, ARHGAP27, ARHGAP31, ARHGAP34 (SRGAP2), ARHGAP35 (GRLF1), ARH-
GAP42, ARHGAP45 (HMHA1), ARHGAP46 (GMIP), and ARHGAP47 (TAGAP). Figure 1B shows the dif-
ferential expression in the three datasets for 3 representative genes. The correlations between the expression
of the 18 differentially expressed (DE) ARHGAPs and the pathological stage were analyzed using GEPIA2. A
significant association was detected between ARHGAP21, ARHGAP26, ARHGAP27, ARHGAP 34, ARHGAP
35, ARHGAP42, and ARHGAP46 and the tumor stages (Fig. 1C).

Genetic variations and promoter methylation of ARHGAPs in PAAD

We explored genetic variations of ARHGAPs using cBioPortal. The ARHGAP mutation profiles were obtained
from Pancreatic Adenocarcinoma (TCGA, Firehose Legacy) with 186 patients. A high ARHGAP genetic varia-
tion was observed in PAAD patients (Fig. 2A). Among all ARHGAPs, ARHGAP35 (GRLF1) is regarded as the
top-ranking gene in terms of genetic alteration in PAAD patients (11%). The correlation between ARHGAP copy
number alterations (CNA) and expression of mRNA, as shown in Fig. 2B, indicated a positive correlation between
the copy numbers of ARHGAP1, ARHGAP5, ARHGAP35 (GRLF1), ARHGAP42, and ARHGAP47 (TAGAP)
and the mRNA expression in PAAD. Promoter methylation analysis also revealed a relationship between high
expression of ARHGAP7 (DLC1), ARHGAP11A, ARHGAP27, ARHGAP34 (SRGAP2), and ARHGAP46 (GMIP)
and decreased methylation level (Fig. 2C).

Prognostic value of the expression of ARHGAPs in PAAD patients

We next evaluated the prognostic value of the 18 DE ARHGAPs and the progression of PAAD, the correlations
between different ARHGAPs, and clinical outcomes. The expression of ARHGAP5, ARHGAP11A, and ARH-
GAPI12 was negatively correlated with overall survival (OS) in all three datasets (Fig. 3A).

We verified the prognostic value by performing univariate and multivariate Cox regression analyses. The
multivariate Cox regression analyses showed that ARHGAP5, ARHGAP11A, and ARHGAP12 were independ-
ent predictors of survival in PAAD (Fig. 3B). Nomogram construction based on independent prognostic factors
to predict the individual survival probability. (Fig. 3C) revealed that the 1-, 3-, and 5-year survival rates for
each patient would be predicted by the total points in the nomogram according to the indicators. We assessed
the sensitivity and specificity of this nomogram using time-dependent receiver operating characteristic (ROC)
analysis. The ROC area under the curve (AUC) of ARHGAPS5 was 0.721 for 1-year survival, 0.744 for 3-year
survival, and 0.777 for 5-year survival, representing an efficient predictive efficacy (Fig. 3D). Application of a
calibration curve to evaluate the nomogram accuracy indicated that the nomogram could effectively predict the
prognosis of PAAD patients (Fig. 3D). The ROC area under the curve and the calibration curve of ARHGAPI11A
are shown in the picture (Fig. 3E).

Gene ontology enrichment and gene set enrichment analyses

We used the “Similar Genes Detection” module of GEPIA2 to obtain the top 100 ARHGAP5 or ARHGAPI11A
correlated genes based on the datasets of all TCGA tumor and normal tissues (supplementary materials Table S1).
The 100 genes and ARHGAP5 or ARHGAP11A were then subjected to GO and KEGG analysis. The GO results
revealed that the function of ARHGAPS5 was associated with protein binding, cytosol, and peptidyl-serine phos-
phorylation functions, whereas the function of ARHGAPI11A was associated with nuclear division, chromo-
somal region, and microtubule binding (Fig. 4A). The KEGG analysis showed strong correlations of ARHGAP5
with endocytosis, salmonella infection, the MAPK signaling pathway, and the sphingolipid signaling pathway,
whereas ARHGAP11A was correlated with the cell cycle, cellular senescence, and the p53 signaling pathway
(Fig. 4B). GSEA further confirmed significant enrichment in pathogenic Escherichia coli infection and sphin-
golipid metabolism in the ARHGAPS5 high-expression group (Fig. 4C). Base excision repair, DNA replication,
and oocyte meiosis were significantly enriched in the ARHGAP11A high-expression group (Fig. 4D).

Analysis of the immune microenvironment
The immune cell level is associated with the proliferation and progression of cancer cells. We used the TIMER
database to explore the correlation between the 18 DE ARHGAPs and immune cell infiltration. ARHGAPI,
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Figure 1. Differential expression of ARHGAP family members in PAAD patients. (A) Left panel shows the
Venn diagram of the differentially expressed genes in the three datasets. Right panel lists the 18 upregulated
genes in all three datasets. (B) The expression level of representative ARHGAPs in PAAD tissues from
GSE16515, GSE15471, and GEPIA2. (C) Correlation between tumor stages and expression of ARHGAPs.

ARHGAP7 (DCL1), ARHGAP9, ARHGAP22, ARHGAP31, ARHGAP34 (SRGAP2), and ARHGAP47 (TAGAP)
were positively correlated with infiltration of B cells, CD8+T cells, CD4+T cells, macrophages, neutrophils,
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Figure 2. Genetic variations and promoter methylation of ARHGAPs in PAAD. (A) Summary of genetic
alterations of different expressed ARHGAPs in PAAD. (B) Relationship between copy number alternations
(CNA) in ARHGAPs and expression of mRNA. (C) The methylation levels of ARHGAP7 (DLC1),
ARHGAPI1A, ARHGAP27, ARHGAP34 (SRGAP2), and ARHGAP (GMIP) are downregulated in tumor

tissues.

and dendritic cells in PAAD (Fig. 5A). Expression of ARHGAP6, ARHGAP35 (GRLF1), and ARHGAP42 was
positively associated with the infiltration of B cells, CD8 + T cells, macrophages, neutrophils, and dendritic cells in
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Figure 3. Prognostic value of the expression of ARHGAPs in PAAD patients. (A) High expression of
ARHGAP5, ARHGAP11A, and ARHGAPI12 is correlated with short OS in all three datasets. (B) Multivariate
Cox regression analyses were used to estimate the risk factors of ARHGAP5, ARHGAP11A, and ARHGAP12
for PAAD. (C-E) The ROC area under the curve and the calibration curve of ARHGAP5 and ARHGAP11A.

PAAD (Fig. 5B). ARHGAP27 expression was only negatively correlated with the infiltration of macrophage cells
(Fig. 5C). ARHGAP5 expression was positively associated with B cells, CD8 + T cells, macrophages, neutrophils,
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Figure 4. Gene ontology enrichment and gene set enrichment analyses. (A) All GO enrichment analysis results
for ARHGAPS5 (left panel) or ARHGAP11A (right panel) and the interaction proteins. MF molecular function;
CC cellular component; BP biological process. (B) All KEGG pathway enrichment results for the ARHGAP5
(left panel) or ARHGAP11A (right panel) and the interaction proteins. (C) GSEA showed that pathogenic
Escherichia coli infection and sphingolipid metabolism were significantly enriched in the high ARHGAP5
expression group. (D) GSEA showed that base excision repair, DNA replication, and oocyte meiosis pathway
were significantly enriched in the high ARHGAP11A expression group.
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and dendritic cells, but negatively correlated with CD4 + T cells. ARHGAPI11A expression was positively associ-
ated with B cells, CD8 + T cells, neutrophils, and dendritic cells, but negatively correlated with CD4 + T cells.
ARHGAPI12 expression was positively associated with B cells and CD8 + T cells, but negatively correlated with
CD4+T cells (Fig. 5D).

Figure 5. Analysis of the immune microenvironment. (A-D) The expression correlation between distinct
ARHGAPs and immune cells, as analyzed using TIMER. The p value is shown in the figures. Partial.cor: purity-
corrected partial Spearman’s rho value.
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Immunotherapy outcome prediction

We further confirmed the role of the ARHGAP5, ARHGAP11A, and ARHGAPI12 in immunotherapy by calculat-
ing the degree of infiltration of 28 immune cell types in high or low ARHGAP5, ARHGAP11A, or ARHGAP12
in PAAD samples. A close relationship was evident between ARHGAP5 and memory B cells, CD4 T cells, and
CDB8 T cells (Fig. 6A). A close relationship was also apparent between ARHGAP11A and macrophages (Fig. 6B).
A close relationship was detected between ARHGAP12 and macrophages, eosinophils, and regulatory T cells
(Fig. 6C). Immunotherapy outcome predictions showed that the low ARHGAP5 group had a higher immunophe-
noscore (IPS) (Fig. 6D). The expression of ARHGAP11A was positively correlated with PD1 or CTLA4 PD1 IPS
(Fig. 6E). The expression of ARHGAP12 was positively correlated with IPS or PD1 IPS (Fig. 6F).

Predicted target drug therapy outcome

Investigation of the correlation between ARHGAP5, ARHGAP11A, or ARHGAPI12 and targeted drug sensitivity
revealed an increased half maximum inhibitory concentration (ICs,) for 5-fluorouracil, oxaliplatin, cisplatin,
irinotecan, and paclitaxel in the high ARHGAP5 expression group (Fig. 7A). The IC;, values of oxaliplatin and
irinotecan were also increased in the high ARHGAP11A expression group (Fig. 7B). The ICy, for fluorouracil,
olaparib, oxaliplatin, irinotecan, gemcitabine, cisplatin, and paclitaxel were increased in the high ARHGAP11A
expression group (Fig. 7C).

Validation of the protein level and prognostic value of ARHGAP5, ARHGAP11A, and ARH-
GAP12 in PAAD tissues

We chose the three potential predictors ARHGAP5, ARHGAP11A, and ARHGAPI12 to validate expression and
clinical prognosis in the PAAD and normal samples. Detailed clinical sample information, including age, gender,
and pathological staging, has been provided in the supplementary materials Table S2. Immunohistochemistry
results revealed higher ARHGAPS5, ARHGAP11A, and ARHGAP12 expression in PAAD tissues than in normal
tissues (Fig. 8A,B). The correlation of the clinical pathological characteristics and protein expression levels are
summarized in Table 1. The protein expression level of ARHGAP5 was related to tumor size (p =0.045), lymph
node metastasis (p <0.001) and tumor stage (p <0.001). The expression level of ARHGAP11A was correlated
with tumor size (p=0.001), and tumor stage (p=0.029). The expression level of ARHGAPI12 was correlated
with tumor size (p=0.025). Overall survival analysis, as shown in Fig. 8C, revealed shorter overall survival in
patients with high ARHGAP5, ARHGAP11A, and ARHGAPI12 protein expression than with low expression
of these proteins. Tumor stage, differentiation degree, and ARHGAP5 expression were significantly correlated
with survival. The multivariate Cox regression analyses showed that differentiation degree and expression of
ARHGAP5, ARHGAP11A, and ARHGAP12 were independent predictors of survival in PAAD (Tables 2, 3 and
4). Taken together, these findings demonstrated a potential prognostic significance for ARHGAP5, ARHGAP11A,
and ARHGAPI12 expression in clinical patients.

Discussion

We systematically investigated the expression, survival analysis, and function of the ARHGAP family proteins in
pancreatic cancer, and we validated the three key genes in clinical tissues. We identified three novel prognostic
factors (ARHGAPS5, ARHGAP11A and ARHGAP12) for PAAD.

The Rho family small GTPases, such as RhoA, Racl, and Cdc42 intracellular signaling molecules, are cat-
egorized into the Ras superfamily!’. The activity of Rho GTPases is modulated by three types of protein (Rho-
selective guanine nucleotide exchange factors (RhoGEFs), GTPase-activating proteins (RhoGAPs), and guanine
nucleotide dissociation inhibitors (RhoGDIs)'®. RhoGAPs are usually negative regulators of Rho GTPase activity;
that is, they stimulate Rho proteins to assume an inactive GDP-bound state'®. Although the traditional inter-
pretation is that an inactivation of GTPase activity would suppress tumorigenesis, recent studies have raised
doubts about this®.

ARHGAPS5 (also named p190-B RhoGAP and belonging to the RhoGAP family) is a protein that negatively
regulates the activity of RhoA*'. ARHGAPS5 can also promote cancer progression regardless of the activation
state of RhoA. For example, high ARHGAP5 expression is associated with aggressive behavior of non-small-cell
lung carcinoma, while the non-coding RNA derived from ARHGAP5 can inhibit breast cancer migration* and
the circular RNA produced by ARHGAP5 can inhibit cisplatin resistance in cervical squamous-cell carcinoma’.
However, a function for ARHGAPS5 in pancreatic cancer has not been previously reported.

Our use of bioinformatics tools in the present study identified ARHGAPS5 as having important prognostic
value in PAAD and validated this in clinical tissues. We also found a positive correlation between the expres-
sion levels of ARHGAP5 and its copy number variations, revealing a potential reason for the overexpression of
ARHGAPS5 in pancreatic cancer (Fig. 2B). More experimental studies are still needed to explore the mechanisms
by which dysregulation of ARHGAP5 expression leads to the progression of PAAD.

ARHGAPI11A is another member of the RhoGAP family, and its role in tumors is still controversial. ARH-
GAP11A induced cell cycle arrest and inhibited glioma cell growth by binding to p53 and increasing its activity?’.
Xiaoying Guan et al., found that ARHGAP11A enhanced the stability of actin microfilaments and tumor genesis
via TPM1 in gastric cancers®. In the current study, we found that ARHGAP11A was overexpressed in PAAD
tissues and negatively correlated with overall survival. The clinical tissue validation also confirmed the oncogene
role of ARHGAP11A in PAAD.

ARHGAP12 has been found to negatively regulate Racl signaling®. In the brain, ARHGAP12 also plays an
important role in synaptic structure and function in the developing hippocampus®. By contrast, little is known
about the role of ARHGAPI12 in cancer. In hepatocytes, ARHGAP12 inhibited cell invasion and adhesion to
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Figure 6. Immunotherapy outcome prediction. (A) The differences in immune cell infiltration levels between
the high and low ARHGAP5 expression groups from ssGSEA or CIBERSORT. (B) The differences in immune
cell infiltration levels between the high and low ARHGAP11A expression groups from ssGSEA or CIBERSORT.
(C) The differences in immune cell infiltration levels between the high and low ARHGAP12 expression groups
from ssGSEA or CIBERSORT. (D) The IPS based on different ARHGAP5 expression. IPS immunophenoscore.
(E) The IPS of PD1 or CLTA4 PD1 based on different ARHGAPI11A expression. (F) The IPS or IPS of PD1
based on different ARHGAP12 expression.
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Figure 7. Predicted target drug therapy outcome. (A-C) GDSC predicts the ICs, of different drugs between
PAAD patients with low or high expression levels of ARHGAP5, ARHGAP11A, and ARHGAP12.

fibronectin in response to hepatocyte growth factor by inactivating Rac1?. In the present study, our informatics
analysis and clinical tissue validation revealed that ARHGAP12 was an oncogene in PAAD.

Although the mechanism of action of ARHGAP5 and ARHGAPI11A in pancreatic cancer is unclear, some
oncogenic mechanisms have been identified in other tumors. In hepatocellular carcinoma, ARHGAPS5 enhances
cell spreading and migration by negatively modulating RhoA?. ARHGAPS5 drives colorectal cancer metastasis
through the negative regulation of RhoA activity’. ARHGAP11A facilitates the malignant advancement of gastric
cancer by modulating actin filament stability via TPM1%*. ARHGAP11A drive malignant progression through
inactivating Rac1B in hepatocellular carcinoma''. ARHGAP11A enhanced the progression of breast cancer by
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Figure 8. Validation of the protein level and prognostic role of ARHGAP5, ARHGAP11A, and ARHGAP12
in PAAD tissues. (A) Representative immunohistochemistry (IHC) images in PAAD and normal tissues.
(B) Boxplot shows significant upregulation of ARHGAP5, ARHGAPI11A, and ARHGAPI2 compared to
normal pancreas tissues. n (Tumor) =65, n (Normal) =65. (C) Expression of ARHGAP5, ARHGAPI11A, and
ARHGAPI2 in PAAD pathology samples was negatively correlated with OS.

facilitating cell cycle transition from the G1 to S phase®. These studies provide insights into the mechanisms of
action of ARHGAPS5 and ARHGAPI11A in pancreatic cancer.
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ARHGAP5 ARHGAP11A ARHGAP12
Clinicopathological features Case | Low (n=27) High (n=38) Pvalue |Low (n=22) ‘ High (n=43) ‘ Pvalue |Low (n=26) High (n=39) P value
Age
<65 28 13 15 8 20 8 20
0.486 0.434 0.102
=65 37 14 23 14 23 18 19
Gender
Female 26 10 16 11 15 12 14
0.681 0.239 0.408
Male 39 17 22 11 28 14 25
Tumor size
<3 29 16 13 16 13 16 13
0.045 0.001 0.025
>3 36 11 25 6 30 10 26
Lymph node metastasis
No 37 23 14 15 22 16 21
0.001 0.190 0.540
Yes 28 4 24 7 21 10 18
Tumor stage
I-1IA 32 22 10 15 17 16 16
<0.001 0.029 0.105
1IB-1V 33 5 28 7 26 10 23
Differentiation degree
Low 11 2 9 1 10 2 9
0.338 0.082 0.177
Intermediate-high 54 24 30 21 33 24 30
Perineural invasion
No 33 15 18 13 20 14 19
0.515 0.337 0.685
Yes 32 12 20 9 23 12 20

Table 1. Univariate analysis of the protein level and clinicopathological characteristics.

Univariate analysis Multivariate analysis
Characteristics P HR 95% CI P HR 95% CI
Age 0.567 |0.8 0.373-1.717
Gender 0.742 | 0.88 |0.41-1.888
Tumor size 0.069 |2.122 |0.944-4.77
Lymph node metastasis | 0.082 | 1.991 | 0.917-4.325
Tumor stage 0.003 |3.524 |1.519-8.179 |0.125 |2.138 | 0.810-5.643
Differentiation degree 0.011 |0.317 |0.131-0.764 | 0.006 | 0.271 |0.107-0.691
Perineural invasion 0.941 |0.971 |0.448-2.106
ARHGAP5 0.003 |4.014 |1.60-10.074 |0.030 |3.256 | 1.121-9.461

Table 2. Univariate and multivariate Cox regression analyses of ARHGAP5.

Univariate analysis Multivariate analysis
Characteristics P HR 95% CI P HR 95% CI
Age 0.567 | 0.8 0.373-1.717
Gender 0.742 | 0.88 0.41-1.888
Tumor size 0.069 |2.122 | 0.944-4.77
Lymph node metastasis | 0.082 | 1.991 | 0.917-4.325
Tumor stage 0.003 |3.524 |1.519-8.179 |0.01 3.149 | 1.310-7.569
Differentiation degree 0.011 |0.317 |0.131-0.764 | 0.035 | 0.37 0.147-0.934
Perineural invasion 0.941 |0.971 |0.448-2.106
ARHGAPI1A 0.007 | 3.64 1.435-9.23 0.047 |2.682 |1.014-7.096

Table 3. Univariate and multivariate Cox regression analyses of ARHGAP11A.
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Univariate analysis Multivariate analysis
Characteristics P HR 95% CI P HR 95% CI
Age 0.567 |0.8 0.373-1.717
Gender 0.742 | 0.88 0.41-1.888
Tumor size 0.069 |2.122 | 0.944-4.77
Lymph node metastasis | 0.082 | 1.991 | 0.917-4.325
Tumor stage 0.003 |3.524 |1.519-8.179 |0.01 3.205 | 1.327-7.740
Differentiation degree 0.011 |0.317 |0.131-0.764 |0.019 |0.327 | 0.129-0.834
Perineural invasion 0.941 |0.971 |0.448-2.106
ARHGAPI12 0.011 |3.112 |1.302-7.437 |0.026 |2.934 |1.136-7.574

Table 4. Univariate and multivariate Cox regression analyses of ARHGAP12.

Although immunotherapy is largely ineffective in patients with PAAD, tumor immune microenvironment
is prognostically instructive in PAAD. Some studies have already been conducted to try to find prognostic
signature related to the specific immune microenvironment of PAAD*-3. Our findings reveal a significant cor-
relation between the expression of ARHGAPs genes and the immune markers of tumor-associated macrophages
(TAM), M1 and M2 macrophages, as well as subgroups of CD4 + T cell differentiation, including Th1, Th2, Tth,
Th17, and Treg cells (supplementary materials Table S4). Therefore, we also conducted immunotherapy outcome
predictions or immune infiltrate-related analyses on the screened genes, aiming to identify effective predictive
markers for immunotherapy in PAAD. Our results identified three potential predictive markers (ARHGAPS5,
ARHGAPI11A, ARHGAPI12) for the efficacy of immunotherapy in PAAD. ARHGAP11A was found to promote
the proliferation and migration of renal cell carcinoma by inhibiting the tumor immune microenvironment.
Whether ARHGAP11A can promote the progression of pancreatic cancer by modulating the tumor immune
microenvironment is a direction worth exploring in the future.

Conclusions

In summary, we conducted a systematic and comprehensive analysis of the function of ARHGAP family mem-
bers in PAAD. Three potential prognostic markers (ARHGAP5, ARHGAP11A, and ARHGAP12) for pancreatic
cancer were identified. Although we have confirmed the function of three genes (ARHGAPS5, ARHGAP11A,
and ARHGAPI2) at the histological level, further studies are still needed to explore the underlying molecular
mechanisms.

Materials and methods

Data collection and analysis

The expression data and corresponding clinical information of PAAD patients were acquired from The Cancer
Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.
gov/geo/). The TCGA data were downloaded from the UCSC Xena database (https://xenabrowser.net/datap
ages/) and the GEO data included GSE28735, GSE15471, and GSE16515. All data were log2 transformed for
subsequent analysis and then expression analyzed with the “limma” package in R version: 4.2.2. P-values < 0.05
were considered statistically significant. The information of the patients in TCGA and GEO were provided as
supplementary materials (Table S3).

Gene expression analysis

GEPIA?2 (http://gepia2.cancer-pku.cn/#index), an upgraded version of GEPIA, is an interactional website applica-
tion consisting of data from thousands of tumors and normal tissue samples and can be used to visualize clin-
icopathological characteristics. The tumor data came from the TCGA database. In this study, GEPIA 2 was used
to compare tumor and normal tissues and for pathological staging and gene detection analysis. An independent
t-test was used to calculate p-values, with p <0.05 considered statistically significant; Pr (>F) <0.05 was based
on Student’s ¢-test.

Survival analysis and Cox regression analysis

Kaplan-Meier (K-M) survival analysis was used to assess the differences between the high-expression group
and the low-expression group, based on the best cutoff value expression of ARHGAP family genes through the
“survminer” and “survival” packages in R. In this study, the prognostic values of the effect of ARHGAP family
genes on the overall survival of patients with PAAD were also estimated using the Kaplan-Meier plotter (http://
www.kmplot.com/). Patients were divided into a group with high expression and group with low expression
according to the best cutoff. Univariate and multivariate Cox regression analyses were then conducted to explore
the relationships between ARHGAP expression, clinical prognostic indicators, and survival time in TCGA-PAAD
patients, generated via the “survival” and “forestplot” packages in R, with p-values <0.05 regarded as statistically
significant. Univariate analysis was only included in the multivariate analysis if it was meaningful.
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Mutation analysis and DNA methylation analysis

Mutation analysis was performed in the cBioPortal database (http://www.cbioportal.org). In this study, the
genetic alterations and mutations of the ARHGAP family genes in PAAD tissues were analyzed by searching
cBioPortal. The cBioPortal database provides analysis of genomic alteration data on more than 200 cancer
patients. Select "Pancreas” cancer type, we choose TCGA, Firehose Legacy, and we selected the genomic profiles
(mutations, mRNA Expression, and putative copy-number alterations from GISTIC). Finally, we entered each
gene name in the query box and obtained the genetic alterations of the ARHGAPs. The DNA methylation of
ARHGAP family genes was analyzed using the UALCAN database (https://ualcan.path.uab.edu). UALCAN is
a user-friendly and comprehensive portal website, which provides insight into TCGA gene methylation data.
We used the TCGA transcription level to analyze, input gene symbol, select pancreatic cancer data, and finally
select methylation links for analysis to get the methylation level of the gene.

Immune infiltration analysis

The Tumor Immune Estimation Resource (TIMER) is a web server for analyzing the abundance of tumor infil-
trates, offering immune strategies and targeting molecules clues. Using TIMER (https://cistrome.shinyapps.io/
timer/), we investigated the relationship between the expression of ARHGAP family genes and the infiltration
levels of B cells, CD4 + T cells, CD8 + T cells, macrophages, neutrophils, and other immune cells. The deconvolu-
tion algorithm CIBERSORT, which is a means of computing cell composition based on the expression profiles,
was used to calculate the proportion of 22 immune cells in each patient with PAAD, the sum of 22 immune cell
type fractions in each sample was 1. Based on the application of the single-sample gene set enrichment analysis
(ssGSEA) method from the R package GSVA. According to the gene expression levels in 28 published immune
cell gene sets, we calculated the degree of infiltration of 28 immune cell types.

Functional enrichment analysis

We explored the gene functions and potential signaling pathways in tumorigenesis and progression in PAAD
using the R package “clusterprofiler” to carry out Gene Ontology (GO) enrichment analysis and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) analysis®>~*. The data come from the ARHGAP family genes and
100 ARHGAP-related genes in the GEPIA2 database. GO analysis was divided into three parts: BP (biological
process), CC (cellular component), and MF (molecular function). A P-value less than 0.05 was considered
statistically significant.

Sample collection

Human PAAD tissues and corresponding adjacent tissues were selected as tissue specimens from 65 patients with
pancreatic cancer diagnosed by pathology at First People’s Hospital of Lianyungang from 2018 to 2022. Clinical
staging of the pancreatic cancers was based on the TNM staging criteria of the 8th edition of the International
Union for Cancer Control (UICC). All the selected patients had complete clinical and pathological data, and
none had received any tumor treatment before their operations.

Immunohistochemistry staining

The resected pancreatic cancer and adjacent tissue samples were fixed with 4% paraformaldehyde, embedded in
paraffin, and then cut into 4 um thick sections. The slices were then dehydrated, fixed, and covered with a cover
glass. The slices were deparaffinized in xylene and then rehydrated in an ethanol gradient. Endogenous peroxi-
dase activity was blocked with 3% hydrogen peroxide, and 3% goat serum was used for nonspecific binding. The
primary antibody was added dropwise to the tissue section at the following dilution ratios: ARHGAPS5 (1:200,
FNab00553, FineTest), ARHGAP11A (1:200, NBP1-93657, NOVUS), and ARHGAPI12 (1:200, 201871-T40,
Sino). The samples were incubated overnight at 4 °C and then rewarmed for 30 min. The primary antibody was
removed, and the sections were sealed for 10 min and washed with PBS. The sections were then incubated with
secondary antibody, and 3,3’-diaminohydrazine (DAB) was added to develop the color. The sections were coun-
terstained with hematoxylin, dehydrated, cleared, sealed with neutral glue, and observed under a microscope’®.
The semi-quantitative integration method is used for scoring, which involves multiplying the proportion of
tumor cells with positive expression in the entire microscopic field of view by the staining intensity score. Two
pathologists, unaware of the clinical information, select tumor cell areas with uniform staining effects for scoring.
They observe and score 5 to 10 stained tissue fields under 100 x and 200 x magnification. Immunoreactivity was
scored by the percentage of the stained cells (0, no staining; 1, 0-25%; 2, 25-50%; 3, 50-75%; 4, >75%) and the
intensity of staining in cellular plasma, membrane and nuclear (0, no color; 1, slight yellow; 2, yellow brown; 3,
brown). The product of the gene positive cell ratio and staining intensity determines the final score. Scores below
5 are defined as negative low expression, while scores above 5 are defined as positive high expression.

Immunotherapy outcome prediction

The Cancer Immunome Atlas (https://tcia.at/) was used to characterize the intratumoral immune landscapes
and the cancer antigenomes from 20 solid cancers. The immunophenotype score (IPS) data of patients with
TCGA-PAAD were extracted and used for subsequent analyses to predict the response to immunotherapy,
including treatment with cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1
(PD-1) blockers.

Scientific Reports |

(2024) 14:11790 | https://doi.org/10.1038/s41598-024-62577-z nature portfolio


http://www.cbioportal.org
https://ualcan.path.uab.edu
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://tcia.at/

www.nature.com/scientificreports/

Targeted drug therapy outcome prediction

We predicted the targeted drug therapy outcomes of PAAD patients based on the public pharmacogenomics
database Genomics of Drug Sensitivity in Cancer (GDSC; https://www.cancerrxgene.org). The half maximum
inhibitory concentration (ICs,) estimated by the R package “oncoPredict” was used for erlotinib, gemcitabine,
olaparib, paclitaxel, oxaliplatin, irinotecan, cisplatin, and 5-fluorouracil.

Statistical analysis

Statistical analysis was conducted using SPSS software (SPSS 25.0) and R software (version 4.2.2). The differences
between two or more groups were compared using Student’s ¢-test. The correlations between ARHGAP family
genes and the clinicopathological characteristics of PAAD patients were analyzed using the chi-square test and
Fisher’s exact probability method. During the entire study, the statistical significance threshold was P <0.05.

Ethics approval and consent to participate

This study was approved by the Ethical Committee of First People’s Hospital of Lianyungang (KY20190924002),
and informed consent was obtained from all subjects and/or their legal guardian(s). All the experiments in your
study were conducted in accordance to the relevant guidelines and regulations or in accordance to the Declara-
tion of Helsinki is missing.

Data availability
The data comes from TCGA (https://xenabrowser.net/datapages/) and GEO (https://www.ncbi.nlm.nih.gov/
geo/) public database.
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