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A comparative study 
on the dose–effect of low‑dose 
radiation based on microdosimetric 
analysis and single‑cell sequencing 
technology
Yidi Wang 1,3, Jin Gao 1,3, Bo Tang 2, Wei Mo 1, Han Gao 1, Jiahao Guo 1, Xianghui Kong 1, 
Wenyue Zhang 1, Yuchen Yin 1, Yang Jiao 1* & Liang Sun 1*

The biological mechanisms triggered by low-dose exposure still need to be explored in depth. In this 
study, the potential mechanisms of low-dose radiation when irradiating the BEAS-2B cell lines with 
a Cs-137 gamma-ray source were investigated through simulations and experiments. Monolayer cell 
population models were constructed for simulating and analyzing distributions of nucleus-specific 
energy within cell populations combined with the Monte Carlo method and microdosimetric analysis. 
Furthermore, the 10 × Genomics single-cell sequencing technology was employed to capture the 
heterogeneity of individual cell responses to low-dose radiation in the same irradiated sample. The 
numerical uncertainties can be found both in the specific energy distribution in microdosimetry and 
in differential gene expressions in radiation cytogenetics. Subsequently, the distribution of nucleus-
specific energy was compared with the distribution of differential gene expressions to guide the 
selection of differential genes bioinformatics analysis. Dose inhomogeneity is pronounced at low 
doses, where an increase in dose corresponds to a decrease in the dispersion of cellular-specific energy 
distribution. Multiple screening of differential genes by microdosimetric features and statistical 
analysis indicate a number of potential pathways induced by low-dose exposure. It also provides a 
novel perspective on the selection of sensitive biomarkers that respond to low-dose radiation.
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Low-dose ionizing radiation typically does not lead to rapid cell death or immediate damaging response in tissues 
(organs). However, it may increase an individual’s long-term risk for carcinogenesis and genomic instabilities1 and 
is associated with non-cancer health outcomes such as cardiovascular diseases, neurological disorders, immune 
function disorders, and cataracts2. The linear no-threshold (LNT) model is currently the standard model used to 
describe the relationship between radiation dose and cancer risk3. Its prediction results are consistent with epide-
miological data from atomic bomb survivors in Japan4–6. Additionally, in vitro studies have identified bystander 
effects and adaptive responses, suggesting a nonlinear induction of low-dose radiation effects7–10. Nevertheless, 
experimental results and epidemiological surveys indicated a nonlinear relationship between low-dose biological 
effects and radiation dose11–13, which contradicts the assumptions of the LNT model.

Under low-dose irradiation conditions (defined as doses below 100 mGy or low dose rates below 5 mGy/h)1, 
common cellular damage (e.g., cell survival fractions or DNA damage) cannot directly be observed by con-
ventional experimental methods compared to high-dose radiation. Instead, phenomena like bystander effects, 
radiation hormesis, and adaptive responses to low-dose radiation have been observed14–21. Given the diversity 
of low-dose biological effects, identifying them in a mutually supportive manner is challenging.

Due to the stochastic nature of radiation interactions with matter, there are notable variations in the distribu-
tion of radiation energy deposition at the microscopic level22. Many biophysical models have established links 
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between radiation dose and biological effects, considering the stochastic nature of radiation effects23–26. For low-
dose radiation, there is a plausible assumption that the numerical uncertainty in microscopic doses significantly 
contributes to the uncertainty in biological effects27,28. Therefore, it is necessary to explore methods and indicators 
that can characterize this uncertainty in terms of radiation dosimetry and biological effects.

From the perspective of physical dosimetry, macroscopic dose indicators can only reflect the overall average 
dose in the irradiated material. As a result, capturing statistical fluctuations within microscopic volumes is chal-
lenging, especially in the case of low-dose radiation when influenced by the stochastic nature of interactions. 
Furthermore, microdosimetry theory can characterize the statistical fluctuations in the microscopic volume 
of radiation energy deposition by quantifying dose distributions at the micrometer scale29. Some studies have 
already demonstrated the uncertainty of cell-scale dose distribution. However, these studies typically used simple 
geometric shapes (spheres, ellipsoids, cubes, etc.) to represent cell shapes25,27,30–32. This approach may affect the 
accuracy of cellular dose estimation to some extent due to the irregular morphology of realistic cells. By com-
bining the previously established cell mesh-type models and Monte Carlo (MC) methods in our previous work, 
the "actual dose" (specific energy) within the individual cell nucleus and their dose distribution among the cell 
population resulting from low-dose exposure can be determined33,34.

In terms of biological effects, traditional methods used in radiation biology experiments, such as survival frac-
tion and DNA double-strand or single-strand break yields, can only provide a general assessment of the damage 
suffered by all cells within a given sample. Under the same irradiation conditions, these methods cannot capture 
the heterogeneity in the response of irradiated individual cells within samples, especially for low-dose radiation. 
The 10 × Genomics single-cell sequencing technology enables precise mapping of the biological information trig-
gered by low-dose radiation to each cell, facilitating accurate identification of changes in gene expression levels 
within cell populations induced by low-dose radiation35,36. Therefore, single-cell sequencing technology provides 
insights into the gene expression levels of individual cells exposed to low doses, thus revealing the distribution of 
differential gene expressions within these cell populations, which represents uncertainties of biological responses.

This study improves the cell mesh-type models from our previous works33,34. The factors influencing the dis-
tribution of cellular doses resulting from external exposure to photon beams were evaluated through a monolayer 
mesh-type cell population model and the MC method. Through single-cell sequencing, the cell line exposed to 
low-dose radiation was examined to reveal variations in gene expression among different irradiation groups. 
The characteristics of nucleus dose distribution obtained from microdosimetric analysis were used as indica-
tors to identify differential genes, which were then subjected to essential bioinformatics analysis. Moreover, this 
study attempted to establish an effective connection between the "nucleus-specific energy distribution" and the 
"differential gene expression distribution". This connection can facilitate the exploration and development of 
biomarkers that are highly sensitive to low-dose radiation, thereby revealing the mechanisms of the molecular 
biological effects under low-dose radiation conditions using microdosimetric methods.

Materials and methods
Lung injury induced by radiation is a common side effect of radiotherapy. Hence, the human normal lung epi-
thelial cell line (BEAS-2B) was selected as the research subject in this study. The cell-specific energy distribution 
and gene expression distribution within a cell population induced by low linear energy transfer (LET) photon 
external irradiation were investigated through simulations and experiments. With the development of the cell 
computational model, MC simulations, and microdosimetric analysis, the cell-specific energy distribution was 
acquired. Furthermore, the gene expression distribution was obtained by performing single-cell sequencing on 
irradiated cells. Finally, the results were compared to identify differential genes that met both microdosimetric 
distribution characteristics and statistical significance criteria, which were then subjected to bioinformatics 
analysis.

Constructions of monolayer cell population models in PHITS
The Particle and Heavy Ion Transport code System (PHITS) is a general-purpose MC radiation transport code 
that can simulate the behavior of most particle species, which allows for definitions of tetrahedron geometry37. 
Since the cellular dose is significantly influenced by shape and volume, it is inadequate to rely solely on regular 
geometries such as spheres or cubes when assessing cellular dose32,34. The mesh-type cell model is a kind of tet-
rahedral model that can be directly imported into PHITS for estimating cellular doses, which is reconstructed 
from laser confocal tomography images of stained cells. Based on our preliminary work, we constructed a mon-
olayer mesh-type cell population model that approximates the replicates of in vitro cell culture scenarios. The 
monolayer mesh-type cell population model comprised three distinct "lattices" including the "Cell lattice", the 
"Water lattice", and the "Air lattice", representing the positions and materials of cells inside the petri dish, the 
culture medium inside the dish, and the air surrounding the round-bottomed petri dish, respectively. It’s worth 
noting that the size of "lattices" should be slightly larger than the overall volume of the cells. Depending on dif-
ferent objectives, the "lattices" can be combined to monolayer cell population models with different shapes and 
number densities. In this work, circular monolayer cell population models (Fig. 1, PART 1-panel B) and square 
monolayer cell population models (Fig. 1, PART 1-panel C) were constructed. The diameter of the circular cell 
population model was approximately 6.4 mm (corresponding to a 96-well plate well), which holds a total of 1134 
cells. In the square cell population models, two sizes (approximately 5.9 mm × 3.9 mm and 1.2 mm × 0.8 mm) 
and two number densities (8000 cells and 1500 cells) were considered.

In order to assess the sensitivity of cellular morphological parameters (e.g., volume and shape) to the dose 
distribution within cell populations, similar mesh-type models and simplified geometric models were constructed 
for comparison. The simplified geometric model is referred to as the "Geometry-type model", which replaces 
the mesh-type model in the "Cell lattice" of Fig. 1, PART1-panel A with concentric ellipsoids. The projected 
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dimensions of these concentric ellipsoids in the three-dimensional coordinate system are the same as for the 
mesh-type model, and the dimensional parameters of the cell models are listed in the Supplementary Material S.1.

Monte Carlo simulations
This study used PHITS version 3.30 for MC simulations. The mesh-type model was in a tetrahedral geometry 
format and was imported through TetGen format files with ".ele" and ".node" extensions. The EGS model was 
employed to simulate and record the transport of radiation particles38. To ensure sampling efficiency, the radiation 
source was set to slightly larger than the dimensions of the monolayer cell population model, as shown in 
panels B and C of Fig. 1, PART 1. For the circular cell population model (as shown in Fig. 1, PART1-panel 
B), the source was initialized with monoenergetic photons of energies 0.1, 0.2, 0.5, and 1 MeV. For the square 
cell population model (as shown in Fig. 1, PART1-panel C), the source was set to Cs-137 external irradiation 
photons with an energy of 661.7 keV. The cutoff energies for photons and electrons were set as 1 keV. Afterward, 
the dose distributions within the petri dish for different cumulative absorbed doses on cells and their nucleus 
were calculated. The number of particles in each simulation varies depending on cumulative doses, as detailed 
in Supplementary Material S3. In order to obtain specific energies at different expected cumulative macroscopic 
dose levels, it is necessary to multiply the direct output of the [t-deposit] tally of the energy deposition or dose 
results renormalized by particle number by the corresponding particle number. The dose per cell nucleus or 
cytoplasm within a cell population and its systematic error can be directly obtained from the PHITS results. 
The specific energies of individual cells are then divided into several bins from low to high to form a frequency 
distribution. However, the errors associated with frequency distributions cannot be directly obtained by PHITS. 
Therefore, we performed three separate runs for each simulation to statistically determine the frequencies 
corresponding to each energy bin. The error bars represent the standard deviation of the probabilities for each 
bin of the distribution obtained from the three calculations.

In the monolayer cell population model, the "water lattice" was made of liquid water (H2O, 1 g/cm3), The 
material surrounded by the round-bottomed petri dish ("Air lattice") was set as air. The material of the cell 
nucleus and cytoplasm in the "Cell lattice" is based on the work of Incerti et al., as detailed in Supplementary 
Material S239.

Figure 1.   The schematic diagram of the simulation and experimental workflow. Part 1 outlines the process 
of constructing a monolayer cell population model. (A) is an overhead view of the monolayer cell population 
model along with an enlarged detail. (B) and (C) represent schematic illustrations of Monte Carlo simulations 
for irradiation scenarios in circular and square culture dishes containing the monolayer cell population model 
(the gray planes indicate the monoenergetic photon external irradiation source). Part 2 illustrates the workflow 
for cell irradiation and single-cell sequencing. A connection is established between these two categories of 
distributions obtained through Part 1 and Part 2. The Monte Carlo simulations from Part 1 provide the specific 
energy distribution within cell nucleus, while the sequencing results from Part 2 reveal the distribution of gene 
expression differences.
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Microdosimetric assessment
In microdosimetry theory, the concept of specific energy (denoted as z ) is used to express the actual dose 
deposited per unit mass in a given microvolume, i.e., z = ε/m , where ε represents the imparted energy (in J), 
and m is the mass of the microvolume (in kg). The specific energy distribution within a site caused by a single 
event is represented as f1(z) , which encompasses all the interaction processes initiated by an initial particle and 
its secondary electrons. To achieve a certain cumulative dose at a macroscopic level, it is necessary to consider 
specific energy distributions resulting from numerous initial particles (i.e., multiple events). When the absorbed 
dose is denoted as D , the frequency distribution function of specific energy z can be expressed by:

The differential form f (z,D) can be expressed by:

where f (z,D) represents the probability of having a specific value of specific energy z for an absorbed dose of D ; 
f (z,D) ∗ dz represents the probability of specific energy falling within the range of z to z + dz . In this study, the 
cell nucleus was considered as the sensitive volume for quantifying the energy deposition characteristics within 
the cell population. On this basis, the specific energy distribution for the cell nucleus and its corresponding 
mean value can be obtained, denoted as f (z,D) and z , respectively. To assess the statistical variability of the 
distribution, the ratio of the standard deviation to the mean value of f (z,D) was employed, represented as σ/z , 
which is referred to as the statistical variability of the distribution. σ represents the standard deviation of specific 
energies of each cell nucleus or cytoplasm within the cell population.

By convolving the energy spectrum of a single event, the energy spectrum of multiple events can be obtained:

where fv(z) represents the specific energy frequency distribution obtained by convolving the specific energy 
frequency distribution of a single event f1(z) by v times. The value of v depends on the desired macroscopic dose 
level. Assuming that the total dose level caused by a single initial particle is D1 , then when the cumulative dose 
reaches D , v can be determined as follows

Note that v should be an integer. D1 also refers to the convolved distributions with a certain dose value. 
Detailed explanations of convolution integrals can be found in Supplementary Material S4.

f (z,D) represents a distribution that reflects fluctuations in the energy deposition by radiation particles 
within a microscopic volume. The specific energy distribution of cells is a continuous probability distribution 
function (PDF), which tends to exhibit a shape similar to that of a normal distribution. To quantitatively compare 
the differences in specific energy distributions under different conditions with a normal distribution, normal 
distributions were generated that can be used for comparison with the specific energy distributions. The mean 
and standard deviation of the normal distribution are derived from the specific energy distribution obtained 
from Monte Carlo simulations.

To quantify the differences between specific energy distributions by PHITS, convolution distributions, and 
normal distribution, the root mean square error (RMSE) is calculated:

where fi,MC represents the specific energy frequency distribution f (z,D) obtained from MC simulations, N is 
the number of bins in f (z,D) , and fi,reference represents convolution or normal distributions. RMSE was used 
as a metric to ensure comparability and facilitate comparisons under the same parameters. In order to achieve 
meaningful horizontal comparisons, it is necessary to ensure that the bin lengths remain uniform.

Cell irradiation conditions and single‑cell sequencing
In this study, the BEAS-2B cell line was exposed to the Cs-137 gamma-ray source. The Cs-137 irradiation 
equipment was designed and manufactured by Hopewell Designs company. The irradiation doses were 10 mGy, 
100 mGy, and 1 Gy, where 10 mGy and 100 mGy belonged to the low-dose group, while 1 Gy belonged to the 
high-dose group. The dose rate was maintained at 100 mGy/min, and the irradiation was conducted using the 
T25 culture bottle.

Irradiated cells cultured for 30 min were processed by 10 × Genomics single-cell sequencing, as illustrated in 
Fig. 1, Part 2. This process produced a two-dimensional matrix comprising cells and their corresponding gene 
expression levels. A total of 23,517 genes were collected for each group, each containing approximately 10,000 
cells.

Multiple screening of differential genes and bioinformatics analysis
Frequency distributions of gene expression differences were separately generated for the low-dose group (10 mGy 
and 100 mGy). In addition, these expression differences were calculated by dividing the gene expression values 
of each cell by the mean expression of that gene in the control group.

(1)F(z,D) = P(Z ≤ z,D)

(2)f (z,D) = dF(z,D)/dz

(3)fv(z) =

∫ zmax

0

fv−1(z − z′)f1(z
′)dz′ = f1(z) ∗ fv−1(z)

(4)v = D/D1

(5)RMSE =

√√√√
[

N∑
i=1

(
fi,reference − fi,MC

)2
]
/N
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The selection of differential genes was performed in three steps. The first step was to statistically compare the 
mean gene expression values between irradiated and control groups to identify differentially expressed genes. 
Differential gene selection was performed by calculating the mean expression for each gene and applying filtering 
criteria based on fold change (FC) and statistical significance (p-value). The thresholds for FC and p-values 
were set at 1.2 and 0.05, respectively. In order to further analyze the data, we used RStudio version 3.6.2 and the 
ClusterGVis package. The transcriptome data from each series was clustered into distinct clusters using the mfuzz 
algorithm. Heatmaps and box plots were generated for each cluster to visualize trends and identify differentially 
expressed genes related to the dose. Additionally, Cytoscape version 3.9.1 and the MCODE plugin were used to 
select protein–protein interaction (PPI) network modules40. The criteria for selecting modules include a degree 
cutoff of 2, a node score cutoff of 0.2, a k-core of 2, and a maximum depth of 100. Finally, the CytoHubba plugin41 
was used in the target network to calculate the node scores in a computational mode to select the top 100 hub 
genes, referred to as "Cytoscape merge".

The second step focused on selecting differential genes that exhibit features consistent with microdosimetric 
distributions. Simulation results of cellular-specific energy distributions revealed that the dispersion of specific 
energy distributions decreases with increasing cumulative dose. Based on this pattern, it could be concluded that 
the criterion for screening differential genes (referred to as "microdosimetric merge") was that their expression 
differences show decreased dispersion with increasing irradiation dose. Genes meeting both criteria were further 
ranked based on their RMSE values between gene expression distribution and their normal distribution with 
the same mean value and standard deviation. Finally, the top 50 genes (termed as "multi-filtered" genes) were 
selected for subsequent bioinformatics analysis.

Subsequently, differential gene enrichment analysis was performed using RStudio version 3.6.2. The analysis 
involved generating the top 10 team plots for GO and KEGG analysis using the GOplot R and ggplot software 
packages, respectively42–45.

Results
Characteristics of nucleus‑specific energy distribution
Figure 2 illustrates the specific energy distribution of the cell nucleus (solid lines) in a monolayer cell popula-
tion model caused by monoenergetic photons with 4 types of incident energies (0.1 MeV, 0.2 MeV, 0.5 MeV, 
and 1 MeV) at the same macroscopic dose level (5 mGy). It also compares the distribution differences caused 
by different types of cell models (i.e., the geometric-type model and the mesh-type model). The Supplementary 
Material S5 displays the mean and standard deviation of specific energy distributions for different parameters. 
The normal distributions (dashed lines) are plotted based on the same mean and standard deviation for each MC 
distribution. RMSE values calculated by comparing various distributions are listed in the supplementary materi-
als S8. RMSE values between MC results and normal distributions exhibit minimal sensitivity to the incident 
energy, mostly around 4 × 10–3. The average specific energy of the cell nucleus within the cell population is not 
equivalent to the macroscopic dose level. In this context, the macroscopic dose level represents the cumulative 
average absorbed dose within the culture medium of the petri dish with liquid water and without cells. Regardless 
of the type of cell model, the average specific energy of the cytoplasm or cell nucleus is generally 1.2 times the 
macroscopic average dose, and this ratio slightly increases with increasing photon incident energies. However, 
there is no direct correlation between dispersion and incident energy. There are also slight differences between 
the macroscopic dose with different materials as shown in the supplementary material S3. The macroscopic 
doses of petri dish filled with geometry-type or mesh-type cells with the cell materials are different from those 
with liquid water. The type of cell model within a cell population can influence the macroscopic dose of culture 
dish, but it does not affect the average specific energy of the cell nucleus or cytoplasm.

Compared with the geometric-type model, the mesh-type model exhibits higher dispersion in the specific 
energy distribution of both the cytoplasm and cell nucleus. With photons of an initial energy of 0.1 MeV, the 
dispersions of specific energy distributions for the cytoplasm and nucleus in the mesh-type cell population 
model are 15.08% and 30.98%, respectively, while those in the geometric-type model are 11.66% and 26.02%, 
respectively. More detailed information regarding the differences in the distribution of the cell nucleus and 
cytoplasm can be found in Supplementary Material S5. Combining the distributions from Fig. 2 and S6 and 
the dispersion values listed in S5, it can be seen that the model type affects the dispersion of the cell nucleus or 
cytoplasm-specific energy distribution.

Figure 3 presents the cell nucleus-specific energy distribution within a monolayer geometric-type cell popula-
tion model at 6 different cumulative macroscopic dose levels, ranging from 5 to 500 mGy. These distributions are 
accompanied by normal distributions with the same mean and standard deviation as specific energy distribu-
tions. The specific energy distribution at a cumulative dose of 5 mGy obtained through MC simulation (Fig. 3A) 
is the convolved distribution, which means other convolution distributions in Fig. 3B–F are derived from the 
MC distribution in Fig. 3A by convolution integral. With different convolution times, nucleus-specific energy 
distributions at varying cumulative dose levels were obtained. The dispersion of the specific energy distribution 
decreased with increasing cumulative dose, indicating that the cell nucleus-specific energy had more statistical 
fluctuations at lower dose levels. The average specific energy of the cell nucleus, whether obtained through MC 
simulation or convolution, remained constant at any macroscopic cumulative doses.

Distributions generated by convolution generally reflect the characteristics of specific energy distribution 
obtained from MC simulations. However, there are some differences between these two distributions. In terms 
of dispersion, the deviation increases as the number of convolutions increases. This deviation is primarily 
characterized by an underestimation of dispersion in the convolution distribution. At a cumulative dose of 500 
mGy, the dispersion of the specific energy distribution obtained through MC simulation is 4.54%, while that of 
the convolution distribution’s dispersion is 2.32%. The RMSE values also reflect similar trends. As shown in S8.3, 
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the RMSE between MC and convolution increases with increasing cumulative dose. However, the convolution 
algorithm cannot predict specific energy distribution at a cumulative dose of 25 mGy because the mean value is 
significantly biased (Fig. 3). Moreover, RMSE values between normal and convolution distributions are greater 
than those between MC and convolution distributions. Convolution distributions appear to be more symmetric 
around the mean value.

As can be seen from S8.3, under the same geometric conditions, the RMSE value between MC and normal 
distributions does not reach its maximum at a cumulative dose of 1 mGy. However, it exceeds the values observed 
at low doses (cumulative dose of 5 mGy) for other conditions, as indicated in S8.1 and S8.2. This difference also 
leads to the noticeable differences for very low macroscopic dose (1 mGy) between MC and normal distributions 
in S7 (Panels A, C, F). As specific energies cannot be negative, even if the specific energy distribution is similar 
to the normal distribution at a macroscopic dose of 1 mGy (symmetrical around a certain value), this value is 
not equal to the mean specific energy. Conversely, the normal distribution with the same mean and standard 
deviation only encompasses the portion of its abscissa greater than 0.

At high dose levels, MC simulation results tend to exhibit higher frequencies within narrower specific energy 
ranges. In contrast, the distribution obtained through convolution is less similar to the normal distribution 
according to S8.2. To assess the impact of petri dish geometry factors such as shape, size, and cell number 
density on the specific energy distribution of the cell nucleus, the specific energy distribution of the cell nucleus 
under Cs-137 external photon irradiation at various cumulative doses was obtained, as shown in Supplementary 
Material S7. The results indicate that the dispersion of the specific energy distribution of the cell nucleus within 
a monolayer cell population is unaffected by geometric factors under uniform radiation from the same source. 
In a large square petri dish (5.9 mm × 3.9 mm) with 8000 cells and a cumulative dose of 10 mGy, the dispersion 
of the distribution is 15.55%, with a mean specific energy of 12.13 mGy. For petri dishes with 8000 and 1500 

Figure 2.   Specific energy distributions of cell nucleus in the monolayer cell population model for monoenergic 
photons with incident energies of 0.1 MeV (A), 0.2 MeV (B), 0.5 MeV (C), and 1 MeV (D) at the macroscopic 
dose level of 5 mGy. The mesh-type (black) and geometric-type (red) models are considered. The solid lines 
represent the actual specific energy distributions, while the dashed lines represent the normal distributions 
by the mean and standard deviation of the specific energy distribution obtained from MC simulations. Panel 
E provides a comparison of the dispersion of specific energy distributions obtained from two types of cell 
population models.
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cells, the corresponding values are 15.30%, 11.46 mGy, and 15.16%, 10.95 mGy, respectively. Additionally, the 
observed trend remains consistent among petri dishes of different geometries: the dispersion decreases as the 
cumulative dose increases. The convolution method can also be used to predict the specific energy distribution 
at high cumulative doses based on the distribution at lower cumulative doses. For instance, the dispersion of the 
specific energy distribution obtained through MC simulation is 5.02% at a cumulative dose of 1 mGy, and the 
convolution-derived distribution is 4.86% at a cumulative dose of 100 mGy.

Differential gene expression distributions in the low‑dose group
Based on the results of MC simulation and microdosimetric analysis, under low cumulative dose conditions, the 
nucleus-specific energy distribution potentially exhibits a pattern approximating a normal distribution, and its 
dispersion decreases with the increasing dose. In light of this insight, we statistically analyzed the dispersion of 
gene expression differences in the low-dose group and selected the genes demonstrating "expression difference 
distribution dispersion decreasing with increasing cumulative dose". Subsequently, the mean and standard 
deviations of the expression distribution were deduced to a normal distribution, and the RMSE was calculated 
between the expression difference dispersion distribution and the normal distribution. A smaller RMSE indicates 
a closer approximation to a normal distribution. The selected genes were categorized into the low-dose group 
(10 mGy and 100 mGy) based on the compared RMSE between expression difference distribution and normal 

Figure 3.   Specific energy distributions of cell nucleus in a monolayer geometric-type cell population model for 
monoenergetic photons with an incident energy of 0.5 MeV at cumulative macroscopic dose levels of 5 mGy 
(A), 25 mGy (B), 50 mGy (C), 100 mGy (D), 200 mGy (E), and 500 mGy (F). The red line represents the 
specific energy distribution obtained by MC simulations. Brown lines represent specific energy distributions 
obtained through convolution with different times, starting from the specific energy distribution of cell 
nucleus at a cumulative dose of 5 mGy, which was obtained through MC simulation. Black lines represent 
normal distributions by the mean and standard deviation of the specific energy distribution obtained from MC 
simulations.
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distribution, and the top 100 differentially expressed genes were chosen. For more details, please refer to the 
"Microdosimetric merge" in Supplementary Material S9.

Figure 4 displays the expression distribution (bar charts) of the selected differential genes in BEAS-2B cells 
from the low-dose group (10 mGy and 100 mGy) following single-cell sequencing analysis. It also virtually 
represents the normal distributions (solid lines) derived from the mean and standard deviations of these expres-
sion distributions. The results indicate that some differential genes are sensitive to low-dose radiation, and their 
expressions undergo numerical statistical fluctuations under low-dose conditions. Supplementary Material S10 
lists the average expression levels of several differential genes in the irradiated groups. It can be observed that the 
expression trends of specific differential genes are inconsistent between the low-dose and high-dose groups. For 

Figure 4.   Expression distributions (bar charts) of selected differential genes in BEAS-2B cells irradiated with 
low doses (10 mGy and 100 mGy) following single-cell sequencing analysis. Normal distributions were obtained 
by their mean value and standard deviation of expression distributions (solid lines).
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instance, RPS5, RPS28, and RPS12 were upregulated under low-dose conditions, and their differential expression 
levels increased with the addition of dose. Conversely, the high-dose group had downregulated expression levels, 
indicating a negative correlation between radiation dose and differential expression.

Bioinformatics analysis for multi‑filtered genes
We employ the ClusterGVis package and its mfuzz algorithm to segment transcriptome data into distinct clus-
ters based on trends associated with varying irradiation doses. This approach visually illustrates the expression 
discrepancies among genes in response to different dosage levels. Each gene’s alteration trend across different 
doses is exclusively allocated to a single cluster. 8 gene clusters dependent on irradiation dose were obtained, as 
shown in Fig. 5A. Specifically, Cluster 3 is the largest cluster with 2124 genes and exhibits a slow decrease in gene 
expression with increasing doses. However, this trend does not exhibit statistical significance. By comparison, 
Cluster 1 contains the smallest number of genes (n = 1310), which are more sensitive to lower doses and were 
upregulated. When the dose reaches 1 Gy, the recovery of gene expression levels is found. According to the cri-
teria of FC > 1.2 and p < 0.05, differential genes were selected from the irradiated groups, and 1222 genes were 
found to be differentially expressed across all three groups.

The enrichment analysis of differential genes reveals that the Cluster 1 gene set is the most representative 
among the top ten GO analyses. This cluster primarily includes "Biological Process pathways" such as proton-
coupled electron-transfer and snRNA pseudouridine synthesis, "Cell Component pathways" (i.e., polysomal 
ribosome and cytoplasmic side of rough endoplasmic reticulum membrane), and "Molecular Function pathways", 
including box H/ACA snoRNA binding, peroxiredoxin activity, etc. (Fig. 5B). Similarly, in the case of the 
top ten KEGG analyses, the Cluster 1 gene set achieves the highest representativeness. It is identified with 
various pathways involved in the development of Proteasome, Non-alcoholic fatty liver disease, Prion disease, 
Thermogenesis, Parkinson’s disease, etc. To further explore these differential genes and hub genes within the 

Figure 5.   Summary of bioinformatics analysis results. (A) Heatmap of dose-dependent transcriptomes among 
different irradiated groups. (B) Top 10 GO analysis results for the combined differential genes from different 
clusters. (C) Interaction network of hub genes obtained through two different methods. (D) Chord diagram 
depicting the top 5 enriched GO pathways and KEGG pathways for the merged 13 genes42–44.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11524  | https://doi.org/10.1038/s41598-024-62501-5

www.nature.com/scientificreports/

enriched pathways, the first module and the top 100 hub genes were selected using the MCODE and cytoHubba 
plugins in Cytoscape 3.9.1 software (as detailed in Supplementary Material S.6). These potentially interacting 
genes are summarized in Fig. 5C.

The "Statistic merge" results were combined with the differential genes that align with microdosimetric 
distribution characteristics ("Microdosimetric merge"), as described in Supplementary Material S.6. Multi-filtered 
genes were primarily from the ribosomal protein family, specifically the PRL and PRS series. The top five GO and 
KEGG analyses for these genes comprise pathways such as cytoplasmic translation, cytosolic ribosome, rRNA 
binding, and Ribosome (Fig. 5D). Most of these 13 genes originate from Cluster 1. It is inferred that they may 
be upregulated and recovered with increasing doses and become increasingly sensitive to low doses, aligning 
with the trends illustrated in Fig. 5.

Discussion
The stochastic nature of radiation interactions results in obvious specific energy distributions among cells 
within a cell population. For this reason, identifying a biological response indicator that can be compared with 
the specific energy distribution is essential. This interdisciplinary research incorporated microdosimetry and 
radiation genetics, holding the promise of characterizing the low-dose radiation effects at the molecular level. In 
addition, it has the potential to screen and develop biomarkers for low-dose radiation responses.

Through simulations and analyzing the specific energy distribution within cell populations for cytoplasm or 
cell nucleus, the statistical differences in the actual doses received by cells under different radiation parameter 
conditions can be illustrated. EGS model was employed for cellular-specific energy distributions in PHITS, which 
can reduce the computational load and be suitable for simulations at the micrometer scale46. The mean specific 
energy, the dispersion of its distribution, and the RMSE derived from a comparison with a normal distribution 
constitute the three indicators used here, allowing for a partial description of the specific energy distribution. 
The mesh-type model performs better when reproducing realistic cell morphology than geometry-type cells. 
The comparison of specific energy distributions from mesh-type and geometric-type cell population models 
at different initial energies indicates that the model shape and volume impact the dispersion of specific energy 
distributions. This observation underscores the practical significance of utilizing mesh-type cells, which can 
closely mimic realistic cells for meticulously constructing cell population models. The type of model changes the 
dispersions of specific energy distributions but does not affect the average value, offering valuable insights for 
future work. For instance, employing a geometry-type model would suffice for investigating the specific energy 
under photon conditions. Moreover, the consideration of specific energy distribution is also crucial. Assuming 
the presence of a lethal dose for cells, differences in the specific energy distribution within the cell population 
can lead to biases in evaluating cell survival fractions.

The mean specific energy received by each cell nucleus is not consistent with the macroscopically absorbed 
and cumulative dose. One of the reasons for this discrepancy may arise from material non-uniformity within 
cell populations. This observation aligns with findings from Tan et al. in their proton RBE prediction study47. 
Another factor contributing to this difference is the morphology of the cells. Comparing the "Cumulative dose 
of petri dish with cells" in S3 with the mean specific energy in S5, it can be observed that even after excluding 
the interference of material, there remains a difference between these two values. Discrepancies between specific 
energy mean values and macroscopic doses under photon conditions can be found in the results of Oliver et al.32.

In several successful and applicable biophysical models23,25,26,48, the emphasis is mostly on using absorbed 
doses that reflect macroscopic averages to represent the degree of irradiation in the cell nucleus. Alternatively, 
it is assumed that the mean specific energy within domains in the cell nucleus is equal to the macroscopic dose 
value, while overlooking the fact that cellular materials and morphologies vary in reality. Differences caused by 
the aforementioned factors would occur in scenarios involving external proton beams49. Therefore, it is imperative 
to engage in precise morphology of realistic cells with high fidelity and their dose assessment.

The MC method was employed to obtain the specific energy distribution within the cell nucleus by simulating 
the transport behavior of radiation particles within cells. Despite this viable application, it is typically time-
consuming, especially for addressing high cumulative macroscopic doses requiring substantial computational 
resources. Within a range of convolution iterations, convolution offers an efficient method for predicting the 
specific energy distribution. The premise is that multiple calculations are needed to minimize the error in 
the distribution before convolution. However, the convoluted distribution becomes distorted with increasing 
convolutions, particularly for relatively small specific energy ranges. This indicates that even under high-dose 
irradiation, a large portion of cells may still receive relatively low doses. Moreover, insufficient convolution 
iterations may lead to deviations in mean specific energy prediction.

The single-cell sequencing data indicate that the expression differences of many differential genes conform 
to the specific energy distribution features under different irradiation doses. In other words, the response 
of differential genes reflects the expression fluctuations of specific genes for cells within the same irradiated 
sample. Based on post-irradiation single-cell sequencing results, we identified a set of differential genes with 
their expression differential distributions consistent with microdosimetry distribution features. Under the same 
radiation field conditions, heterogeneity arises in the differential expression of the same gene among different 
cells, yet this phenomenon is challenging to detect using traditional biological methods, which exclusively use 
statistical methods for screening differential genes after cell sequencing detection. By comparing gene-level 
expression distribution with the present microdosimetric distribution, a novel method was developed to identify 
molecular biomarkers sensitive to low-dose radiation, presenting an efficient approach to selecting differential 
genes. Furthermore, specific filtered differential genes in the low-dose radiation group exhibited expression 
levels opposite to those in the high-dose radiation group. This can explain the stimulatory effects in response to 
low-dose radiation. It has to acknowledge that the biological effects induced by low-dose radiation are the result 
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of the combined effects of multiple factors. We only discussed the distribution features from the perspective of 
physical doses. However, the indirect effects by chemical reactions also play a crucial role when concerning the 
biological effects after exposure to photon beams.

A bioinformatics analysis was conducted on the differential genes selected based on microdosimetric 
distribution characteristics. The dose–response relationship in gene expression lays a solid foundation for 
the development of biological markers of low-dose radiation, in line with the findings of Yin et al. and Lee 
et al.50,51. To comprehensively evaluate the biological dose effects, sole reliance on individual genes as biological 
dosimeters may be insufficient. For this reason, a combination of multiple genes and indicators is required for 
a comprehensive evaluation of the biological dosimetry, as emphasized by Kerns et al.52. For this purpose, we 
selected the top 100 potentially interacting genes from the pool containing 1222 differential genes, providing a 
valuable reference for future advancement in biodosimetry.

These multi-filtered genes primarily belong to the ribosomal protein family, the NADH-ferricenium reductase 
family, and the cytochrome c oxidase family. The ribosomal protein family genes are essential ribosomal 
structural components involved in ribosome assembly and function. In addition to their conventional roles in 
ribosome function, several ribosomal proteins exhibit extraribosomal functions, activating p53-dependent or 
p53-independent pathways in response to stress, thus triggering cell cycle arrest and apoptosis53,54. Ribosome 
dysfunctions are implicated in genetic mitochondrial diseases, neurodegenerative conditions, and pathological 
processes associated with biological aging. Cytochrome c oxidase is a large transmembrane protein complex 
in bacteria or mitochondria55,56. It is sequenced as the fourth complex enzyme within the respiratory electron 
transport chain, also referred to as Complex IV. Mitochondrial diseases associated with defects in cytochrome c 
oxidase assembly are considered the most severe among graded mitochondrial disorders. Furthermore, Complex 
IV-associated gene mutations can cause disorders due to cytochrome c oxidase assembly defects57,58.

In sum, incorporating monitoring of ribosomal function or mechanisms of binding between biological 
macromolecules and gene expression levels in later stages can be a promising biomarker of low-dose radiation 
sensitivity. This approach may enhance the accuracy and scientific validity of biodosimetry assessments for 
low-dose radiation.

Conclusion
Low-dose radiation can induce a wide range of biological effects that are difficult to validate, especially due to 
the absence of conclusive dose–response relationships. In this study, we constructed a monolayer mesh-type cell 
population model that faithfully replicates realistic cell culture and irradiation scenarios, along with a simplified 
geometric cell population model of similar dimensions. We employed Monte Carlo simulations to model and 
quantify the specific energy distribution within cell nucleus resulting from external photon irradiation under 
various conditions. These distributions were then compared with normal distributions and those derived from 
convolution algorithms.

Dosimetry simulations indicated that with increasing doses, the dispersion of specific energy distribution of 
cell nucleus decreases. Additionally, the specific energy distribution approximates characteristics of a normal 
distribution when cumulative doses below 100 mGy. Leveraging the microdosimetric distribution features 
within the low-dose range, we further refined the selection of differential genes meeting statistical requirements 
following single-cell sequencing.

This work integrates principles and techniques from multiple disciplines, including microdosimetry, radiation 
genetics, and bioinformatics. Such integration presents a precise method for screening biological markers 
sensitive to low-dose radiation. It also provides valuable insights for the development of low-dose biological 
dosimeters in the future.

Data availability
Data of single-cell sequencing can be obtained by the GEO repository (No. GSE255800). Correspondence and 
requests for materials should be addressed to Liang Sun.
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