
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11775  | https://doi.org/10.1038/s41598-024-62464-7

www.nature.com/scientificreports

Analyzing vegetation health 
dynamics across seasons 
and regions through NDVI 
and climatic variables
Kaleem Mehmood 1,2,3, Shoaib Ahmad Anees 4, Sultan Muhammad 3, Khadim Hussain 1,5, 
Fahad Shahzad 6, Qijing Liu 1,2*, Mohammad Javed Ansari 7, Sulaiman Ali Alharbi 8 & 
Waseem Razzaq Khan 9,10,11*

This study assesses the relationships between vegetation dynamics and climatic variations in Pakistan 
from 2000 to 2023. Employing high-resolution Landsat data for Normalized Difference Vegetation 
Index (NDVI) assessments, integrated with climate variables from CHIRPS and ERA5 datasets, 
our approach leverages Google Earth Engine (GEE) for efficient processing. It combines statistical 
methodologies, including linear regression, Mann–Kendall trend tests, Sen’s slope estimator, partial 
correlation, and cross wavelet transform analyses. The findings highlight significant spatial and 
temporal variations in NDVI, with an annual increase averaging 0.00197 per year (p < 0.0001). This 
positive trend is coupled with an increase in precipitation by 0.4801 mm/year (p = 0.0016). In contrast, 
our analysis recorded a slight decrease in temperature (− 0.01011 °C/year, p < 0.05) and a reduction in 
solar radiation (− 0.27526 W/m2/year, p < 0.05). Notably, cross-wavelet transform analysis underscored 
significant coherence between NDVI and climatic factors, revealing periods of synchronized 
fluctuations and distinct lagged relationships. This analysis particularly highlighted precipitation as 
a primary driver of vegetation growth, illustrating its crucial impact across various Pakistani regions. 
Moreover, the analysis revealed distinct seasonal patterns, indicating that vegetation health is most 
responsive during the monsoon season, correlating strongly with peaks in seasonal precipitation. Our 
investigation has revealed Pakistan’s complex association between vegetation health and climatic 
factors, which varies across different regions. Through cross-wavelet analysis, we have identified 
distinct coherence and phase relationships that highlight the critical influence of climatic drivers on 
vegetation patterns. These insights are crucial for developing regional climate adaptation strategies 
and informing sustainable agricultural and environmental management practices in the face of 
ongoing climatic changes.
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The role of vegetation is irreplaceable in climate regulation, carbon cycle, biodiversity preservation, desertifica-
tion prevention, and water conservation through photosynthesis and  transpiration1. Global and regional climate 
change often affects vegetation growth, which changes its structure and function. The growth status of surface 
vegetation can also have a positive feedback effect on corresponding climate  change2,3. As a result, vegetation 
dynamics and their responses to climate change have become popular topics in global change  research4,5. Veg-
etation is vital in preserving climate equilibrium, sustaining the hydrological cycle and carbon equilibrium, and 
modifying land surface  characteristics6,7. Terrestrial ecosystems depend significantly on it, and its prevalence 
is rapidly growing in different regions worldwide, including Pakistan. The intricate and diverse connection 
between vegetation distribution and factors like climate change, human activities, elevation, soil composition, 
and other relevant components necessitates in-depth  exploration8. Researchers have made significant efforts to 
determine the individual impacts of each factor on vegetation activity at local and global  levels9–12. The climate 
plays a central role in regulating the various biological processes of plants. While other non-climatic elements 
like soil properties, moisture levels, topography, and competition among species, or genetic variability may also 
impact these  cycles13,14.

Plant spatial and temporal distribution is influenced by external weather conditions, including precipita-
tion, temperature, and solar  radiation15,16. For example, temperature changes can affect vegetation processes 
like photosynthesis and respiration rates. In the Northern Hemisphere, warmer temperatures lead to extended 
growing seasons and increased plant  coverage17,18. In contrast, arid regions experience a more significant impact 
on plant growth due to inadequate precipitation that restricts development. The process of photosynthesis in 
plants depends on solar radiation as an essential source of heat and has been recognized as a significant factor 
driving vegetation  changes19. Moreover, plants impact local or global climate through processes such as regulat-
ing surface energy balance, evapotranspiration, and surface water  flow20,21. Additionally, non-dynamic climate 
factors such as photoperiod have been found to strongly influence plant phenology across different ecosystem 
types. Alterations in vegetation dynamics due to abnormal weather conditions can act as a natural experiment 
when considering potential climate change  scenarios22,23. Therefore, analyzing spatial and temporal patterns in 
these instances provides enhanced insight into how Earth’s ecosystems adapt to global changes and the potential 
environmental or economic repercussions. In Pakistan, temperature and precipitation have been identified as 
crucial influencing factors in various studies on changes in  vegetation24,25. Mehmood et al.26 observed that pre-
cipitation and temperature play a role in vegetation’s growth and decline. In addition, diminishing surface latent 
heat flux (downward radiation) has negatively affected vegetation trends in the Khyber Pakhtunkhwa region of 
Pakistan. Downward radiation serves as the primary energy source for vegetation, while topographic elements 
also influence soil hydrothermal conditions to some extent. The influences of downward long-wave radiation 
and topographical factors on changes in vegetation are also significant within mountainous ecosystems.

Studies linking vegetation and climate have limitations. Station-based observations are valuable but provide 
limited perspectives on broad-scale vegetation  shifts27,28. The advent of remote sensing technologies has facilitated 
widespread surveillance to comprehend vegetation dynamics. Satellite data can be used to evaluate vegetation 
alterations on a large-scale using indices like NDVI and Enhanced Vegetation  Index29,30. Numerous studies have 
established a robust association between NDVI and biophysical and biochemical parameters, including leaf area, 
chlorophyll content, green biomass, and growth conditions. NDVI is the most commonly used vegetation index 
in about 75% of  studies4. It represents a normalized contrast between the spectral reflectance in RED and NIR 
bands, allowing for the analysis of seasonal changes in photosynthetic activity while reducing certain forms of 
interference (e.g., cloud shadows, topographic effects) often found in individual spectral  bands31–33.

Cross Wavelet Transform (CWT) analysis is used to study the complex association among different vari-
ables in time-series  data34,35. This analysis enables more precise forecasting and decision-making by detecting 
data patterns, tendencies, and  anomalies36,37. Additionally, wavelet analysis can be applied in numerous areas, 
including finance, environmental, and climate sciences, to gain insight and solve domain-specific  challenges38,39. 
Martínez and  Gilabert40 and Martínez et al.41 utilized a wavelet transform-based multi-resolution analysis to 
examine NDVI time series. The researchers decomposed the series into various temporal scales to capture 
the vegetation dynamics with intra and inter-annual adjustments. CWT is an effective technique to identify 
changes associated with vegetation phenology and land-cover changes using precipitation data processed by 
NDVI  images42. Similarly, CWT was used to measure the relationship between vegetation indices (NDVI, LAI, 
VOD) and climatic drivers (precipitation, air temperature, incoming radiation) to explore the different responses 
of global ecosystems to their climatic  change34,43.

Situated within the diverse climates of the tropical and subtropical ecological zones, Pakistan has experienced 
significant climatic impacts on its environmental fabric, particularly in recent years. Despite numerous studies 
addressing vegetation shifts, a detailed Spatio-temporal examination of vegetation dynamics across Pakistan 
remains scarce. The country has seen ecological improvements, notably through initiatives like the Billion Tree 
Tsunami Afforestation Project (BTTAP) (February 9, 2014), significantly benefiting regions like Khyber Pakh-
tunkhwa, Islamabad, and Punjab. While specific studies have explored the influence of climatic factors on veg-
etation within restricted areas, employing MODIS-derived vegetation indices, they fall short due to the lack of 
higher-resolution data from sources like Landsat and Sentinel-based sensors. This gap underscores the need for 
comprehensive, systematic investigations into the prolonged Spatiotemporal vegetation trends and their climatic 
interactions across Pakistan across various time frames and spatial dimensions. This study aims to bridge this 
gap by thoroughly analyzing the shifts in vegetation cover and the climatic drivers behind these changes across 
different temporal (annual, growing season, seasonal) and spatial (national, zonal, pixel-level) scales. By evalu-
ating the spatial and temporal patterns of vegetation over the past 24 years, quantifying long-term vegetation 
dynamics, and identifying critical climatic factors such as precipitation, temperature, and solar radiation affecting 
these patterns, this research endeavors to provide a crucial reference in crafting effective ecological conservation 
strategies in Pakistan amidst the evolving climate landscape.
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Materials and methods
Study area
The study covered the entirety of Pakistan, a country renowned for its wide-ranging landscapes and climates, 
leading to a vast array of vegetation types. Pakistan is divided into four provinces—KPK, Punjab (PB), Baluchistan 
(BL), and Sindh (SD)—as well as unique regions like Azad Jammu and Kashmir (AJK) and Gilgit-Baltistan (GB), 
each contributing to the country’s distinctive environmental traits and ecological diversity. Geographically, Paki-
stan is bordered by the Arabian Sea to the south, China to the north, India to the east, and Iran and Afghanistan 
to the west. It also encompasses parts of The Himalayas Mountain range within its boundaries. The country spans 
from 24° to 37° N latitude and 61° to 77° E longitude, covering an area of approximately 881,913  km2 (Fig. 1). 
Pakistan has diverse forest cover, from mangroves in the south to coniferous forests in the  north44,45. These 
forests cover only 5.1% of the land area but are crucial for biodiversity, climate regulation, and  livelihoods46,47.

The north has moist temperate forests, and the lower zones have tropical deciduous  forests48,49. The country’s 
soil types vary, reflecting its topography and climate. Alluvial soils are ideal for agriculture, and arid and semi-arid 
soils dominate the desert regions. Natural resource diversity presents challenges and opportunities for sustainable 
management and  conservation50,51. Pakistan’s diverse climate significantly impacts its vegetation patterns, with 
noticeable differences between the north and south. The mountainous northern regions experience chilly winters 
and pleasant summers, while the southern plains endure hot summers and mild winters. The country has four 
distinct seasons, including a dry and cool winter from December to February, a hot and dry spring from March 
to May, a rainy summer season—also known as the southwest monsoon period—from June to September, and 
a retreating monsoon season in October and  November52–54. Rainfall varies considerably between the humid 
coastal areas and the arid conditions in Baluchistan towards the  west55,56. This study explores the vegetation 
changes in Pakistan’s climates and geographical zones. Pakistan is an ideal research site for vegetation dynamics 
due to its diverse climate and ecology. We can use analytical techniques like the Mann–Kendall test and cross-
wavelet analysis to examine trends and connections between climatic variables and vegetation patterns over time. 
This provides valuable insights into sustainable management and adaptation strategies for ecological systems 
and agricultural livelihoods in the face of global climate change.

Data source
NDVI analysis: leveraging high‑resolution landsat data and cloud computing
Our study adopts the high-resolution Landsat series for NDVI derivation, deviating from traditional coarse-
resolution methods. This approach enhances spatial and temporal analysis depth despite higher computational 
demands. We addressed computational challenges by segmenting the study area into province-based units and 
utilizing Google Earth Engine (GEE) for efficient data processing. The final analysis was conducted in R, ensuring 
a detailed and comprehensive vegetation dynamics study. We used the maximum value composite technique to 
deal with interferences from clouds, atmosphere, and solar zenith angle in our Landsat-derived NDVI dataset. 
This method, as described  by57,58 involves selecting the highest monthly NDVI value for each pixel to minimize 
environmental noise. Subsequently, we calculated average monthly NDVI values from 2000 to 2023: yearly, 
growing season, and standard meteorological seasons to accurately analyze vegetation dynamics.

Climate data
The study utilized average monthly continuous data spanning 24 years (2000–2023). We collected monthly pre-
cipitation (mm), from the CHIRPS Dataset. The CHIRPS data product is a cutting-edge tool developed by the 

Figure 1.  Map of the study area with elevation profile of Pakistan.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:11775  | https://doi.org/10.1038/s41598-024-62464-7

www.nature.com/scientificreports/

US Geological Survey Earth Resources Observation and Science Center in partnership with the Santa Barbara 
Climate Risk Group at the University of  California59,60 . It provides up-to-date information on precipitation 
spanning from 1981 to the present day, covering an area from 50° S to 50° N and from 180° E to 180° W. With 
a spatial resolution of 0.05° (5 km) and daily, pentad, and monthly temporal resolution, CHIRPS is specifically 
designed to monitor drought conditions in areas with complex topography and deep precipitation  systems59,61. 
For this study, we used the GEE platform to download the CHIRPS data product (Precipitation, mm) for Pakistan 
from 2000 to 2023. In addition, we extracted solar radiation (SR, W/m2), and average mean temperature (°C) 
data at a height of 2 m from the ERA5 Reanalysis  datasets62,63. The ERA5 datasets offer a comprehensive histori-
cal archive from 1958 to the present and are characterized by their acceptable spatial resolution of 9  km64,65. To 
ensure a consistent and accurate comparison and analysis across different data types, we aligned all gathered 
climate data to match the spatiotemporal resolution of the NDVI data through a resampling  process66,67. The 
overall schematic methodology of the research is represented in Fig. 2.

Figure 2.  Methodological flowchart for analyzing vegetation dynamics and climatic influences using remote 
sensing data (2000–2023).
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Vegetation types
For this research, we utilized the MODIS Land Cover Type 5 dataset, classifying global vegetation into 11 catego-
ries based on plant functional  types68–70. Our focus was on analyzing the dynamics of vegetation in Pakistan, so we 
chose eight classes that represent pure vegetation types, including Evergreen Needleleaf Trees (ENT), Evergreen 
Broadleaf Trees (EBT), Deciduous Needleleaf Trees (DNT), Deciduous Broadleaf Trees (DBT), Shrub (S), and 
Grass (G) (Fig. 3). By analyzing the coverage area and changes in these classes over time, we could reasonably 
understand and compare the distribution and temporal changes of vegetation types in Pakistan. With the dataset’s 
high spatial resolution and annual update frequency, we could conduct a detailed and dynamic vegetation analy-
sis, contributing to our knowledge of the country’s environmental changes and vegetation trends. We excluded 
non-vegetative and mixed classes such as urban areas, water bodies, and non-vegetated lands to ensure a focused 
study on natural vegetation dynamics.

Methodology
Interannual vegetation dynamics analysis in Pakistan: a linear regression approach
To evaluate changes in vegetation and climate patterns in Pakistan annually, we created a linear regression model 
that links the NDVIi with changes over time. The model’s parameters were determined using the least squares 
 approach71,72, utilizing the equations that follow:

Equation (1) is used, where slope denotes the rate of change, and NDVIi represents the variable connected 
with the ith observation. A positive slope (slope > 0) indicates an increase in vegetation dynamics, while a nega-
tive slope (slope < 0) implies a decline. The statistical significance of the model was evaluated using an F-test, 
detailed as Eq. (2):

where SSR is the sum of squares due to regression. SSE is the sum of squares. The degrees of freedom for the 
residuals are 2n-2, where n is the number of observations. The estimated NDVI values derived from the linear 
regression model are represented by NDVIi. The F-test determines the statistical significance of vegetation trends 

(1)slope =
n×

∑n
i=1 (i × NDVIi)−

∑n
i=1 i

∑n
i=1 NDVIi

n×
∑n

i=1 i
2 −

(
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(2)F =
SSR
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Figure 3.  Distribution of vegetation types in Pakistan.
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over time, with p‑values less than 0.05, 0.01, and 0.001 indicating significant, more significant, and highly sig-
nificant levels, respectively.

Trend analysis
Mann–Kendall trend analysis. The Mann–Kendall (MK) test is a highly reliable non-parametric approach to 
trend  analysis73,74. Its ability to operate independently of specific data distributions and tolerance for outliers 
stands out. Utilizing a standardized Z test statistic can effectively evaluate trends without making any assump-
tions about the underlying data distribution—the S statistic and its variance serve as the essential formula for 
trend detection and  assessment75,76. The S statistic is calculated by combining the results of the signum function 
for all data pairs (xj − xi), where xj  and xi  are data values at different points in time and n is the total number of 
data points (Eq. 3). The signum function, sgn(xj − xk), assigns a value of + 1, 0, or − 1 depending on the compari-
son result between data points xj  and xk  (Eq. 4).

To effectively analyze trends in environmental data, like NDVI measurements, we use a methodology that 
quantifies trend direction and magnitude through the Mann–Kendall test and Sen’s slope estimator. This process 
considers ties within the dataset to calculate the variance of S, Var(S), which is used to compute the standardized 
test statistic  Z77 (Eq. 5). A negative Z indicates a downward trend. In contrast, a positive Z indicates an upward 
trend. A statistically significant 5% confidence level trend is signal led by a Z value beyond ± 1.96, as shown in 
(Eq. 6).

Sen slope estimator. The Sen’s Slope Estimator is a non-parametric approach for calculating the slope of a 
 trend78–80, which reveals the yearly shift and is ideal for linear trends that don’t depend on any assumptions about 
data  distribution81. Qi is obtained by taking the median of the discrepancies between xj and xk, as well as data 
values at times j and k (Eq. 7). Sen’s slope (Qmed) is the median value for an odd number of data points N (Eq. 8), 
whereas, for an even N, it’s the average of the middle two values (Eq. 9).

To determine the confidence interval for the true slope at a significance level, we use standard normal dis-
tribution values denoted as Z(1-α/2) and the variance of the slope (Eq. 10). The ordered slope estimates,  Qi, are 
used to calculate the lower and upper confidence limits,  Qmin and  Qmax, while considering M1 = (N-Cα )/2 and 
M2 = (N + Cα)/2. Interpolation is applied if necessary for non-integer M1 and  M282–84.

Partial correlation analysis
The correlation between vegetation dynamics and individual climatic factors can be challenging to measure 
accurately due to irrelevant  variables85. As a result, correlation coefficients may not fully reflect the true extent of 
the  correlation86,87. To address this issue, we employed second-order Pearson partial correlation analysis, which 
allows us to isolate the influence of two additional variables. This method provides a more refined examination of 
the correlation between NDVI and specific climatic factors. The computational methodologies for determining 
the partial correlation coefficient can be outlined as follows:
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∑

k=1

n
∑

j=k+1

sgn
(

xi − xj
)

(4)sgn
�

xj − xk
�

=







+1 when
�

xj − xk
�

> 0

0 when
�

xj − xk
�

= 0

−1 when
�

xj − xk
�

< 0

(5)Var(S) =
n(n− 1)(2n+ 5)−

∑q
p=1 tp

(

tp− 1
)

(2tp+ 5)

18

(6)Z =











s−1√
var(s)

whenS > 0

0 whenS = 0
s+1√
var(s)

whenS < 0

(7)Qi =
xj − xk

j − k
fori = 1, . . . ,N

(8)Qmed = Q[(n+1)/2]

(9)Qmed =
1

2

(

Q[N/2] + Q[(N+2)/2]

)

(10)Cα = Z1− α
2

√

Var(S)



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11775  | https://doi.org/10.1038/s41598-024-62464-7

www.nature.com/scientificreports/

where n is the number of observations, mi  and ni  are the individual samples of variables m and n. m and n  are 
the mean values of variables m and n, respectively. The Partial Correlation Coefficient, Pm n, o, controlling for the 
effect of variable o is defined as:

Here, Pmn , Pmo , and Pno,  represent the Pearson correlation coefficients between the respective variable pairs. 
The Extended Partial Correlation Coefficient, Pmn,op , controlling for the effects of two variables, o and p, is cal-
culated as:

In this formula, Pmn,o , Pmp,o and Pnp,o,  denote the partial correlation coefficients between the respective vari-
able pairs, with the effect of variable o accounted for. The significance of the partial correlation coefficient can 
be tested using a t-test, which is formulated as follows:

where P represents the partial correlation coefficient being tested (Pmn,o  or Pmn,op ). n is the total number of 
observations. q is the number of controlled variables (q = 1 for Pmn,o  and q = 2 for Pmn,op ). t is the test statistic 
used to determine the significance of the correlation based on degrees of freedom (n − q − 2). The t-value can be 
compared to critical values from the t-distribution to evaluate the statistical significance of the partial correlation 
with a predetermined alpha level (0.05 or 0.01).

Cross‑wavelet transform analysis of NDVI and climate interactions
Continuous wavelet transform (CWT) involves converting a time-series signal, denoted as Xt, into the time–fre-
quency domain, allowing for practical signal magnitude and periodicity  analysis88–90. To achieve this, the Morlet 
wavelet is utilized by convolving Xt with "wavelet daughters," scaled and translated  versions88,91. This transforma-
tion is mathematically defined as follows (Eq. 15):

where s is the scale of the wavelet, τ is the wavelet’s translation in time, Ψ is the mother Morlet function and * indi-
cates the complex conjugate. This analysis utilizes the Morlet wavelet, denoted as � (t), as the foundational 
wavelet  function92,93. Its formula is as follows (Eq. 16):

Here, ω denotes the angular frequency in radians per unit time, and t represents the time step. A complete 
cycle’s period (inverse frequency) is equivalent to 2π radians, measured as 2π/ω  . This scenario implicitly defines 
the time-scale period with ω set to 6. The wavelet power formula can determine the energy present at each scale 
and translation in the wavelet transform (Eq. 17).

This approach enables us to gain insight into the relationship between NDVI and climatic variables over 
comparable time intervals by conducting a CWT analysis. Such analysis provides a holistic perspective of their 
connections. The cross-wavelet analysis combines two-time series, wx(τ,s) and wy(τ,s) (where the asterisk denotes 
the complex conjugate), to produce the cross-wavelet  coefficient94 (Eq. 18).

This coefficient calculates the coherence, a measure of the correlation between the two-time series (Eq. 19 
and Eq. 20).
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Coherence is determined by taking the squared magnitude of the cross-wavelet coefficient and dividing it by 
the product of the power spectra of the individual time series. The arrows in the resulting plots can infer phase 
differences between the time series representing the leading or lagging relationships between the  variables95,96. 
Coherence was assessed at a significance level of 0.05 within the cone of influence using the WaveletComp pack-
age in R97,98.

Results
Climate and vegetation dynamics across Pakistan
Regional environmental parameters across various regions of Pakistan were summarized in this analysis, with 
particular emphasis on NDVI, precipitation, temperature, and SR, which are essential in understanding climate 
impacts and forest dynamics. The average NDVI for Pakistan at the national level is 0.2345 ± 0.139, and the mean 
precipitation and temperature are 477.64 ± 357.38 mm and 14.8155 ± 13.18 °C, respectively (Table 1). Pakistan’s 
average NDVI suggests moderate vegetation health across the country, influenced by various regional climatic 
conditions. The significant standard deviations in precipitation and temperature at the national level indicate 
a wide variability across the regions, underlining the diverse climatic zones within Pakistan. Solar radiation 
averages are moderately consistent across areas and do not show drastic differences, suggesting that sunlight 
distribution is not a major distinguishing factor among these areas.

The AJK region has the highest NDVI value of 0.433 ± 0.023, indicating robust vegetation, likely due to sub-
stantial precipitation recorded at 1119.07 ± 157.45 mm. This high level of precipitation, although beneficial for 
vegetation, suggests a significantly wetter climate compared to other areas. Despite this, the temperature in AJK 
maintains a mean similar to KPK, at approximately 11 °C, indicating a mild climate conducive to vegetation 
growth but not excessively warm. BL defects different scenarios as it has a relatively low NDVI (0.102 ± 0.01) and 
the highest average temperature (22.24 ± 0.481 °C) among the surveyed regions. The temperature seems crucial 
in delaying vegetation growth, potentially due to excessive heat and inadequate water supply, despite its lower 
precipitation (163.75 ± 46.86 mm). PB, on the other hand, displays a more favorable balance between temperature 
(24.842 ± 0.489 °C) and precipitation (400.61 ± 71.36 mm), which is reflected in a higher NDVI (0.326 ± 0.027). 
This indicates that despite higher temperatures compared to other regions, sufficient precipitation supports 
better vegetation conditions.

SD shows moderate vegetation health, with an NDVI of 0.218 ± 0.018, which may be attributed to its inter-
mediate precipitation level (199.38 ± 98.68 mm) and the highest average temperature (27.133 ± 0.322 °C). The 
relatively higher temperature could mitigate precipitation’s positive impact on vegetation. The analysis of monthly 
and seasonal trends in KPK and AJK shows that the NDVI attains its highest point in July and August, indicating 
significant vegetation growth initiated by the monsoon rains. On the other hand, in GB, the vegetation experi-
ences its peak in July, owing to the short summer period. The arid climate of BL results in a moderate increase in 
NDVI during the same monsoon months, which highlights the relative impact of the season even in less humid 
areas. Conversely, PB and SD witnessed a decline in NDVI during April, May, and June, probably due to the 
harvesting season and the effect of agricultural activities (Figure S1). These observations highlight the complex 
association between weather patterns, climate, and human practices, with specific months like July and August 
being significant for the growth of natural and cultivated vegetation in various regions.

Interannual and seasonal trends of NDVI and climate predictors
In Pakistan, the NDVI and precipitation exhibit significant annual increases, with slopes of 0.00197 and 
0.4801 mm  yr−1, respectively (NDVI p < 0.0001, precipitation p = 0.0016). However, the yearly temperature trend 
displays a minor decline with a slope of − 0.01011 °C  yr−1, which is not statistically significant (p = 0.465). Simi-
larly, the annual solar radiation undergoes a significant decrease, with a slope of − 0.27526 W  m−2  yr−1 (p = 0.011). 
These trends imply a significant transformation in environmental parameters, which could have important 
implications for the local ecosystem and climate dynamics (Fig. 4A). Environmental changes were also observed 
during the autumn season (Fig. 4E). The NDVI showed a substantial increase with a slope of 0.0018792  years−1, 
marking a highly significant upward trend (p < 0.0001). Temperature also displayed a notable rise, with a slope 
of 0.023194 °C  yr−1, indicating a statistically significant warming trend (p = 0.0103). Precipitation trends were 

(20)Power.x =
1

s
|Wave(τ , s)|2; Power.y =

1

s
|Wave(τ , s)|2.

Table 1.  Statistics of annual NDVI and important climate variables.

Research areas NDVI P (mm) T (°C) SR (W/m2)

KPK 0.267 ± 0.02 641.38 ± 88.15 11.918 ± 0.538 220.403 ± 3.497

AJK 0.433 ± 0.023 1119.07 ± 157.45 11.181 ± 0.498 210.948 ± 3.696

GB 0.061 ± 0.007 341.7 ± 47.46 -8.421 ± 0.556 241.306 ± 2.591

Baloch 0.102 ± 0.01 163.75 ± 46.86 22.24 ± 0.481 249.893 ± 4.021

Punjab 0.326 ± 0.027 400.61 ± 71.36 24.842 ± 0.489 224.249 ± 4.012

Sindh 0.218 ± 0.018 199.38 ± 98.68 27.133 ± 0.322 239.966 ± 4.116

Pakistan 0.2345 ± 0.139 477.64 ± 357.38 14.8155 ± 13.18 231.1275 ± 13.18
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positive, although slightly significant, with a slope of 0.3790 mm  yr−1 (p = 0.0706), while solar radiation displayed 
a marginally significant decreasing trend with a slope of − 0.2843 W  m−2  yr−1 (p = 0.0559). Considerable changes 
were observed during the growing season (GS) (Fig. 4B).

The NDVI showed a significant upward trend with a slope of 0.0020 years − 1 (p < 0.0001). However, the 
temperature experienced a slight decline at a rate of -0.0022 °C  yr−1, but this change was not statistically signifi-
cant (p = 0.842). Precipitation significantly increased, with a slope of 0.6273 mm  yr−1 (p = 0.00022), while solar 
radiation decreased significantly, with a slope of − 0.3291 W  m−2  yr−1 (p = 0.00784). In the spring, there was a 
highly significant increase in NDVI, with a slope of 0.0018  years−1 (p < 0.0001) (Fig. 4C). Temperature trends 
were stable, showing an insignificant decrease of − 0.0002 °C  yr−1 (p = 0.995). Precipitation significantly ascended, 

Figure 4.  Temporal dynamics of NDVI and principal climatic predictors across various temporal scales within 
Pakistan (2000–2023): (A) annual overview; (B) growing season; (C) Spring; (D) summer; (E) autumn; (F) 
winter.
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with a slope of 0.8005 mm  yr−1 (p = 0.0057), and solar radiation displayed a significant decline, with a slope of 
− 0.3341 MJ  m2  yr−1 (p = 0.0478). Over the summer, a substantial rise in NDVI was observed with a slope of 
0.0020  years−1 (p < 0.0001) (Fig. 4D). Temperature slightly decreased by − 0.0195 °C  yr−1, which was insignificant 
(p = 0.149). Precipitation exhibited a positive but marginally significant trend with a slope of 0.7166 mm  yr−1 
(p = 0.0852), and solar radiation decreased significantly, with a slope of − 0.3459 W  m−2  yr−1 (p = 0.0487). In 
winter, the NDVI continued to increase substantially with a slope of 0.0021  years−1 (p < 0.0001) (Fig. 4F). Tem-
perature and precipitation changes were minor and not statistically significant, with slopes of − 0.0077 °C  yr−1 
(p = 0.681) and − 0.0904 mm  yr−1 (p = 0.725), respectively. Solar radiation exhibited a negligible decrease with a 
slope of − 0.0102 W  m−2  yr−1 (p > 0.1).

Regional variations in NDVI patterns: insights from Mann–Kendall trend
Distinct variations in environmental conditions were observed across Pakistan’s provinces annually, as evidenced 
by the results of the Mann–Kendall test. KPK showed a remarkable greening trend, with 45.7% of its area dis-
playing a significant increase in NDVI values at p < 0.01. This increase indicated a substantial improvement in 
vegetation health on an annual basis (Fig. 6A). Only 0.6% of the area showed a significantly decreased NDVI, 
pointing to overall positive ecological growth across the province and contrasting with the greening trend 
Fig. 6B). In AJK, the annual increase was even more noticeable, with 57.5% of the region showing significant 
positive changes (Table S4). This finding suggested improvements in vegetation conditions. GB and BL showed 
more modest positive changes annually at significant levels (p < 0.01) of 8.3% and 44.7%, respectively, indicating 
regional disparities in environmental trends. PB and SD emerged as areas of significant ecological interest, with 
81.2% and 40.0% of their territories exhibiting significant annual vegetation increases. This finding reflected 
substantial greenery and environmental enhancement, particularly in Punjab. During the GS, KPK and AJK 
continued leading in significant vegetation increases, observed in 54.0% and 60.1% of their lands, respectively. 
At the same time, GB and BL showed less pronounced trends than the annual data, emphasizing the seasonal 
variances in ecological health (Fig. 5).

Punjab maintained its ecological robustness, with 68.2% of its area displaying significant positive changes, 
while Sindh showed a greening trend in 23.8% of its territory during the GS. The data provide a detailed picture 
of seasonal ecological dynamics. Spring resulted in significant positive changes across all provinces, with the 
highest in AJK (56.04%) and the lowest yet considerable in GB (6.55%), highlighting the season’s critical role in 
vegetation recovery and growth (Fig. 6C). The summer trends were particularly noteworthy in Punjab, where 
63.0% of the area experienced significant vegetation increases, underscoring the summer’s crucial impact on 
agricultural and natural ecosystems (Fig. 6D). During the winter and autumn season, they showcased a more bal-
anced increase across regions. KPK, AJK, and PB showed notable increases in NDVI values, indicative of winter’s 
varying influence on vegetation health across different climatic zones (Fig. 6F & 6E). The ecological landscape 
in Pakistan is generally positive but complex, with seasonal fluctuations and regional variations. Customized 
environmental strategies are needed to maintain and improve the ecological well-being of the diverse landscapes.

Regional and seasonal NDVI responses to climatic variables in Pakistan
In a comprehensive analysis of NDVI responses to climatic variables across Pakistan, distinct regional and sea-
sonal patterns emerge. In KPK, there is a nuanced annual interaction between NDVI and precipitation (50.2% 
showing significant change), contrasting with its reaction to temperature, where a balanced significant response 
is less pronounced (15.07% positive versus 20.4% negative). This suggests a complex hydro-thermal dynamic 
affecting vegetation. However, non-significant trends cover 18.7% of the area, indicating areas where precipi-
tation less directly influences NDVI (Table 2). Contrastingly, AJK exhibits a more even distribution between 
significant positive and negative responses to precipitation annually, with a notable shift towards non-significant 
trends in warmer months, hinting at varied vegetation sensitivity across seasons (Fig. 7D–F). GB stands out with 
minimal significant responses to precipitation but shows a considerable reaction to temperature changes (39.1% 
positive), indicating temperature might be a more dominant factor influencing vegetation in this high-altitude 
region (Fig. 7P–R). In BL, a substantial portion of the area demonstrates significant annual responses to precipi-
tation (76.1%), aligning with the arid climate’s expected dependency on water availability for vegetation growth 
(Fig. 7M–O). However, this region, alongside PB, reveals minimal significant positive responses to temperature 
changes annually, underlining potential adaptive mechanisms or other prevailing environmental factors diluting 
temperature’s direct impact on NDVI. Sindh showcases a unique scenario with a moderately significant positive 
response to precipitation annually (55.1%). Still, it exhibits less sensitivity to temperature variations, reflected 
in the minimal significant positive change (0.8%) (Fig. 7A–C). This could point towards water as a limiting 
factor rather than thermal conditions for SD ’s vegetation health. Furthermore, SR’s impact presents a diverse 
picture; regions like KPK and AJK show negligible significant positive responses annually, suggesting potential 
limitations due to water stress or cloud cover, particularly during peak sun exposure periods. Conversely, BL 
overwhelming non-significant negative response (85.4%) to SR annually indicates a potential for overexposure 
leading to vegetation stress, a situation mirrored albeit to a lesser extent in PB and SD.

In PB (GS) reflects a negligible significant change in NDVI in response to temperature (only 0.1% of the area), 
highlighting the potential adaptation of local vegetation to temperature variations or the overriding impact of 
other factors such as irrigation practices (Fig. 7E). While in BL, a contrast is seen with an area of 0.22% showing 
significant annual NDVI responses to temperature, reinforcing the notion that in arid regions like BL, factors 
other than temperature might be driving vegetation health. In spring, GB shows minimal significant responses 
to temperature, with only 1.78% affected area, compared to AJK where the significant response is higher (19.7%) 
(Fig. 7H). This suggests spring warming benefits vegetation more in temperate, moisture-rich areas like AJK 
than in the colder, drier GB. PB shows a higher significant positive reaction to temperature changes in 77.8% of 
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the area in summer, indicative of heat-adapted vegetation or a reflection of summer monsoons’ critical role in 
the region (Fig. 7J–L). Annually, SD shows a small percentage (0.8%) of the area with significant positive NDVI 
responses to temperature. This minimal response underscores the potential saturation of temperature effects or 
the dominance of other limiting factors for vegetation, such as water availability. BL is unique, with a vast area 
showing non-significant reactions (21.6% annually) to SR, possibly indicating a saturation point where additional 
solar input does not translate to increased vegetative growth due to limiting factors like water scarcity. Precipita-
tion significantly impacts the NDVI in all regions of Pakistan and considerably influences the annual vegetation 
dynamics. Temperature has varying effects, with the most notable impacts observed in GB, while it has a lesser 
influence in areas like PB. Conversely, SR has limited significant positive effects on NDVI, particularly in arid 
zones such as BL, implying that other factors may mediate vegetation response to solar inputs.

The study illustrates a correlation between NDVI and climatic variables across different vegetation types, 
providing insights into ecological dynamics influenced by climate. Annually, ENT exhibits a significant growth 
increase of 54.9%, correlated with precipitation Fig. 6A. However, only 1.3% demonstrate a positive response 
during winter, while 21.2% are negatively affected by arid conditions (Figure S2). EBT shows an 87.1% positive 
response to spring precipitation, coinciding with their peak growth phase, which indicates their strong adapta-
tion to seasonal precipitation patterns. In contrast, DBT presents a balanced spring response (Fig. 7G–I), with 
46.5% showing significant growth (Fig. 8G–I); however, they suffer a 34.9% decrease in winter, highlighting their 
sensitivity to seasonal water changes.

Shrubs, adapted to arid environments, exhibit a considerable annual growth response of 89.3% to precipita-
tion, emphasizing their dependence on precipitation for survival and growth (Fig. 8D–F). Nevertheless, this 
response drastically falls to 4.1% during winter (Fig. 8P–R), underlining the pronounced effect of seasonal water 
availability. Grasses, known for their resilience, show a 48% positive annual response to precipitation, indicating 

Figure 5.  Percentage analysis of NDVI Mann–Kendall trend across various regions (KPK, AJK, GB, BL, PB, 
SD) and seasons (annual, GS, Spring, summer, autumn, winter). This plot shows the Mann–Kendall trend 
results, indicating changes in vegetation index at statistical significance levels (P < 0.01, P < 0.05, P < 0.10, and 
P > 0.10).
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moderate dependence on water (Table S3). However, they experience a 14.9% positive growth response in winter 
and autumn (Fig. 8M–O), contrasting with the higher adverse reactions in other seasons, which suggests their 
unique adaptation to cooler, potentially wetter winters. Regarding SR, ENT experiences a 56.1% negative response 
annually, indicating potential damage from excessive light or heat (Fig. 8A–C). Yet, their winter adaptation 
reveals a reduced, yet significant, 15.1% negative response, suggesting lesser but ongoing stress from lower levels 
of winter sunlight. Conversely, grasses exhibit a balanced response to solar radiation, with significant positive 
responses more evident in winter at 14.9%, reflecting their inherent resilience and adaptability to various light 
conditions (Fig. 8J–L).

Cross wavelet transform of NDVI and climatic variables across Pakistan: regional coherence 
and phase relationships (2000–2023)
The Cross Wavelet Transform (CWT) analysis conducted across various regions of Pakistan (KPK, AJK, GB, BL, 
PB, and SD) provides a complex view of the relationship between NDVI and climatic variables (Precipitation, 
Temperature, and SR) from 2000 to 2023. This analysis emphasizes significant segments of coherence and critical 
periods of phase relationships, offering an understanding of the complex relationship between vegetation health 
and environmental factors. KPK, reveals a continuous and significant segment of coherence between NDVI 
and precipitation on an annual scale, presenting as a prolonged coherent interval characterized by an extended 
periodicity. This segment is characterized by the direction of arrows, indicating a phase-in condition where 
NDVI follows precipitation with a lag, suggesting precipitation as a key driver of vegetation health (Fig. 9A–C). 
A similar coherence pattern is observed between NDVI and Temperature and NDVI and SR, with significant 

Figure 6.  Spatial distribution of NDVI trends in Pakistan in (A) annual, (B) growing season, (C) spring, (D) 
summer, (E) autumn, and (F) winter. Each color represents a different threshold of significance level (%).
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strong relationships at annual scales. These findings suggest that temperature and SR positively correlate with 
NDVI after an initial response period, albeit with a delayed effect (Fig. 9G–I). AJK exhibits similar coherence 
and phase patterns as KPK, reinforcing that these neighboring regions share comparable climatic influences on 
vegetation (Fig. 9D–F). For GB, the CWT analysis highlights a subtle interaction, particularly with precipita-
tion, portraying a phase-out relationship at annual scales from 2004 to 2023. This pattern suggests a complex or 
potentially inverse relationship, where increases in precipitation do not directly correlate with improvements in 
vegetation health, likely due to the region’s distinctive climatic and geographical attributes.

In BL, temperature and SR show an in-phase, lagged influence on NDVI between quarterly and biannual 
scales, indicating delayed vegetation responses to climatic changes. However, at an annual scale, the observed 
inverse phase relationships, marked by arrows pointing downward to the left, signify that higher temperatures 
and increased solar radiation may adversely affect vegetation health, reflecting potential stress conditions such 
as heat stress or drought (Fig. 10D–F) (Fig. 10G–I). For precipitation, distinct periods (2001–2004, 2006–2009, 
2012–2014) showcase an inverse relationship with NDVI, depicted by arrows pointing upwards to the left, 
hinting at a complex or delayed vegetation response to precipitation (Fig. 10A–C). However, in 2023, this trend 
shifts, with vectors pointing downward to the left in a significant pattern, suggesting an evolving adverse impact 
of precipitation on vegetation, possibly due to altered precipitation patterns or other environmental changes. 
For PB, the scenario diverges; annual analysis from 2000 to 2023 illustrates a consistent inverse relationship, 
potentially signaling detrimental effects of excessive precipitation on vegetation.

Table 2.  Percentage of area exhibiting NDVI responses to climatic variables across various timescales in 
Pakistan. (↑↓) Significant, (↗↘) non-significant (increase and decrease).

Parameters Research zone Annual GS Spring Summer Autumn Winter

NDVI & P (mm)

KPK
(↑↓) (50.2, 8.35) (22.7, 5.97) (58.0, 14.4) (15.6, 1.18) (16.1, 13.1) (2.58, 10.7)

(↗↘) (18.7, 22.6) (53.7, 17.5) (11.5, 16.0) (64.6, 18.5) (47.7, 22.8) (35.6, 51.1)

AJK
(↑↓) (47.1, 10.1) (45.9, 2.68) (52.4, 17.7) (25.8, 1.49) (60.9, 9.63) (1.95, 14.8)

(↗↘) (12.3, 30.3) (26.2, 25.1) (10.0, 19.6) (49.5, 23.1) (18.5, 10.8) (49.5, 33.6)

GB
(↑↓) (4.70, 16.5) (7.19, 21.4) (1.51, 27.8) (4.77, 3.55) (2.02, 28.7) (9.55, 7.84)

(↗↘) (20.7, 58.4) (20.6, 50.7) (17.8, 52.7) (41.7, 49.9) (22.4, 46.8) (53.9, 28.6)

BL
(↑↓) (76.1, 0.22) (47.5, 1.08) (38.6, 0.26) (39.3, 2.17) (8.62, 0.4) (4.61, 5.43)

(↗↘) (21.6, 2.05) (41.2, 10.1) (53.8, 7.19) (36.1, 22.3) (71.9, 19.1) (30.63, 59.33)

PB
(↑↓) (87.1, 0.59) (64, 0.41) (77.8, 0.26) (59.1, 0.16) (35.7, 0.10) (5.57, 1.52)

(↗↘) (10.3, 2) (31.3, 4.30) (19.8, 2.04) (36.7, 3.87) (53.1, 11.1) (57.1, 35.8)

SD
(↑↓) (55.1, 1.69) (47.1, 6.16) (25.9, 0.58) (43.5, 4.81) (38.5, 2.07) (6.39, 0.57)

(↗↘) (34, 9.18) (33.8, 12.7) (62.7, 10.8) (40.1, 11.5) (42.6, 16.7) (41.7, 51.3)

NDVI & T (°C)

KPK
(↑↓) (15.0, 20.4) (15.8, 20) (3.86, 15.9) (8.72, 15.1) (6.75, 2.26) (9.21, 4.69)

(↗↘) (18.8, 45.6) (13.8, 50.3) (28, 52.1) (17.3, 58.8) (53.8, 37.1) (33.4, 52.6)

AJK
(↑↓) (19.7, 17.7) (18.3, 13, 3) (8.32, 3.98) (9.50, 4.22) (1.43, 1.61) (14.5, 16.2)

(↗↘) (22.7.39.8) (15.9, 52.3) (37.4, 50.2) (19.9, 66.3) (55.8, 41.7) (24.2, 44.9)

GB
(↑↓) (39.1, 0.7) (40.7, 2.2) (1.78, 9.76) (26.6, 5.08) (5.12, 1.80) (16.8, 2.04)

(↗↘) (38.3, 21.7) (38.2, 18.7) (29.4, 59.1) (39.5, 28.71) (52.4, 40.6) (54.3, 26.7)

BL
(↑↓) (0.2, 35.8) (1.1, 45.8) (0.32, 41.8) (1.58, 31.6) (0.72, 9.65) (2.39, 4.23)

(↗↘) (9.9, 54.1) (13.5, 39.4) (7.10, 50.7) (28.7, 38.09) (34.8, 54.8) (25.4, 67.8)

PB
(↑↓) (.08, 26.8) (.1, 41.8) (0.04, 77.8) (0.17, 35.4) (0.52, 5.82) (1.19, 0.69)

(↗↘) (3.5, 69.5) (5.9, 52.8) (1.19, 20.9) (8.33, 56.1) (27.3, 66.3) (50.3, 47.8)

SD
(↑↓) (.8, 16.9) (7.3, 19.8) (0.18, 24.6) (11.4, 27.1) (1.71, 0.6) (0.93, 5.64)

(↗↘) (18.9.63.2) (30.6, 42.2) (15.4, 59.7 (28.4, 32.9) (27.3, 40.3) (27.6, 65.7)

NDVI & SR (W/m2)

KPK
(↑↓) (2.24, 49.5) (0.64, 48.1) (12.2, 47.4) (4.67, 11.8) (0.35, 21.6) (12.1, 14.2)

(↗↘) (22.01, 26.2) (11.1, 40.1) (17.1, 23.2) (14.4, 69.1) (18.1, 59.8) (31.1, 42.6)

AJK
(↑↓) (2.11, 45.9) (0.29, 41.08) (25.4, 33.9) (0.35, 17.5) (0.05, 58.4) (8.77, 26.70)

(↗↘) (32.9, 19.1) (11.06, 47.5) (16.6, 23.9) (19.2, 62.8) (13.7, 27.7) (26.9, 37.6)

GB
(↑↓) (1.88, 7.21) (0.27, 11.3) (23.6, 2.36) (8.89, 3.42) (0.35, 5.68) (24.01, 0.34)

(↗↘) (40.7, 50.1) (23.6, 64.6) (49.0, 24.9) (43.5, 44.1) (24.0, 69.9) (62.2, 13.3)

BL
(↑↓) (0.12, 85.4) (0.29, 69.9) (0.16, 50.3) (1.15, 49.6) (0.23, 6.20) (9.15, 1.99)

(↗↘) (1.43, 13.1) (4.06, 25.6) (4.76,44.6) (14.3, 34.8) (17.6, 75.9) (69.00, 19.8)

PB
(↑↓) (0.19, 80.7) (0.24, 52.9) (0.09, 84.9) (0.08, 34.9) (0.03, 40.4) (5.66, 5.56)

(↗↘) (1.99, 17.0) (4.52, 42.2) (1.48, 13.5) (5.82, 59.1) (5.90, 53.6) (43.4, 45.3)

SD
(↑↓) (1.09, 70.9) (3.01, 57.0) (0.62, 30.1) (2.41, 46.7) (1.79, 40.5) (5.85, 3.80)

(↗↘) (7.31, 20.6) (15.4, 24.5) (8.7, 60.5) (14.5, 36.2) (13.4, 44.2) (65.6, 24.7)
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Figure 7.  Spatial distribution of partial correlation coefficients between NDVI and climatic variables in 
Pakistan. The correlation between NDVI and precipitation, temperature, and solar radiation (SR) is represented 
across different temporal scales: annual (A–C), growing season (D–F), Spring (G–I), Summer (J–L), Autumn 
(M–O), and Winter (P–R). Each color represents different threshold of significance level (%).
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Between quarterly and biannual periods, a positive lagged relationship between precipitation and NDVI in 
PB after an interval following precipitation typically increases NDVI, reflecting a beneficial effect of precipita-
tion on vegetation after an unavoidable delay. In contrast, across annual, quarterly, and biannual scales, NDVI-
Temperature and SR demonstrate a delayed negative relationship, indicating that decreases typically follow 
increases in temperature and solar exposure in vegetation health after a certain period. In SD, similar to PB, an 
annual lagged positive correlation has been observed between NDVI and precipitation, suggesting that intermit-
tent precipitation events can enhance vegetation growth. In contrast, temperature and SR depicted an antiphase 
or negative impact, signifying that higher temperatures and increased SR typically correlate with decreased 
vegetation health, highlighting the challenges posed by heat and light stress in warmer areas of Pakistan. Hence, 

Figure 8.  Spatial distribution of area percentage derived from partial correlation coefficients between NDVI 
and climatic variables across different vegetation types in Pakistan. Annual (A–C), growing season (D–F), 
Spring (G–I), summer (J–L), autumn (M–O), and winter (P–R).
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CWT analyses across Pakistan’s regions illustrate a complex mosaic of vegetative responses to climatic variables, 
marked by direct and lagged correlations, phase-ins, and phase-outs. The observed patterns underscore the criti-
cal influence of regional climatic dynamics on vegetation health, highlighting the need for tailored environmental 
management strategies that consider these complex, localized ecological responses.

Discussion
From 2000 to 2023, this study utilized NDVI derived from Landsat and climatic drivers to systematically exam-
ine the spatiotemporal variability of vegetation cover and the related climate-driven mechanisms in Pakistan 
at various temporal scales. Different regions of Pakistan experienced significant annual increases in NDVI and 
precipitation, with minor declines in temperature and decreases in SR. These findings are consistent with the 
research conducted  by99, who noted increased monsoon, pre-monsoon, and annual precipitation along the 
China-Pakistan economic corridor from 1980 to 2016. The increase in precipitation at a rate of 0.4801 mm/yr 
indicates a more extensive climate change impact on the area.

The increased NDVI indicates better vegetation health and productivity, identified through satellite-based 
rainfall assessments, and its relationship with biomass productivity in arid regions, which emphasizes the contri-
bution of precipitation to vegetative  growth100. Furthermore, the changes in precipitation that occur in the various 
areas and fluctuate seasonally affirm the environmental  changes101,102. Our investigation revealed that Pakistan 
experienced an annual and seasonal increase in NDVI, with AJK, KPK, and PB showing significant greening 
trends in 57.5%, 45.7%, and 81.2% of their areas, respectively. These findings are consistent with the work  of103, 
who stated a significant change in land use in Southern Punjab,  and26 examined variability in precipitation 
among regions, indicating a correlation between these factors and the observed NDVI dynamics. The extensive 
vegetation growth in Punjab is similar to the patterns observed in the Lodhran District, supporting the influence 
of land use changes on regional greening  trends67,104. The areas showing positive changes in GB and BL were 
more subtle, with 8.3% and 44.7% respectively. These changes correspond with environmental challenges such 
as land degradation and highlight the diverse ecological responses across different  regions105. Seasonal analyses 
further revealed disparities, with AJK and KPK leading in vegetation increases during the growing season (GS) 

Figure 9.  CWT analysis of NDVI with precipitation, temperature, and solar radiation in Pakistan segmented by 
regions: KPK, AJK, and GB. Panels (A–C) NDVI and precipitation, (D–F) NDVI and temperature, and (G–I) 
NDVI and solar radiation. Note: Color gradients from red to yellow signify increasing wavelet power, marking 
significant coherence areas. Contours indicate statistical significance (p < 0.05), with a cone of influence showing 
potential edge distortions. The y-axis shows periods from quarterly to biennial, and the x-axis covers 2000 to 
2023.
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at 60.1% and 54.0%,  respectively106. Additionally, the observed significant increases in NDVI in KPK and PB can 
be contextualized by the localized adaptation strategies to climate  change107,108.

Our research indicates that different vegetation types respond differently to climatic variables, consistent 
with global trends in similar ecosystems. The ENT showed a significant annual growth increase of 54.9%, mainly 
due to the influence of precipitation. This aligns  with109 findings, who observed similar vegetation responses to 
climate variations across different biomes and seasons. The contrast between the spring growth of EBT and the 
pronounced winter decline in DBT highlights the complex relationships between vegetation types and seasonal 
climate patterns. This is similar to the ecological dynamics explored by Jihua Zhou et al. (2016) in alpine and 
semi-arid regions. Additionally, the adaptability of shrubs and grasses to varying climatic conditions is notewor-
thy, with shrubs displaying an annual growth response of 89.3% to precipitation and grasses exhibiting a unique 
winter growth response. This underscores the diverse survival strategies among vegetation types, as Zhang et al. 
(2017) and Zhuang et al. (2020) noted. Finally, the negative response of ENT to SR annually, coupled with their 
reduced winter stress, suggests a complex interaction between light exposure and vegetation  health110.

In KPK and AJK, precipitation significantly influences NDVI, suggesting water availability is a critical driver 
of vegetation dynamics. In contrast, temperature is dominant in Gilgit-Baltistan (GB) BL demonstrates a strong 
dependency on precipitation, aligning with expectations for arid climates, while Punjab (PB) and Sindh (SD) 
exhibit varying degrees of sensitivity to climatic inputs, reflecting the intricate balance between water availability, 
temperature, and  SR7,30. Particularly, the minimal significant response to temperature in SD underscores the 
potential limitations imposed by other factors, such as water scarcity. The diverse impacts of SR across regions, 
with negligible positive responses in KPK and AJK versus significant adverse effects in BL, highlight the impor-
tance of considering local environmental conditions and adaptive mechanisms in understanding vegetation 
 responses16,105,111.

The CWT analysis showed significant coherence between NDVI and various climatic variables across different 
regions in Pakistan, mirroring patterns observed in other studies. For instance, the phase-in condition between 
NDVI and precipitation in KPK, with NDVI following precipitation with a lag, supports findings  by112,113, indicat-
ing precipitation as a crucial driver for vegetation health. This alignment suggests a widespread climatic influence 

Figure 10.  CWT Analysis of NDVI in relation to precipitation, temperature, and solar radiation in Pakistan 
segmented by regions: Balochistan (BL), Punjab (PB), and Sindh (SD). Panels (A–C) NDVI and precipitation, 
(D–F) NDVI and temperature, and (G–I) NDVI and solar radiation. Note: Color gradients from red to yellow 
signify increasing wavelet power, marking significant coherence areas. Contours indicate statistical significance 
(p < 0.05), with a cone of influence showing potential edge distortions. The y-axis shows periods from quarterly 
to biennial, and the x-axis covers 2000 to 2023.
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on vegetation, reinforcing the results of similar patterns in AJK. A significant segment of coherence between 
NDVI and temperature and NDVI and SR, with delayed effects, aligns with the  shifts114–116. These studies affirm 
that other climatic factors, beyond precipitation, significantly impact NDVI dynamics, aligning with our findings 
across Pakistan’s regions. Smaller-scale seasonal variations and local circulation across BL, PB and SD correspond 
to a global pattern where localized environmental conditions, such as irrigation practices or land use changes, 
affect vegetation  health117. GB’s minimal significant changes across all variables and seasons suggest a unique 
ecological resilience or indifference, possibly due to its high altitude and rugged terrain impacting local climate-
vegetation relationships distinctly from the rest of Pakistan. The CWT found that the impact of temperature 
and SR on vegetation in all regions was dual. At shorter scales, an immediate increase in these factors may have 
a stressful effect on vegetation, as evidenced by the inverse relationship between them. However, when assessed 
annually, the positive correlation between the two factors, even with a lag, suggests beneficial effects, likely 
resulting from extended growing seasons or enhanced photosynthetic efficiency. These findings emphasize the 
importance of considering the temporal scales and environmental context when evaluating the impact of climatic 
variables on vegetation health. Pakistan’s response to climatic variables regarding vegetation is regionally specific 
and varies with seasons. The changes in NDVI are mainly driven by precipitation and temperature annually and 
during the growing season. However, the non-significant responses observed across all regions during different 
seasons highlight the complexity of ecological interactions. The spatial and temporal heterogeneity emphasizes 
the relationship between climate factors and vegetation health, suggesting environmental management and 
agricultural practices across the diverse landscapes of Pakistan.

Conclusion
In the current investigation, the influence of various regional environmental parameters, particularly NDVI, 
precipitation, temperature, and SR, was analyzed to assess the dynamic interactions influencing vegetation health 
across Pakistan. Our results clearly distinguish the vegetative response to climatic variabilities, characterized by 
an average national NDVI of 0.2345 ± 0.139, reflecting moderate vegetation vitality influenced by diverse regional 
climates. The quantitative analysis from linear regression models demonstrated an annual increase in NDVI of 
0.00197 per year (p < 0.0001), accompanied by a statistically significant rise in precipitation by 0.4801 mm/year 
(p = 0.0016). The Mann–Kendall trend tests further supported these findings, reinforcing the positive trend in 
vegetation health across the study period. The region of Kashmir emerged as a rich vegetation area, having the 
highest NDVI value of 0.433 ± 0.023, due to its significant precipitation average of 1119.07 ± 157.45 mm. BL 
showed a different pattern from the rest. It had a low NDVI of 0.102 ± 0.01. This is probably because its dry 
average precipitation of 163.75 ± 46.86 mm underscores the significance of hydrothermal conditions in the 
local vegetation dynamics. The Cross Wavelet Transform analysis provided valuable insights into the coher-
ence between NDVI and climatic variables over time and space. Significant coherence periods where NDVI 
closely follows precipitation patterns were identified, with notable phase lags indicating the temporal response 
of vegetation to climatic inputs. The analysis conducted using the CWT technique from 2000 to 2023 provided 
valuable insights into the coherence between NDVI and climatic variables over time and space. The correlation 
between NDVI and yearly precipitation was prominent in regions like KPK and AJK, emphasizing the crucial 
role rainfall plays in preserving the well-being of vegetation. A considerable 45.7% of KPK’s land area displayed 
a substantial upsurge in plant growth, indicating a significant enhancement in ecological conditions. Our study 
explored into the spatial and temporal dynamics of vegetation health, observing distinct regional variations 
where provinces like Punjab and Khyber Pakhtunkhwa exhibited robust vegetation responses compared to more 
arid regions like Balochistan. This underscores the variable impact of climatic factors across different geographi-
cal areas. Our findings suggest that BL’s arid and semi-arid regions had a relatively lower response, with only 
8.3% of the land showing positive annual changes. This highlights the complex relationship between vegetation 
and extreme climatic conditions. Climate change produces diverse effects in different regions and seasons. For 
example, Punjab has displayed remarkable adaptability to seasonal changes, with over 81% of its land showing 
significant increases in vegetation. The health of regional vegetation is heavily influenced by monsoon patterns, 
with regions like KPK and AJK experiencing a substantial increase in vegetation growth during the monsoon 
season. The ecological insights provided by our analysis, such as the enhanced vegetation growth in northern 
regions during monsoon seasons and the interaction between vegetation health and climatic factors like solar 
radiation and temperature, are vital for formulating region-specific conservation strategies. By implementing 
sophisticated methods such as the Cross Wavelet Transform, we have comprehensively understood the intri-
cate interrelationships between climatic patterns and vegetation growth over extended periods. These insights 
have significant implications for environmental management and agricultural practices, particularly in regions 
that share similar climatic conditions. To enhance sustainability and ecological resilience, we recommend the 
adoption of adaptive management strategies that are informed by continuous monitoring of climatic trends and 
vegetation responses. Policymakers should consider integrating advanced technologies such as machine learning 
to forecast changes and devise responsive strategies effectively. Furthermore, expanding research to encompass a 
broader range of climate variables will further refine our understanding and support the development of targeted 
interventions. These proactive measures are crucial for optimizing land use and ensuring the long-term viability 
of agricultural systems in affected areas.

Data availability
Data is provided within the manuscript or supplementary information files.
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