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Facial representations of complex 
affective states combining pain 
and a negative emotion
Marie‑Hélène Tessier 1,2,3, Jean‑Philippe Mazet 4, Elliot Gagner 1,2,3, Audrey Marcoux 1,2,3 & 
Philip L. Jackson 1,2,3*

Pain is rarely communicated alone, as it is often accompanied by emotions such as anger or sadness. 
Communicating these affective states involves shared representations. However, how an individual 
conceptually represents these combined states must first be tested. The objective of this study was to 
measure the interaction between pain and negative emotions on two types of facial representations 
of these states, namely visual (i.e., interactive virtual agents; VAs) and sensorimotor (i.e., one’s 
production of facial configurations). Twenty‑eight participants (15 women) read short written 
scenarios involving only pain or a combined experience of pain and a negative emotion (anger, disgust, 
fear, or sadness). They produced facial configurations representing these experiences on the faces 
of the VAs and on their face (own production or imitation of VAs). The results suggest that affective 
states related to a direct threat to the body (i.e., anger, disgust, and pain) share a similar facial 
representation, while those that present no immediate danger (i.e., fear and sadness) differ. Although 
visual and sensorimotor representations of these states provide congruent affective information, 
they are differently influenced by factors associated with the communication cycle. These findings 
contribute to our understanding of pain communication in different affective contexts.

Imagine accidentally bumping your knee on a table while receiving a frustrating marketing phone call or watching 
disturbing war footage on television instead. These everyday situations reflect that pain is felt in various contexts 
and is rarely experienced alone. Indeed, everyday situations often involve other affective states, such as anger 
or sadness. Despite theoretical disagreements about the degree of overlap between the experience of pain and 
 emotions1, it is acknowledged that these affective states share a negative valence (i.e., unpleasantness) and rely 
partly on mutual brain systems and regions, including the insula and anterior cingulate cortices (e.g., Ref.2). Expe-
riencing other affective states can also modulate the pain experience itself. For example, concomitant negative 
emotions generally increase experienced pain whereas positive emotions reduce  it3. Furthermore, the expression 
of pain and emotions often involves facial movements, some of which are common to both  states4. However, 
pain is generally studied in isolation by experts, while research on emotions is not generally concerned with the 
pain state nor includes its communicative behaviors in experimental paradigms. These parallel research tracks 
have no doubt contributed to the sparsity of knowledge on how pain and emotional experiences interact at the 
representation and communication levels. To fill this gap, the current study focuses on the combined facial 
representations of pain and a negative emotion (anger, disgust, fear, or sadness) using recent technological tools 
(e.g., interactive virtual agents).

Pain is defined as “an unpleasant sensory and emotional experience associated with, or resembling that associ-
ated with, actual or potential tissue damage”5. It was historically linked to nociception and thus, a one-to-one rela-
tion with specific types of external stimulation (e.g., electric shocks, pressure, cold). Today, pain is characterized 
as a subjective experience involving multiple components including nociceptive, sensory, affective, and cognitive 
 ones6. From an evolutionary perspective, pain can be communicated through facial configurations (i.e., patterns 
of visible contractions of facial muscles inferred as facial  movements7) to trigger empathy and solicit help from 
others, or to promote survival by alerting others of  danger4. Facial configurations can directly translate an inner 
state to prepare the body to respond adaptively to the situation or be aimed at others as communicative and social 
tools to influence  others8. Current pain communication models distinguish the encoding process of experienced 
pain into behaviors from the decoding process of those behaviors by an observer to understand the other’ pain 
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 state9. The communication of the pain message is achieved through shared internal representations between an 
expresser and a perceiver of facial configurations associated with  pain10,11 (also called conceptual knowledge 
or  structure12,13). These representations are only accessible through communication outputs, thus driving both 
the encoding and decoding processes in an individual. These distinct communication processes are modulated 
by several individual factors related to the expression and perception of facial configurations (e.g., levels of 
 empathy14,  alexithymia15, and current  mood16). Facial configurations are behaviors that are encoded and decoded 
by the same individual and could thus serve as a proxy for intraindividual variations in internal representations.

The communication of pain through facial movements has been actively studied in the last 50  years17, mostly 
described using the Facial Action Coding System  (FACS18). This atheoretical system was first used in the research 
domain of emotions and fragments facial configurations in terms of Action Units (AUs), the smallest visually 
discriminative facial movements associated with muscular relaxation or contraction. Intensity ratings are attrib-
uted to each AU, from rest to maximal possible muscle contraction. According to the FACS manual, some AUs 
are combined due to their similar muscular bases. Specifically, AUs 25, and 26 are merged as they are related 
to mouth  opening18. Similarly, AUs 6 and 7 are coupled due to their implication in orbit  closure19. Closing of 
the eyelids (coded as AU 43 or AU 45 depending on the duration of closure, see A2 p. 39 in Ref.18) is frequently 
combined with AUs 6–7 and associated with the completion of the movement (i.e., tense/tight eye closures; p. 62 
in Ref.18). AUs 9 and 10 (nose wrinkling and upper lip raising) involve different steps of levator labii superioris 
muscle  contraction19. AUs most frequently associated with the communication of pain and that are expected to 
be expressed when experiencing the affective state (i.e., stereotypical facial  configuration7) include (see Table 1): 
AU 4 (furrowing of the brows), AUs 6–7-43/45 (tightening of the orbital region muscles with eyes closing), AUs 
9–10 (nose wrinkling and upper lip raising), and AUs 25–26 (opening of the mouth)19,20. These AUs have been 
proposed to encode different components of the pain experience. For instance, movements around the eyes 
(i.e., AUs 6–7-43/45) are associated with the intensity or the sensory component, and eyebrows and lower facial 
movements (AU 4 and AUs 9–10) are linked to the unpleasantness or the affective  component21. However, results 
from recent studies suggest that human observers are attentionally biased towards the affective component 
when decoding others’ pain from facial  configurations22,23. This predominance of the affective component in 
the communication of pain might be explained by the degree of overlap between pain and other affective states.

In her pioneering review on the facial expression of pain,  Williams4 exemplified the complex relationships 
between the communication of pain and negative emotions with the results of a few studies. In one of these 
studies, AUs extracted from photos of people experiencing pain in different contexts (e.g., accidents, medical 
interventions) were found to be shared with stereotypical facial configurations of negative emotions (i.e., anger, 
disgust, fear, and sadness), but the degree of overlap between the pattern of pain and those of negative emotions 
was found to be  small24. This result highlights the specificity of pain in relation to negative emotions (also found 
in Ref.25) and the unlikelihood that the facial configuration of pain represents a blend of negative emotions. In 
a study conducted on people suffering from chronic jaw pain, participants undergoing a painful clinical assess-
ment expressed one or more negative emotions on their faces in addition to  pain26. These negative emotions 
expressed during pain could further inform observers about the patients’ pain. In another study, untrained 
observers assessed pain and perceived emotions in patients undergoing blood  sampling27. An analysis of the 
AUs expressed by the patients combined with the observers’ assessment showed that fewer expressions of joy 
and more expressions of anger, fear, and disgust were present. Furthermore, expressions of disgust, joy, fear, 
and sadness predicted the intensity of pain expressions. Anger and fear perceived by observers predicted their 
assessment of patients’ pain. The results of the latter study demonstrated that the expression of specific emotions 
could predict the pain expressed by others. Despite the specificity of the stereotypical facial configuration of 
pain, the encoding of pain experiences and the decoding of pain contexts by observers are thus influenced by 
the presence of facial configurations of emotions.

Unlike pain, there are as many definitions of emotions as there are  theories28. It can generally be defined as 
an affective reaction elicited by exteroceptive or interoceptive stimulation and can be considered as the interface 
between an organism and its  environment29. Emotions have been classified into categories (e.g., basic emotions 
such as joy, sadness, and  anger30) or dimensions (e.g., emotional valence and  arousal31). Facial movements are a 
multiplex communication medium that may convey both classifications (e.g., AU 9 can reflect a negative valence 
as well as a state, such as  disgust32). They can also communicate more than one category or dimension. The 

Table 1.  AUs most associated with pain, anger, disgust, fear, and sadness in the literature. ✕: AU which is 
reported to occur with prototype; ○: AU which is reported as likely to occur with prototype and/or major 
variant. From Refs.4,20,25,34–36.

Emotion AU

1 Inner 
brow 
raiser

2 Outer 
brow 
raiser

4 Brow 
lowerer

5 
Upper 
lid 
raiser

6 
Cheek 
raiser

7 Lid 
tightener

9 Nose 
wrinkler

10 
Upper 
lip 
raiser

12 Lip 
corner 
puller

15 Lip 
corner 
depressor

17 Chin 
raiser

20 Lip 
stretcher

23 Lip 
tightener

25 Lips 
part

26 Jaw 
drop

43/45 
Eyes 
closed/
Blink

Pain ✕ ✕ ✕ ✕ ✕ ○ ○ ✕ ✕ ✕

Anger ✕ ✕ ✕ ○ ○ ✕ ○ ○

Disgust ✕ ✕ ○ ○ ○

Fear ✕ ✕ ✕ ✕ ○ ✕ ✕

Sadness ✕ ✕ ○ ✕ ○ ○ ○
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perception of one or more classifications from facial movements is associated with emotional granularity (i.e., 
an individual’s ability to feel or perceive an affective event according to many different  categories7). High emo-
tional granularity (e.g., distinguishing between feelings of frustration and irritation in the same event of anger) 
is more common than previously believed. For example, single affective states are less frequently self-reported 
than combined affective states of the same valence in everyday  life33. Consequently, combined affective states 
can be expressed and perceived through facial movements.

Facial configurations associated with pain may differ according to the emotion simultaneously elicited, as 
suggested by a previous study combining various basic emotions. The study of Du, Tao, & Martinez (2014)34 
aimed to describe compound facial configurations that were elicited by the description of situations in which 
the combination of more than one emotion may occur (e.g., angrily surprised is expressed when a person does 
something unexpectedly wrong to them). Their results demonstrated that facial movements commonly associated 
with basic emotions could be added into the same facial configuration and perceived in visually discriminable 
categories (e.g., angrily surprised = anger [AU 4] + surprise [AUs 25–26]). Yet, no study has investigated empiri-
cally combined affective states using other states than emotions, such as pain.

Table 1 shows AUs (as identified by Refs.4,20,25,34–36) associated with the stereotypical facial configuration of 
pain and negative emotions. The stereotypical facial configuration of pain shares facial movements with those 
of negative emotions, such as anger (AU 4), and disgust (AUs 9–10). However, it includes certain patterns of 
movements (AUs 6–7-43/45) that are considered to uniquely represent the experience of  pain22,25. Likewise, 
the stereotypical facial configurations of negative emotions seem to have specific facial movements not shared 
with pain (e.g., AU 5 for fear and AU 15 for  sadness24,35). Thus, facial configurations of pain combined with a 
negative emotion might vary according to the level of similarity between stereotypical representations of the 
two affective states.

Facial configurations can be categorized as spontaneous (i.e., triggered automatically by an underlying state 
or event), or posed (i.e., simulated or voluntarily displayed, but not necessarily felt). For example, spontaneous 
facial configurations of pain were studied in the context of people receiving a painful stimulus while patterns of 
facial movements were being recorded (e.g., Ref.37). Posed facial configurations were rather studied in the context 
where pain was depicted on the faces of non-expert models’ or actors’ faces in the absence of a painful stimulus 
(e.g., Ref.25). Spontaneous and posed facial configurations generally share the same facial movements but show 
varying temporal patterns in the encoding stage of pain  communication38. Spontaneous facial configurations 
reflect the congruent display of a felt affective state, whereas posed facial configurations depict the simulation 
of an affective state. From a communication perspective, spontaneous facial configurations are perceived as 
the “genuine” ones. However, the study of posed facial configurations promotes a better understanding of how 
people internalize the learned social display norms to facially express affective states (e.g., Ref.39). Thus, posed 
facial configurations give insight into conscious stereotypical representations of facial configurations that sup-
port both encoding and decoding processes.

The decoding of affective states through faces encompasses different mechanisms leading to the perception of 
an affective  state40. These mechanisms include distinct information (e.g., seeing the picture of an expressing face) 
that triggers internal representations (e.g., mental simulation of the expressing face) and may lead to an output 
(e.g., motor imitation). While classical models of face processing have primarily focused on visual mechanisms 
(e.g., Ref.41), current models also include sensorimotor and conceptual mechanisms to analyze facial configu-
rations of  emotions42. These mechanisms could interact with each other. For example, disrupting individuals’ 
facial movements impairs their capacity to distinguish facially expressed emotions from perceptually similar 
 distractors43. However, visual, conceptual, and sensorimotor mechanisms do not always provide congruent 
emotional information about the perceived facial  configuration44. Recent findings have shown that individuals 
affected by congenital facial paralysis can still recognize emotions from facial configurations, even without a 
sensorimotor  representation45. Visual, sensorimotor, and conceptual representations of facial configurations 
emerge from partially independent mechanisms to perceive affective states.

An individual’s internal representations of facial configurations are difficult to access explicitly and can only 
be measured through expressive or perceptual behaviors. Recent progress in digital technologies offers new 
ways to study the behaviors associated with these representations. Several automatic recognition algorithms that 
promote measuring the experience of pain are now  available46. However, few of them focus on differentiating 
pain from negative emotions. Other computer-vision algorithms, such as  OpenFace47, were developed to detect 
facial movements indiscriminately from the affective states portrayed. They have the advantage of being less 
time-consuming and less burdensome than manual coding of the facial movements by  FACS48. OpenFace was 
also shown to be as accurate (i.e., F1 scores of > 90%) as expert human coders when images of facial configura-
tions are captured in laboratory  settings49. It is both a fast and precise tool to investigate the encoding of affective 
states through the production of facial configurations.

Interactive virtual agents (i.e., human characters digitally represented and integrated into a user-friendly 
interface, VAs) can be used to create dynamic and realistic stimuli of facial configurations to study participants’ 
perceptions (e.g., Ref.50). The advantage of VAs in the study of facial configurations includes the control of each 
AU and its intensity (i.e., high internal validity) while representing a certain photographic and behavioral realism 
with the human face (i.e., moderate generalization)50. The individual control of AU provides unique information 
on the specific role of each facial movement and its interaction with other movements, leading to the generation 
of facial  configuration51. They can also serve as a customizable visual template for participants to create a wide 
range of facial configurations directly from their own mental representation, for example, via web-based applica-
tions (e.g., the E-Smiles-Creator52, “thisemotiondoesnotexist”53, genetic  algorithms54). With VAs, participants 
do not have to voluntarily produce certain facial movements with  difficulty55 or be limited by the number of 
examples of facial configurations (by video or image stimuli) that can be presented during an experiment. For 
example, VAs were used to generate the participants’ preferred facial configurations of happiness, fear, sadness, 
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and anger in a recent  study56. The results of this study reveal that the representations of the preferred configura-
tions vary between individuals, with significant overlap between fear and sadness facial configurations. These 
individual differences affect the participants’ recognition of emotions (i.e., the decoding process): the more simi-
lar the test stimuli were to their internal representation of the emotion, the more participants recognized them 
as manifestations of that emotion  category57. Although innovative and well-constructed, the current applications 
were not developed to represent combined affective states beyond basic emotions and allow changes in individual 
facial movements. Therefore, the development of VAs with customizable AUs can provide new insights into how 
people mentally depict facial configurations of combined affective states.

The study of combined affective states has so far focused on a few emotions. However, it should be broadened 
to include other important and well-defined states such as pain. Indeed, pain and emotions share several charac-
teristics and are interrelated in certain disorders (e.g., chronic  pain58). In addition, the processes of encoding and 
decoding combined affective states via facial configurations have mainly been studied in isolation and not with 
the same individuals. The use of new technological tools (i.e., automatic recognition algorithm and interactive 
VAs) now makes it possible to investigate the different facial representations of combined affective states in the 
same study. A better understanding of these representations in communication processes is an essential first 
step towards investigating how the combined state of pain and negative emotions is expressed and perceived.

The main purpose of this study (Obj. 1) was to examine how four negative emotions (anger, disgust, fear, 
and sadness) interact with pain on visual (i.e., VAs) and sensorimotor (i.e., one’s production) representations 
of these combined states. On one hand, it was hypothesized that the intensity of facial movements shared with 
stereotypical representations of negative emotions (i.e., anger and disgust) and  pain20,25 would increase on VAs 
and the faces of the participants. On the other hand, the intensity of these movements would decrease for negative 
emotions that have stereotypical representations distinct from that of pain (i.e., sadness and fear). A secondary 
objective (Obj. 2) was to assess whether visual (i.e., imitating a model) and conceptual (i.e., from one’s internal 
representation) information about the facial configurations provide a congruent sensorimotor representation 
of the combined affective states. It was hypothesized that the production of facial movements would be distinct 
between the imitated and posed facial configurations, considering that some facial movements, such as inner 
brow raising (AU 1), are more difficult to voluntarily imitate without an underlying affective context than other 
facial movements, such as furrowing of the brows (AU 4)55.

Methods
Participants
The sample size of the study consisted of 28 healthy participants (15 women) aged between 18 and 40 years old 
(mean age = 26.25 ± 6.11 years). To determine the final sample, a power analysis based on 1000 Monte-Carlo 
simulations was done on the preliminary data of the first seven participants who completed the Virtual Agents 
task (see Material and Measures). The analysis targeted the effect of the affective state (corresponding to the five 
types of scenarios) in a linear mixed-effects model conducted on the intensity of AU 4. The simr v. 1.05 and 
lmerTest v. 3.1–3 packages of R (v. 4.2.2) were used in Rstudio v 2022.07.259,60. The results showed that a sample 
between 25 (80.40%, 95% CI [77.80–82.82]) and 30 (86.20%, 95% CI [83.91–88.28]) participants was necessary 
to reach a power of 80%.

Participants were excluded if they reported having a neurological or psychiatric disorder or a pain condition, 
worked with people suffering from a pain condition (e.g., health workers who are exposed frequently to pain 
expressions), or had previously participated in a study on pain expressions from our research laboratory. Par-
ticipants were recruited by emails sent to Université Laval’s students and employees lists, and posters displayed 
in the community of the Quebec City area. The study was approved by Centre intégré universitaire de santé et 
de services sociaux de la Capitale-Nationale’s Ethics Committee (#2020–1824). All participants voluntarily gave 
their written informed consent for their participation and received a compensation of 25 Canadian dollars. The 
research was conducted in accordance with the relevant guidelines and regulations (e.g., Declaration of Helsinki).

Materials and measures
The study was divided into three computer tasks (Fig. 1). All participants took part in these tasks where they were 
asked to represent the facial configuration most likely expressed by characters in scenarios involving combined 
affective states of pain and a negative emotion on VAs’ faces (Virtual Agents task) and on their own faces (Posed 
Face task). Participants also had to imitate the facial configurations previously created on the VAs (Imitated 
Face task). A photograph of the participant’s face was taken to extract the facial configuration representing the 
character’s affective state in the written scenario (Posed Face task) or that of the VA (Imitated Face task). These 
tasks were followed by subjective control measures. They all ran under Psychopy v. 3.2.461,62. The main computer 
monitor was an Acer GN246HL (1920 × 1080 px resolution, 60.96 cm display size, 60 Hz refresh rate) on top of 
which a Logitech C922 Pro Stream webcam (720p resolution) was placed for Posed Face and Imitated Face tasks.

Creation of scenarios
Participants were presented with scenarios (i.e., short texts) describing fictional characters in different daily 
situations involving pain and a negative emotion. They had to imagine the affective state of pain combined 
with a negative emotion that the character could express in the presented context. Five conditions of scenarios 
were created. Pain was combined with a negative emotion according to four experimental conditions: anger 
(Anger-Pain), disgust (Disgust-Pain), fear (Fear-Pain), or sadness (Sadness-Pain). A control condition describes 
individuals in different daily situations involving strictly pain (Pain).

Fifteen scenarios (three for each condition; see Supplementary Table S1 online) composed of three simple 
sentences were previously validated through an online study (see Supplementary Information Appendix 2 online). 
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Each scenario began with a sentence describing the situation’s context (Context), followed by a sentence implying 
an action leading to the painful situation and experience (PainExp). A sentence eliciting a negative emotion was 
added before or after pain (Emotion), evenly distributed among the 15 scenarios (8 with the order Emotion-
Context-PainExp, and 7 with the order Context-PainExp-Emotion). For the three control scenarios involving 
only pain (Pain), the sentence implying a negative emotion was substituted by additional details describing the 
individual’s pain experience (e.g., sensory characteristics).

Virtual agents task
Creation of animated virtual agents. Two VAs, representing a young male and a young female, were selected 
from the platform EEVEE (Empathy-Enhancing Virtual Evolving Environment; for more details, see  Ref.50). 
They were created by selecting 3D models and skin textures from photos of white adults and were previously 
validated in an online study (see Supplementary Information Appendix 3 online for a summary of data validat-
ing their age, gender, and perceived realism, and see Ref.63 for full details of the validation study). The faces of 
the VAs were animated using blend shapes which are pre-programmed linear changes of the 3D model form-
ing a mesh. Intensity value ranging from 0 to 100%, with 1% increments, was linked to each blend shape and 
determined the range of motion of the mesh within the 3D environment. The associations between AUs and 
blend shapes, and their intensities (minimal to maximal intensity: 0 to 100%) were determined by a developer 
with a FACS Coder certification (based on FACS  manual18). Twelve AUs or clusters of AUs were depicted on 
the VAs based on the stereotypical facial configurations of pain, anger, disgust, fear, and sadness (see Table 1): 
AU 1, AU 2, AU 4, AU 5, AUs 6–7-43/45, AUs 9–10, AU 12, AU 15, AU 17, AU 20, AU 23, and AUs 25–26. The 
combinations of AUs to communicate negative emotions and pain were validated in a perceiver-dependent way 
in a series of  experiments50. For each VA, the same animation of blend shapes, thus the same AUs magnitudes, 
was applied using Blender v. 2.79b software (Blender Foundation).

Expressive EEVEE. Both VAs were imported into the Unreal Engine v. 4.19 game-development platform (Epic 
Games Inc.) to create an interactive application called Expressive EEVEE. This application allowed the design of 
facial configurations on the VAs (see Supplementary Information Appendix 4 online). The Expressive EEVEE 
interface consisted of two sections on a screen. On the left, one of the VAs was presented and, on the right, the 
sliders were displayed to control the facial movements of the VA. The presentation between the male and female 
VA was randomized among trials for each participant.

In order to create a user-friendly interface, nine sliders were used to manipulate the 12 AUs (or clusters of 
AUs), moving symmetrically on both sides of the VA’s face (see Supplementary Table S4 online). They were 
presented as continuous two- or three-marker scales. Two-marker scales ranged from the minimum (0% at 
the left end) to the maximum intensity of the facial movement(s) (100% at the right end). Three-marker scales 
combined AUs on the same slider and ranged from the minimum (0% in the middle) to the maximum intensity 
of the facial movement(s) (− 100% at the left end and 100% at the right end). AUs with opposing  movements18 
were on the same slider to allow participants to create humanly possible facial configurations. AU 16 and AU 24 
were added to oppose AU 12 and AU 20 respectively but were not included in the analyses considering they 

Figure 1.  Stimuli and measures of the three computer tasks: Virtual Agents, Posed Face, and Imitated 
Face. Participants were asked to represent the facial configuration most likely expressed by characters in the 
scenarios on the virtual agents’ faces (Virtual Agents task) and on their own faces (Posed Face task). They 
also had to imitate the facial configurations previously created on the virtual agents (Imitated Face task). The 
facial movements (i.e., AUs) were extracted from the Expressive EEVEE application (Virtual Agents task) and 
photographs of the participants’ faces (Posed Face and Imitated Face tasks).
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could not be detected on the participants’ faces by the automatic recognition algorithm used in this study (see 
Preprocessing and Planned Analyses). Also, AUs frequently combined in the context of the affective states of 
 interest4,20,25,34–36 were assigned to different sliders. The nine sliders were divided into two tabs to reduce the 
visual load on the screen: four upper-face sliders and five lower-face sliders. The participants could navigate 
between the tabs as needed.

In the Virtual Agents task, a second computer monitor (Dell UP Compag LA2205wg with 1680 × 1050 px 
resolution, 55.9 cm display size, and 60 Hz refresh rate) was simultaneously used to display the scenarios, instruc-
tions, and other measures. It was placed at a 160° angle to the right of the main monitor displaying the Expressive 
EEVEE interface. The participants were required to represent the facial configuration most likely expressed by 
the character in the scenario on the VA. Final values on the sliders were recorded and included in the analyses. 
A picture of the resulting facial configuration on the VA was also collected to be used for the Imitated Face task.

Posed face task
Participants were required to pose the facial configuration most likely expressed by the character in the scenario. 
They could practice beforehand their facial configuration without visual feedback (i.e., no mirror). Once ready, 
participants had to press the Enter key on the keyboard to take a still frame of their face. The resulting photos 
were included in the analyses.

Imitated face task
The participants were asked to imitate the facial configuration previously created on the VA in the Virtual Agent 
task. As in the Posed Face task, they practiced their facial configuration without visual feedback of their face and, 
when they were ready, they pressed the Enter key on the keyboard to take a still frame of their face. The resulting 
photos were included in the analyses.

Subjective control measures and questionnaires
Two subjective control measures followed the tasks. The recognition of each single affective state (i.e., anger, 
disgust, fear, sadness, or pain) was measured to validate participants’ perception of distinct affective states in the 
scenarios. After the Virtual Agents and Posed Face tasks, the participants indicated the affective state(s) they had 
perceived from the character in the scenario among five options (i.e., pain, anger, sadness, fear, and disgust). Each 
option was assigned to a specific key on the keyboard. One or more affective states could be selected. The final 
selection was validated by pressing the spacebar. The level of confidence was used to measure the participants’ 
meta-cognition and decision-making  abilities64–66. Participants were asked to rate their level of confidence in the 
facial representations made in all tasks (i.e., Virtual Agents, Posed Face, and Imitated Face). They used a continu-
ous three-marker scale, from left to right: “Not at all confident”, “Uncertain”, and “Totally confident” (as in Ref.66). 
Keyboard arrows were used to select the level of confidence that needed to be confirmed by pressing the spacebar.

Three validated and standardized questionnaires and one homemade questionnaire were administered to 
quantify the characteristics of participants relevant for decoding affective states and the use of VA. All question-
naires were converted into an online format using the Dexero FD v. 6.5.5 web platform (Dexero Inc.).

The French-Canadian version of the Positive and Negative Affect Schedule (PANAS)  questionnaire67,68 was 
used to measure the momentary affective state of the participants before initiating the computer tasks (e.g., “To 
what extent you feel this way right now, that is, at the present moment?”). This self-reported measure includes 
two lists of ten positive (PA) and negative (NA) affective state adjectives which are rated on a 5-point Likert 
scale ranging from “Very slightly or not at all” to “Extremely”. Individual scores from the two subscales (sum of 
PA and NA items) were calculated.

The French version of the Interpersonal Reactivity Index (IRI)  questionnaire69,70 was used to measure partici-
pants’ self-reported empathy, defined as the capacity to share and understand another’s feelings without confusing 
them with our  own71. For each of the 28 items of the IRI, the participant indicated the extent to which the item 
corresponded to them on a 5-point Likert scale ranging from “Does not describe me well” to “Describes me 
very well”. A total score, as well as four individual scores from the Fantasy (F), Empathic Concern (EC), Personal 
Distress (PD), and Perspective Taking (PT) subscales were calculated.

The French version of the Toronto Alexithymia Scale (TAS-20)  questionnaire72,73 was used to measure par-
ticipants’ self-reported alexithymia, defined as the interindividual differences in one’s ability to distinguish and 
communicate experienced  emotions74. This trait is characterized by difficulties in identifying and expressing 
emotions, an impoverished fantasy life, difficulty in distinguishing feelings from bodily sensations, and thoughts 
essentially oriented towards concrete concerns. The TAS-20 consists of 20 items rated on a 5-point Likert scale 
ranging from “Strongly disagree” to “Strongly agree”. A total score and three individual scores from the Difficulty 
Identifying Feelings (DIF), Difficulty Describing Feelings (DFD), and Externally Oriented Thinking (EOT) 
subscales were calculated.

The ExpVA questionnaire was developed to collect socio-demographic information (e.g., age, sex, gender, 
native language) and to document the participants’ level of experience with virtual characters (e.g., in video 
games and animated television series/movies).

Procedure
Participants took part in one laboratory session lasting approximately 150 min. They sat approximately 60 cm 
in front of the main computer monitor on top of which the webcam was placed. The height of the chair was 
adjusted to align the participant’s face to the center of the video frame. To optimize the quality of the photos, 
participants were asked to uncover their forehead to fully show their eyebrows and to wear contacts for those 
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who needed corrective lenses. In addition, a 60-W lamp located behind the main computer monitor illuminated 
the participant’s face without dazzling them.

After completing the consent forms, the PANAS was administered to the participants. The computer tasks 
were then explained. The order of the Virtual Agents, Posed Face, and Imitated Face tasks was counterbalanced 
in three variations so that Virtual Agents always preceded Imitated Face. The remaining questionnaires (IRI, 
TAS-20, and ExpVA) were administered after the computer tasks. Participants’ comments and feedback about 
the study were also collected.

In the Virtual Agents task, a trial started with a fixation cross for 2 s, followed by the presentation of a scenario. 
The trial duration started when participants moved any slider to change the VA’s facial characteristics. Time was 
indicated on a clock at the top right of the screen. Unlimited time was given to the participants, but the clock 
turned orange to indicate that 60 s had passed and they had to move on to the next trial to keep within the time 
available for the study. Once satisfied with the facial configuration created, the participants stopped the time 
by clicking on the clock marking the end of the trial. The subjective measures (level of confidence and affective 
state(s) perceived) were then recorded. This 45-min task was preceded by four practice trials and consisted of 
30 pseudo-randomized trials corresponding to 15 scenarios per VA (a male and a female).

The course of a trial in the practice and experimental sessions was mostly the same in the Posed Face and 
Imitated Face tasks. A trial began with a 2-s fixation cross, followed by the presentation of one of the scenarios 
or VA pictures, practice time, and a photograph of the participant’s face. At the end of the trial, both subjective 
measures (level of confidence and affective state(s) perceived) were recorded in the Posed Face task, while only 
the level of confidence was collected in the Imitated Face task. Four practice trials preceded the experimental 
trials. The Posed Face task consisted of 30 pseudo-randomized trials corresponding to 15 scenarios, each repeated 
two times, for a total duration of about 20 min. The Imitated Face task consisted of 30 pseudo-randomized trials 
corresponding to 15 scenarios represented on the two VAs (a male and a female) in the Virtual Agents task, for 
a total duration of about 10 min.

Preprocessing and planned analyses
The data from Psychopy, Unreal, and Dexero platforms were extracted and included in a common database. 
The photos of the participants’ faces (from Posed Face and Imitated Face tasks) were processed using OpenFace 
v. 2.2.047. This software is a toolkit that implements automatic facial behavior analyses, including AUs recogni-
tion, from image, video, or webcam outputs. For each frame, the algorithm detects facial landmarks to estimate 
the presence and intensity of AUs. The AUs classification model of OpenFace was trained on a range of datasets 
comprising videos of people responding to affective-elicitation tasks, for instance, patients with shoulder pain 
performing a series of range-of-motion as found in the UNBC-McMaster Shoulder Pain Expression Archive 
 Database75. Moreover, it was found as a reliable tool in a previous study for detecting AUs in photos of posed 
facial configurations of pain taken in a controlled laboratory setting (average of pain-related AUs: recall = 90.1%, 
precision = 73.7% and accuracy = 72.6%76). In the current study, 12 AUs (or clusters of AUs) were targeted: AU 1, 
AU 2, AU 4, AU 5, AUs 6–7-43/45, AUs 9–10, AU 12, AU 15, AU 17, AU 20, AU 23, and AUs 25–26. For each 
trial, the estimated presence and intensity of AUs from the participants’ final performed facial configuration 
were considered in the analyses.

Data-driven (i.e., machine learning) and hypothesis-driven (i.e., inferential statistics) analyses were car-
ried out to compare the affective states depicted on the VAs and the participants’ faces (as part of Obj. 1) and 
to discriminate between imitated and posed facial configurations (as part of Obj. 2). Both types of analyses are 
complementary in their approach to the present  problem77. On the one hand, machine learning considers mul-
tivariate non-linear trends that can be assumed from many complex variables (e.g., 12 AUs × 3 tasks to detect 
different combined affective states). It can reveal unsuspected differences or relationships between the variables. 
Machine learning models can also be used as a proof-of-concept of new ideas and an empirical validation of 
the obtained results. On the other hand, inferential statistics test hypotheses from theoretical backgrounds (i.e., 
psychological theories on how affective states are combined). The interpretability of the results on the variables 
studied is thus maximized. This procedure of combining analyses was previously used in other studies with 
similar questions and  data78,79.

Machine learning
Through a supervised machine learning approach, classification models were conducted to compare affective 
states on the intensity of the 12 AUs (or clusters of AUs) on the VAs and the participants’ faces. The same pro-
cedure was also chosen to discriminate imitated and posed facial configurations. Using a classification model 
to demonstrate that most of the different facial configurations of combined states are discriminable from one 
another based on AUs is a method that was previously used (e.g., Ref.34) and confirms that the average facial 
configuration emerging from each affective state results in distinct facial configurations. The versions of the 
Python libraries used to conduct the machine learning experiments are listed in Supplementary Information 
Appendix 5 (online).

Pre-analysis and visualization of the data suggested complex and subtle relationships between AUs to dis-
tinguish affective states and types of facial configurations (see Supplementary Figs. S10, S12, and S14 online). 
Based on that observation, a Multilayer Perceptron (MLP) machine learning model with one hidden layer was 
selected. The data, grouped by participant ID, was shuffled and partitioned into a tuning dataset (6 participants, 
21.43%) for optimizing the models’ hyperparameters, and a training and testing dataset (22 participants, 78.57%) 
for evaluating the models’ performance. A five-fold cross-validation procedure was conducted on the tuning 
dataset to estimate the best hyperparameters. Subsequently, the tuned models were trained and evaluated via a 
ten-fold cross-validation procedure, repeated ten times, on the rest of the data. The mean of the 100 composite 
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test accuracy scores was chosen as the main performance metric of the classification models. Based on a game 
theory  approach80, the SHapley Additive exPlanation values  (SHAP81) for each AU (or clusters of AUs) were 
computed to illustrate the relative importance of AUs in distinguishing affective states or imitated and posed 
facial configurations, and to further interpret the models’ operations. This technique was used successfully in a 
previous study to reflect the relative importance of AUs in detecting moderate pain from innocuous leg  pressure82. 
The AUs identified as the most important according to SHAP were included in the following inferential statistics 
analyses. The following criteria were applied for inclusion of the most (and least) relevant AUs: (1) top- (and 
lowest-) ranked feature according to the absolute mean of SHAP; (2) feature(s) statistically indistinguishable 
from top- (and lowest-) ranked feature.

Inferential statistics
Analyses of statistical inferences were performed with SPSS Statistics for Macintosh v. 25 and Windows v. 29 
(IBM Corp.). For all analyses, the alpha level was set at a standard level of 0.05. When necessary, simple effects 
and post hoc pairwise comparisons were tested using Bonferroni-corrected levels of significance (ɑsimple effects = 
0.15/7 = 0.214, and ɑpost hoc = 0.05/10 = 0.005). The p-values already corrected by the Bonferroni adjustment are 
indicated with the subscript “bonf ”. Only the statistically significant comparisons are reported in the Results 
section. Other comparisons not mentioned were thus found non-statistically significant (p ≥ 0.005, pbonf ≥ 0.05).

Linear mixed-effects models (LMMs) were selected for the statistical inference analyses as a flexible alternative 
to repeated-measures analyses of variance (rANOVA; see Refs.83,84 for a description of the advantages of this type 
of analysis). A compound symmetry structure was used for the within-group correlation structure of all models. 
LMMs were conducted separately for the intensity of the AUs shared with pain and other relatively important 
AUs according to SHAP to compare the facial configurations depicted on the VAs between affective states. Two 
within-subjects variables were included as fixed effects factors: Affective states (5 conditions: Anger-Pain, Disgust-
Pain, Fear-Pain, Sadness-Pain, and Pain) and Gender of virtual agent (2 conditions: Female and Male). Gender 
was included as a control variable, as previous research has found that the perception of pain differs between 
male and female  VAs85. Gender of virtual agent is not mentioned in the Results section, as no interaction with 
Affective states was found for all AUs. Moreover, LMMs were conducted separately for the intensity of the AUs 
shared with pain and other relatively important AUs according to SHAP to compare imitated and posed facial 
configurations of participants according to affective states. Two within-subjects variables were included as fixed 
effects factors: Type of facial configurations (2 conditions: Imitated and Posed) and Affective states (5 conditions: 
Anger-Pain, Disgust-Pain, Fear-Pain, Sadness-Pain, and Pain).

Results
For each participant and condition (five affective states from two facial representations, as well as, where appli-
cable, two genders of VA and two types of facial configurations), AUs intensities were averaged. Due to technical 
problems, part of one participant’s data was excluded from the analyses (i.e., 1.8% of all AUs data in the Imitated 
Face task and 1.4% of all AUs data in the Virtual Agents task). Graphs illustrating the results were created using 
Python libraries: Matplotlib v. 3.7.286, Seaborn v. 0.12.287, and Plotly v. 5.9.0 (Plotly Technologies Inc.).

Subjective control measures and questionnaires
Table 2 presents the socio-demographic information and mean scores or frequencies on questionnaires, as well 
as the results of subjective control measures. The mean levels of the PANAS subscales matched published student 
norms (positive affective states = 39.7 ± 7.9, and negative affective states = 14.8 ± 5.4)67. Similarly, mean IRI and 
TAS-20 total scores were consistent with previous student samples (respectively, IRI total score = 67.22 ± 9.2085, 
and TAS-20 total score = 47.39 ± 10.3788). In addition, the overall mean accuracy of recognizing the affective states 
from the scenarios was 93.62 ± 5.37%. Miss rates were higher for recognizing anger (18.27%), disgust (23.66%), 
and fear (22.98%) compared to sadness (11.01%) and pain (3.87%). More false alarms were found for only recog-
nizing pain (10.98%) compared to other single affective states (anger = 2.83%, disgust = 0.83%, fear = 1.88%, and 
sadness = 3.26%), which is unsurprising given the presence of pain in all scenarios. Furthermore, the descriptive 
statistics showed the same moderate level of confidence for Imitated Face, Posed Face, and Virtual Agents tasks 
(67.88% to 69.75%). Only one participant in the Virtual Agents and the Imitated Face tasks had a confidence level 
below 50% (respectively 47.24% and 48.36%), and two participants in the Posed Face task (48.06% and 49.98%), 
corresponding to levels ranging from ‘not at all confident’ to ‘uncertain’. This moderate level of confidence in 
producing complex affective states has already been observed in a previous  study89.

Differences between affective states on virtual agents
Relative importance of AUs on virtual agents
As part of Obj. 1, the MLP model predicted the affective states on the VAs with an accuracy of 46.43 ± 6.00% at 
the end of the cross-validation procedure, which was 26.43% more than a model predicting classes at random 
(i.e., 20%). Although weak (but consistent with other studies of non-verbal  behaviors79), this accuracy suggests 
that the machine learning process acquired some knowledge from the relation between the features (i.e., AUs). 
The class with the best accuracy was Sadness-Pain (70%) and the one with the least accuracy was Disgust-Pain 
(21%; see Supplementary Fig. S11 online). Examples of facial configurations on the virtual agents best classified 
by the machine learning model are presented in Supplementary Information Appendix 6 (online).

Figure 2 shows the absolute mean of the SHAP computed from the MLP model for the intensity of the AUs 
depicted on the VAs according to the affective state. The MLP model mainly relied on AUs 1, 4, 5, 6–7-43/45, 
and 15 while rarely relying on AU 12 (see Supplementary Fig. S17 online). The model predominantly relied on 
AU 4 to predict Anger-Pain (mean SHAP = 0.109), AUs 9–10 to predict Disgust-Pain (mean SHAP = 0.067), AU 5 
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Table 2.  Participants’ frequencies and mean responses to the questionnaires and subjective control measures. 
Numbers in brackets represent the range of the variable, and numbers in parentheses represent the standard 
deviation for the mean responses or the proportion in % of participants. ExpVA: Questions about video games 
and animated television series/movies, PANAS: Positive and Negative Affect Schedule, IRI: Interpersonal 
Reactivity Index, TAS-20: 20-item Toronto Alexithymia Scale. 1 i.e., college: first two or three years of post-
secondary education in the province of Québec (Canada).

Variables

Sample (n) 28

Age [18–40 years old] 26.25 (6.11)

Main cultural affiliation

 French Canadian 19 (67.86%)

 Others 9 (32.14%)

Number of years of education [12–26 years] 18.50 (2.77)

Highest level of education achieved

 High school or CÉGEP1 degree 6 (21.43%)

 Undergraduate degree 13 (46.43%)

 Master and doctorate degree 9 (32.14%)

Principal occupation

 Student 24 (85.71%)

 Worker 4 (14.29%)

ExpVA

 Do you play or did you ever play video games?

  Yes 25 (89.29%)

   In the last month, how many hours per week did you play video games?
   [0–15 h] 3.13 (4.59)

  No 3 (10.71%)

 Do you watch or did you ever watch animated series or movies?

  Yes 25 (89.29%)

   In the last month, how many animated series or movies did you watch
   [0–20 animated series or movies] 3.44 (4.56)

  No 3 (10.71%)

PANAS

 Positive affect [16–43] 31.75 (6.33)

 Negative affect [10–18] 12.11 (2.41)

IRI

 Perspective taking [6–27] 19.46 (4.91)

 Fantasy [5–27] 18.82 (5.26)

 Empathic Concern [10–27] 19.96 (3.82)

 Personal Distress [0–18] 10.21 (4.92)

 Total [46–87] 68.46 (10.86)

TAS-20

 Difficulty describing feelings [5–23] 14.18 (5.23)

 Difficulty identifying feelings [7–29] 16.14 (5.41)

 Externally-oriented thinking [12–23] 16.25 (3.12)

 Total [30–65] 46.57 (10.29)

Recognition of each affective state

 Accuracy of anger recognition [83.33–100.00] 94.08 (4.96)

 Accuracy of disgust recognition [78.33–100.00] 94.63 (6.13)

 Accuracy of fear recognition [85.00–100.00] 93.90 (5.22)

 Accuracy of sadness recognition [61.44–100.00] 95.16 (8.06)

 Accuracy of pain recognition [61.67–100.00] 90.32 (8.30)

 Mean accuracy of single affective state [78.00–100.00] 93.62 (5.37)

Levels of confidence

 Virtual agents task [47.24–99.18] 69.75 (12.59)

 Posed face task [48.06–98.98] 69.29 (12.69)

 Imitated face task [48.36–98.58] 67.88 (12.49)

 Mean level of confidence [49.47–98.92] 68.97 (11.87)
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to predict both Fear-Pain (mean SHAP = 0.139) and Sadness-Pain (mean SHAP = 0.084), and AUs 6–7-43/45 to 
predict Pain (mean SHAP = 0.054).

AUs shared with pain and other important AUs on virtual agents
Figure 3 illustrates differences between affective states on the intensity of the 12 AUs (or clusters of AUs) depicted 
on the VAs. In line with the Obj. 1, the results regarding AUs shared with pain (i.e., AU 4, AUs 6–7-43/45, 
AUs 9–10, and AUs 25–26) and other relatively important AUs according to the SHAP (i.e., AU 1, AU 5, and 
AU 15) are described in the following paragraphs. The familywise inflation of Type I error rate from the multiple 
LMMs was controlled for by the Bonferroni adjustment (ɑunivariate = 0.05/7 = 0.007).

The LMM on the intensity of AU 4 showed a statistically significant main effect of Affective states (F(4, 
239.40) = 24.55, p < 0.001, η2

p = 0.29). The affective state associated with the highest AU 4 intensity was Anger-
Pain. (psbonf < 0.001). Pain was more intense than Fear-Pain (pbonf < 0.001). The LMM on the intensity of AUs 6–7-
43/45 showed a statistically significant main effect of Affective states (F(4, 239.06) = 13.34, p < 0.001, η2

p = 0.18). 
The affective state associated with the highest AUs 6–7-43/45 intensity was Pain (psbonf < 0.001). Anger-Pain 
was more intense than Fear-Pain (pbonf = 0.029). The LMM on the intensity of AUs 9–10 showed a statistically 
significant main effect of Affective states (F(4, 239.06) = 24.98, p < 0.001, η2

p = 0.30). The affective state associated 
with the significantly highest AUs 9–10 intensity was Anger-Pain (psbonf ≤ 0.005). Pain was more intense than 
Fear-Pain (pbonf = 0.014) and Sadness-Pain (pbonf < 0.001) Also, Disgust-Pain was more intense than Sadness-Pain 
(pbonf < 0.001). The LMM on the intensity of AUs 25–26 showed a statistically significant main effect of Affec-
tive states (F(4, 239.26 = 23.88, p < 0.001, η2

p = 0.29). On one hand, the affective state associated with the highest 
AUs 25–26 intensity was Fear-Pain (psbonf ≤ 0.003). On the other hand, Sadness-Pain was the affective state 
associated with the lowest AUs 25–26 intensity (psbonf < 0.001).

The LMM on the intensity of AU 1 showed a statistically significant main effect of Affective states (F(4, 
239.19) = 20.95, p < 0.001, η2

p = 0.26). The two affective states associated with the highest AU 1 intensity was Fear-
Pain (psbonf ≤ 0.006) and Sadness-Pain (psbonf ≤ 0.001). Pain was more intense than Anger-Pain (pbonf = 0.002). The 
LMM on the intensity of AU 5 showed a statistically significant main effect of Affective states (F(4, 239.24) = 45.26, 
p < 0.001, η2

p = 0.43). The affective state associated with the highest AU 5 intensity was Fear-Pain (psbonf < 0.001). 
Anger-Pain and Disgust-Pain were more intense than Sadness-Pain (pbonf < 0.001 and pbonf = 0.003). Also, Anger-
Pain was more intense than Pain (pbonf = 0.003). The LMM on the intensity of AU 15 showed a statistically signifi-
cant main effect of Affective states (F(4, 238.91) = 26.12, p < 0.001, η2

p = 0.30). The affective state associated with 
the highest AU 15 intensity was Sadness-Pain (psbonf ≤ 0.001). Fear-Pain and Disgust-Pain were more intense 
than Pain (pbonf = 0.004 and pbonf = 0.003) and Anger-Pain (psbonf ≤ 0.001).

Differences between affective states on participants’ posed and imitated faces
Relative importance of AUs on participants’ faces
As part of Obj. 1, the MLP model predicted the affective states on the participants’ faces with an accuracy of 
33.25 ± 3.72% at the end of the cross-validation procedure, which was 13.25% more than a model predicting 
classes at random (i.e., 20%). Although weak (but consistent with other studies of non-verbal  behaviors79), this 

Figure 2.  Absolute mean of SHAP indicating the relative importance of the intensity of the 12 AUs (or clusters 
of AUs) depicted on the virtual agents to predict affective states.
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accuracy suggests that the machine learning process acquired some knowledge from the relation between the 
features (i.e., AUs). The class with the best accuracy was Fear-Pain (41%) and the one with the least accuracy 
was Anger-Pain (23%; see Supplementary Fig. S13 online).

Figure 4 shows the absolute mean of the SHAP computed from the MLP model for the intensity of the 
AUs measured on the participants’ faces according to affective state. The MLP model mainly relied on AUs 4, 
6–7-43/45, 12, and 17 while rarely relying on AUs 2, 5, and 23 (see Supplementary Fig. S18 online). The model 
predominantly relied on AU 4 to predict Anger-Pain (mean SHAP = 0.065), on AUs 9–10 to predict Disgust-
Pain (mean SHAP = 0.061), on AUs 6–7-43/45 to predict Fear-Pain (mean SHAP = 0.050), on AU 17 to predict 
Sadness-Pain (mean SHAP = 0.045), and AU 12 to predict Pain (mean SHAP = 0.051).

As part of Obj. 2, another MLP model predicted the type of facial configurations (i.e., imitated or posed) on 
the participants’ faces with an accuracy of 63.62 ± 6.28% at the end of the cross-validation procedure, which was 
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Figure 3.  Results of the Affective states effect on the mean intensity of AUs depicted on the virtual agents. 
Colored dotted lines in the radar plot indicate a 95% CI for each affective state. The AUs with significant 
differences between affective states are shown beside the radar plot. The colored box-and-whisker plots and the 
colored points show the data distribution for each affective state (n = 28). The whiskers present the minimum 
and maximum values, the vertical length of the box presents the interquartile range, and the horizontal line 
within the box presents the median. The grey squares show the mean scores for each affective state and error 
bars indicate a 95% CI (Bootstrap = 1000) calculated by Seaborn. * psbonf < 0.05.
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11.25% more than a baseline model predicting the dominant class in the data (i.e., 52.37%). Although weak (but 
consistent with other studies of non-verbal  behaviors79), this accuracy again implies that the machine learning 
process acquired some knowledge from the relation between the features (i.e., AUs). The two classes had a similar 
accuracy (62% for imitated and 63% for posed; see Supplementary Fig. S15 online).

Figure 5 shows the absolute mean of the SHAP computed from the MLP model for the intensity of the AUs 
measured on the participants’ faces according to the type of facial configurations. The MLP model mainly relied 
on AU 12 while rarely relying on AU 2 (see Supplementary Fig. S19 online). The importance of an AU (or a 
cluster of AUs) in the model was balanced between imitated and posed facial configurations (e.g., for imitated 
and posed AU 12, mean SHAP = 0.051).

Figure 4.  Absolute mean of SHAP indicating the relative importance of the intensity of the 12 AUs (or clusters 
of AUs) measured on the participants’ faces to predict affective states.

Figure 5.  Absolute mean of SHAP indicating the relative importance of the intensity of the 12 AUs (or clusters 
of AUs) measured on the participants’ faces to predict the type of facial configurations.
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AUs shared with pain and other important AUs on participants’ faces
Figure 6 illustrates the differences between affective states on the intensity of the 12 AUs (or clusters of AUs) 
measured on the participants’ imitated and posed faces. In line with the Obj. 1 and the Obj. 2, the results 
regarding AUs shared with pain (i.e., AU 4, AUs 6–7-43/45, AUs 9–10, and AUs 25–26) and other relatively 
important AUs according to the SHAP (i.e., AU 12 and AU 17) are described in the following paragraphs. The 
familywise inflation of Type I error rate from the multiple LMMs was controlled for by the Bonferroni adjust-
ment (ɑunivariate = 0.05/6 = 0.008).

The LMM on the intensity of AU 4 showed two statistically significant main effects: Affective states (F(4, 
237.88) = 16.03, p < 0.001, η2

p = 0.21) and Type of facial configurations (F(1, 239.07) = 20.62, p < 0.001, η2
p = 0.08). 

No interaction effect was found statistically significant (F(4, 237.88) = 1.42, p = 0.228, η2
p = 0.02). AU 4 was more 
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Figure 6.  Results of the Affective states effect and the interaction effect with Type of facial configurations on the 
mean intensity of AUs measured on participants’ faces. Colored dotted lines in the radar plot indicate a 95% CI 
for each affective state. The AUs with significant differences between affective states are shown beside the radar 
plot. The colored box-and-whisker plots and the colored points show the data distribution for each affective state 
on imitated (n = 27) and posed (n = 28) facial configurations. The whiskers present the minimum and maximum 
values, the vertical length of the box presents the interquartile range, and the horizontal line within the box 
presents the median. The grey squares show the mean scores for each affective state on imitated and posed facial 
configurations, and error bars indicate a 95% CI (Bootstrap = 1000) calculated by Seaborn. *psbonf < 0.05.
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intensely represented on posed than imitated facial configurations. Anger-Pain, Disgust-Pain, and Pain were more 
intense than Fear-Pain (psbonf < 0.001) and Sadness-Pain (psbonf ≤ 0.001). Likewise, the LMM on the intensity of 
AUs 6–7-43/45 showed two statistically significant main effects: Affective states (F(4, 237.83) = 25.28, p < 0.001, 
η2

p = 0.30) and Type of facial configurations (F(1, 238.86) = 102.05, p < 0.001, η2
p = 0.30). No interaction effect 

was found statistically significant (F(4, 237.83) = 1.15, p = 0.336, η2
p = 0.02). AUs 6–7-43/45 were more intensely 

represented on posed than imitated facial configurations. Anger-Pain, Disgust-Pain, and Pain were more intense 
than Fear-Pain (psbonf < 0.001) and Sadness-Pain (psbonf ≤ 0.003). Also, Pain was more intense than Disgust-Pain 
(pbonf < 0.001). The LMM on the intensity of AUs 9–10 showed two statistically significant main effects: Affective 
states (F(4, 238.09) = 18.29, p < 0.001, η2

p = 0.24) and Type of facial configurations (F(1, 239.12) = 63.44, p < 0.001, 
η2

p = 0.21). No interaction effect was found statistically significant (F(4, 238.09) = 1.51, p = 0.201, η2
p = 0.03). 

AUs 9–10 were more intensely represented on posed than imitated facial configurations. Anger-Pain, Disgust-
Pain, and Pain were more intense than Fear-Pain (psbonf ≤ 0.026) and Sadness-Pain (psbonf < 0.001). Furthermore, 
the LMM on the intensity of AUs 25–26 showed two statistically significant main effects: Affective states (F(4, 
237.71) = 5.37, p < 0.001, η2

p = 0.08) and Type of facial configurations (F(1, 239.35) = 92.64, p < 0.001, η2
p = 0.28). 

No interaction effect was found statistically significant (F(4, 237.71) = 2.11, p = 0.080, η2
p = 0.03). AUs 25–26 were 

more intensely represented on posed than imitated facial configurations. Sadness-Pain was less intense than Pain 
(pbonf = 0.005), Anger-Pain (pbonf = 0.002), and Fear-Pain (pbonf = 0.001).

The LMM on the intensity of AU 12 showed a statistically significant interaction effect of Affective states X 
Type of facial configurations (F(4, 238.11) = 8.10, p < 0.001, η2

p = 0.12). AU 12 was more intensely represented 
on posed than imitated facial configurations for all scenarios (ps < 0.001). In posed facial configurations (F(4, 
238.11) = 18.96, p < 0.001, η2

p = 0.24), the affective state associated with the highest AU 12 intensity was Pain 
(ps < 0.001). In imitated facial configurations, the comparison of affective states was not statistically significant 
(F(4, 238.11) = 0.32, p = 0.867, η2

p = 0.01). The LMM on the intensity of AU 17 also showed a statistically signifi-
cant interaction effect of Affective states X Type of facial configurations (F(4, 238.27) = 4.22, p = 0.003, η2

p = 0.07). 
AU 17 was more intensely represented on posed than imitated facial configurations for all scenarios (ps ≤ 0.021). 
In posed facial configurations (F(4, 238.27) = 9.47, p < 0.001, η2

p = 0.137), the affective state associated with the 
highest AU 17 intensity was Sadness-Pain (ps ≤ 0.002). In imitated facial configurations, the comparison of affec-
tive states was not statistically significant (F(4, 238.27) = 0.39, p = 0.814, η2

p = 0.01).

Exploratory analysis: level of information about pain in both representations
As an a posteriori analysis of Obj. 1, a pain index was calculated to globally measure the potential level of pain 
information expressed on the VAs and the participants’ faces for each affective state. It stems from the Prkachin 
and Solomon pain intensity (PSPI) metric, which defines pain on a frame-by-frame basis using the  FACS75. The 
pain index is described as the sum or average of intensities of four AUs (or clusters of AUs) associated with most 
of the pain information (i.e., AU 4, AUs 6–7-43/45, AUs 9–10, and AUs 25–2620), resulting in a scale ranging 
from 0 to 1. A LMM was conducted for the pain index to compare the level of pain expressed on the VAs and 
the participants’ faces according to affective states. Two within-subjects variables were included as fixed effects 
factors: Affective states (5 conditions: Anger-Pain, Disgust-Pain, Fear-Pain, Sadness-Pain, and Pain) and Type of 
facial representation (2 conditions: VAs and participants’ faces).

The LMM on the pain index showed a statistically significant interaction effect of Affective state X Type of 
facial representation (F(4, 241.98) = 5.64, p < 0.001, η2

p = 0.09). The pain index was higher on the VAs than par-
ticipants’ faces for all affective states (ps < 0.001). On the VAs (F(4, 242.02) = 30.37, p < 0.001, η2

p = 0.33) and the 
participants’ faces (F(4, 241.95) = 6.19, p < 0.001, η2

p = 0.09), Pain and Anger-Pain were higher than Fear-Pain 
(ps ≤ 0.002) and Sadness-Pain (ps < 0.001). Additionally, on the VAs, Disgust-Pain was lower than Pain as well as 
Anger-Pain (ps < 0.001) and higher than Sadness-Pain (p < 0.001). Figure 7 presents the results on the pain index.

As a further exploratory step towards examining the facial configurations of combined states, the affective 
information expressed on virtual agents and participants’ faces was compared for each affective state (Pain, 
Anger-Pain, Disgust-Pain, Fear-Pain, and Sadness-Pain). An index for each negative emotion combined with 
pain (Anger, Disgust, Fear, and Sadness) was calculated. As with the pain index, these indexes aim to synthesize 
the information on anger, disgust, fear, and sadness conveyed by the facial configurations. Each index was com-
puted as the average of a selection of AUs that are typically associated with negative emotions (see Table 1) and 
that were found important in the SHAP analyses either on VAs or participants’ faces. It results in a scale ranging 
from 0 to 1. Details about the results are found in Supplementary Information Appendix 8 (online).

Discussion
To contribute to a deeper understanding of pain communication, other affective states need to be explored 
simultaneously. Pain is rarely experienced out of context and other affective states are prone to interact with its 
communication. Therefore, this study aimed to examine the combination of pain and four negative emotions 
(anger, disgust, fear, and sadness) on visual (i.e., VAs) and sensorimotor (i.e., one’s production) representations 
of facial configurations (Obj. 1). As predicted, fear and sadness decreased the intensity of the facial movements 
associated with pain (i.e., AUs 4, 6–7-43/45, 9–10, and 25–26) as displayed on the VAs and the participants’ faces. 
However, anger and disgust did not systematically amplify the intensity of these facial movements. Instead, the 
effect of anger was limited to specific facial movements on the VAs that are shared with the affective component 
of pain and certain negative emotions. This study also aimed to assess the congruence of sensorimotor repre-
sentations of combined affective states based on visual (i.e., imitating a model) and conceptual (i.e., from one’s 
internal representation) information about the facial configurations (Obj. 2). The pattern of facial movements 
did not generally differ between imitated and posed facial configurations. Still, the intensity of facial movements 
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was generally higher for posed than imitated facial configurations. These findings reveal the complex interaction 
between pain and emotions in facial representations.

The results of this study show that fear and sadness have a distinctive effect on the facial configuration typically 
perceived as pain compared to anger and disgust. In line with the decrease of facial movements associated with 
pain, facial movements not common to pain but typically associated with those two target negative emotions were 
more intensely represented in Fear-Pain (i.e., AUs 1, 5) and Sadness-Pain (i.e., AUs 1, 15, 17) scenarios compared 
to other scenarios. As identified by several  authors4,20,25,34–36, some facial movements are shared between pain 
and certain negative emotions, such as anger (e.g., AU 7) and disgust (e.g., AUs 9–10), but other movements are 
emotion-specific, as for fear (e.g., AU 2) and sadness (e.g., AU 15). These results align with the analyses of AUs 
in compound facial configurations of basic emotions found in Du et al.34 and other studies (e.g., Refs.12,13,56,57,90) 
that contrast fear and sadness with anger, and disgust. The theory of the sensory modulation function of facial 
 configurations91–93 might explain this finding. In this theory, the facial configurations associated with disgust and 
anger (and presumably pain) are opposed to those of fear based on antagonist action tendencies to augment or 
diminish sensory exposure. For instance, the upper lid raising (i.e., AU 5), frequently associated with the context 
of fear, could help the visual perception of the environment to detect a potential threat. On the contrary, the 
nose wrinkling (i.e., AU 9), frequently associated with the context of disgust (and pain) could block the odor 
intake of a threatening substance. From an evolutionary perspective, facial movements associated with certain 
affective contexts could thus originate as a sensory interface with the physical world in which at least two context-
dependant patterns of behaviors are promoted: sensory vigilance and sensory rejection. Although the presumed 
physiological function of the stereotypical facial configuration of sadness remains  unclear8, empirical findings 
suggest that the facial movements expected in a sad context differ from those anticipated in a disgusting or angry 
 context94. Throughout evolution, the main function of affective states has shifted from the physiological regulation 
in response to environmental events (i.e., informing about internal states) to the social communication resulting 
from ritualization (i.e., exaggerating nonverbal behaviors to transmit an accurate signal)8.

Contrary to this study’s hypothesis, anger and disgust did not systematically amplify all facial movements 
associated with pain. Instead, it was found that anger, disgust, and pain thus share almost indistinguishable facial 
representations. This finding is consistent with the results of some studies on pain communication. For instance, 
AUs typically associated with disgust and anger explained 64% of the variance in the prediction of pain AU 
frequency measured in patients undergoing blood  sampling27. Also, stereotypical facial configurations of anger 
and disgust were observed on, respectively, 14% and 21% of patients undergoing a painful clinical  assessment26. 
Anger and disgust are threat-related emotions that can be induced by stimuli in the environment with actual 

Figure 7.  Results of the interaction effect of Affective states and Type of facial representation on the mean 
intensity of pain index. The colored box-and-whisker plots and the colored points show the data distribution for 
each affective state on the virtual agents and the participants’ faces (n = 28). The whiskers present the minimum 
and maximum values, the vertical length of the box presents the interquartile range, and the horizontal line 
within the box presents the median. The grey squares show the mean scores for each affective state on the virtual 
agents and the participants’ faces, and error bars indicate a 95% CI (Bootstrap = 1000) calculated by Seaborn. 
* psbonf < 0.05.
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danger (e.g., Ref.95). Similarly to anger and disgust, some authors emphasize the threatening aspect of pain rapidly 
capturing attention when observing  others96. A recent  study32 found that a diversity of facial movements could 
trigger threat perception on others’ faces (particularly anger) or non-threat perception (e.g., sadness), as some 
facial movements reflect signal degeneracy (i.e., different facial movements eliciting the perception of the same 
affective state) or redundancy (i.e., similar facial movements eliciting the perception of the same affective state)97. 
This distinction could suggest that the facial configurations associated with anger, disgust, and pain have been 
evolutionarily optimized to share a similar representation so that individuals can effectively detect a threat even 
in a visually overstimulating environment and ensure human survival. In contrast to potential threat signals 
(e.g., fear), anger and disgust may provoke immediate pain-like behaviors to protect the body when facing an 
actual danger (i.e., fight-flight-or-freeze)4,90,98,99. Negative affective states can thus be described as dispositions to 
action: heightened vigilance and information gathering (e.g., in the context of fear) to the autonomic and motor 
responses to counter/escape threats (e.g., in contexts of anger, disgust, or pain)100. This interpretation supports 
the conception of some authors that emotions are functional states that contextually promote an adaptative set 
of  actions30. Therefore, anger, disgust, and pain are threatening signals that share common facial representations 
when communicated to others.

Some facial movements were found to be more specifically associated with pain and were not modulated 
by the different affective contexts (i.e., AUs 6–7-43/45 and AU 12). The tightening of the orbital region muscles 
with eyes closing (i.e., AUs 6–7-43/45) was more intense for Pain scenarios than other scenarios on the VAs. This 
facial movement was identified as a distinctive feature of the stereotypical facial configuration of  anger24, and 
as the AUs most frequently observed in different clusters of pain  expressions101. It also has been linked with the 
sensory component (i.e., the intensity) of pain, which can be distinguished from the affective component (i.e., 
the unpleasantness) of  pain21. Roy et al.22 found in their study that an optimized simulation model relies on the 
information of the eyes (inferior part of the orbicularis) to recognize pain from other emotions. The tightening 
of the orbital region muscles with eyes closing could thus inform about the sensory component of pain that is 
not shared with emotions. Furthermore, the lip corner pulling (i.e., AU 12), which is traditionally associated 
with smiling and positive affective states (e.g., Ref.102), was surprisingly found to be more intense on participants’ 
faces for Pain scenarios than other scenarios. Smiles may reflect discomfort in performing the task of expressing 
pain. They have also been observed repeatedly in experimental and clinical pain  studies103. Kunz et al.103 suggest 
that rules of social display strongly modulate the expression of pain and that smiling during pain could aim to 
create a social bond with the observer to ensure support in the event of need. However, given the absence of 
the lip corner pulling on the VAs to represent pain, there is potentially an incongruent expectation of no smiles 
during painful events. This finding highlights the need to investigate the (potentially negative) impact of smiling 
during pain on observers in future studies.

Differences were found between the representation of facial configurations on the VAs and the participants’ 
faces. In addition to the specificity of certain facial movements for pain, the results show that, on the VAs, anger 
amplifies the furrowing of the brows (i.e., AU 4) and the nose wrinkling and upper lip raising (i.e., AUs 9–10), 
and disgust reduce the intensity of the facial movements associated with pain. The amplification effect of anger 
on facial movements associated with the affective component of pain is relevant to the prevalent theory about 
the effect of emotions on pain experience (i.e., motivational priming theory). This theory proposes amplifica-
tion of pain experience by negative emotions with low-to-moderate levels of arousal but pain inhibition by high 
arousal negative  emotions3. However, this theory cannot explain the reducing effect of disgust, which may instead 
reflect the context-dependent perception of affective states. For example, another affective state, such as amuse-
ment, could have been perceived from Disgust-Pain scenarios and have contributed to diminishing the effect of 
disgust on facial movements associated with pain. In a previous  study104, participants watched amateur videos 
representing humorous lapses (to induce pure amusement), ambiguous bloopers (to induce mixed amusement 
and disgust), or accidents (to induce pure disgust). During these videos, electromyographic data was collected 
on the corrugator supercilii muscle regions (i.e., causing the furrowing of the brows, AU 4). The research team 
found that the corrugator activity was the most intense during disgusting films, followed by mixed films, and 
then amusing ones that were no different from the baseline. The amusing effect that could have emerged from 
Disgust-Pain scenarios representing ambiguous blooper situations (e.g., seeing someone with “brain freeze” 
symptoms while eating ice cream) might have influenced the results. Finally, chin raising (i.e., AU 17), rather than 
lip corner depressing (i.e., AU 15) found on the VAs, was found to be more intense on posed facial configurations 
for Sadness-Pain scenarios than in other scenarios. This finding is consistent with the results of Gosselin et al.55. 
In their study, participants frequently activated the chin raiser when the lip corner depressor was the target facial 
movement they had to voluntarily imitate.

In general, more disparities between facial configurations of affective states were found on the VAs than on 
the participants’ faces in the current study. The design of the interactive VAs application (Expressive EEVEE) had 
some facial movements integrated into the same slider to ease manipulation (e.g., upper lid raising, AU 5, and 
tightening of the orbital region muscles with eyes closing, AUs 6–7-43/45). This clustering might have accentu-
ated the differences between affective states on the VAs (e.g., Fear-Pain vs. Pain). Despite this effect with the VAs, 
the sensorimotor representation measured through the participants’ faces was found to be not very intense and 
with small differences between affective states.

This distinction in visual and sensorimotor representations may reflect differences identified between posed 
and spontaneous facial configurations of pain. Posed facial configurations of pain (also called exaggerated expres-
sions) appear to be dramatized or can represent an intensified version of spontaneous expressions (also called 
genuine expressions)105. However, observers tend to perceive these posed facial configurations as realistic and 
more painful than spontaneous  ones106. As a result, posed facial configuration could reflect a more congruent 
manifestation of the shared visual representation than spontaneous configurations, thus promoting the accuracy 
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of pain communication. The differences between visual and sensorimotor representations should be the topic of 
further study to determine the accuracy of pain communication between an expressor and a perceiver.

The differences in facial movements found on the VAs and the participants’ faces in the current study also 
support the idea that affective states are communicated through facial configurations by distinct (yet interrelated) 
mechanisms. In the study of Le Mau et al.107, images of actors portraying posed facial configurations elicited 
from short scenarios were classified using an unsupervised clustering approach based on the emotions perceived 
in these scenarios. The authors found that the classification of the actors’ facial poses differed from the typical 
facial configurations of emotion. Even when displayed deliberately by affective encoding experts (i.e., actors) 
under controlled conditions (i.e., reading scenarios in a photo studio), stereotypical facial behaviors could not 
be inferred. Furthermore, the recognition of a category of emotion from a facial configuration has been linked 
to the individual’s visual representation of this category, which is subject to variations between individuals 
(e.g., Refs.12,13,56,57). Therefore, studying the variability of internal representations (e.g., visual, or sensorimo-
tor) could shed light on the variability observed in encoding and decoding processes between people as well as 
between situations.

The SHAP analysis reveals that the classification of imitated and posed facial configurations could be achieved 
primarily based on the tightening of the orbital region muscles with eyes closing (i.e., AUs 6–7-43/45), the nose 
wrinkling and upper lip raising (i.e., AUs 9–10), and the lip corner pulling (i.e., AU 12). As predicted, these 
facial movements are easier to imitate voluntarily for the participants than other  AUs55. Moreover, the intensity 
of facial movements was higher on imitated than posed facial configurations. These results suggest that concep-
tual information about affective states from reading scenarios elicits more intense facial movements than visual 
information about the facial configurations from observing expressive VAs. This possible interpretation is in 
accord with the findings of Le Mau et al.107, showing greater importance of emotional information from sce-
narios than the observation of facial movements alone to perceive the affective state of others. In a meta-analysis 
comparing the effect sizes of various affect induction  procedures108, the reading of a story (δ = 1.80) has also a 
stronger effect size than the manipulation of the face (δ = 0.73). Therefore, conceptual information about the 
affective state is better than visual information about the facial configuration at inducing a certain affective state 
and facilitating its expression. This observation suggests that the presentation of facial configurations without 
further information on the context may not be sufficient to trigger some affect-related abilities, which could be 
relevant in certain clinical settings (e.g., social deficits in autism spectrum disorders).

Some limitations restrain the generalization of the results. The data was collected from a relatively small and 
homogenous sample of participants from a Canadian university that does not reflect all the culturally various 
ways to represent affective states through the face (e.g., Ref.109). This study offers an innovative empirical method 
that could be applied to questions regarding potential cultural and ethnic differences. Using an automated rec-
ognition algorithm of facial movements instead of manual coding could also be perceived as a limitation. The 
performance of automated algorithms in detecting AUs is not the same as the manual FACS coding (biserial 
correlation value of ± 0.80). Some AUs are better detected by these algorithms (e.g., AUs 2, 9, 17, and 25–26) than 
others (e.g., AUs 7, 20, and 23)110. The results from the direct comparison between representations on the VAs 
and the participants’ faces should be generalized with caution because the application of interactive VAs (Expres-
sive EEVEE) was not developed around the same AUs intensity detection algorithm used on the participants’ 
faces (OpenFace) but rather on the expertise in FACS coding of a 3D  animator50. The design of the sliders in the 
application and the fixed number of AUs included in this study should also be considered a limitation. Only facial 
movements frequently associated with pain and certain negative emotions were selected in the development of 
the application and from the detection algorithm. Consequently, all possible combinations of AUs could not be 
measured. Moreover, dynamic characteristics of facial movements could not be analyzed in this study, as little 
information is yet available in the literature on the dynamic characteristics of individual AUs to be integrated into 
virtual agents. Future studies should focus on these characteristics (e.g., by integrating the dynamic parameters 
of various facial movements into an interactive application of virtual agents).

In conclusion, this study highlights the complex relationships between pain and emotions when these states 
are communicated through the face. Contrary to what one might expect, the combined affective states of pain and 
emotions do not result in a simple addition of the two stereotypical facial configurations. Affective states related 
to a direct threat to the body (i.e., anger, disgust, and pain) share a similar facial representation, while those that 
present no immediate danger (i.e., fear and sadness) differ. Although visual and sensorimotor representations 
emerging from these states provide congruent affective information, they are differently influenced by factors 
associated with the communication cycle (e.g., the type of information to induce affective states and the role of 
context in encoding and decoding affective states). These findings stress the need to update current models of 
nonverbal communication of pain to include the other affective states and the different mechanisms (i.e., visual, 
sensorimotor, and conceptual) of the facial configurations that support social interactions.

The theoretical advances in pain communication could benefit some applied research domains, such as affec-
tive computing. For instance, machine learning models targeting the automatic detection of pain by the face 
should not only include the facial movements associated with pain but incorporate all the variety of nonverbal 
behaviors and contextual elements that convey affective content, including facial movements associated with 
other negative affective states. In doing so, the dynamic, multimodal, and multiplex nature of affective commu-
nication would be better integrated with the machine learning models. In the not-so-distant future, where some 
human-agent interactions will be more frequent and driven by artificial intelligence (e.g., for various applications 
in education and healthcare), detecting and simulating facial configurations perceived as pain will be an essential 
research focus that will benefit from including combined affective states. A clinically relevant research idea in 
the field of affective computing is the development of interactive virtual agents that could be used to dynamically 
and precisely measure the affective experience of non-communicative patients such as young children and older 
adults suffering from cognitive impairment (such as a “visually-interactive” Faces Pain  Scale111).
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Subsequent studies must address some unanswered questions regarding the distinct processes involved in 
communicating the combined affective states of pain and emotions to progress toward these future applications. 
For instance: Can two affective states be temporally overlapped on an expresser’s face (i.e., encoding process)? 
Which visual cues are associated with an observer’s detection of a combined affective state (i.e., decoding pro-
cess)? What are the similarities and differences between visual, sensorimotor, and conceptual representations of 
affective states through facial configurations? The accumulation of data on affective communication in multiple 
contexts, by mobile neurophysiological sensors, for example, will surely benefit our understanding of complex 
affective states and their validity when communicated  nonverbally7. As Gilam et al.  proposed1, the promising 
future of research on pain and emotions depends on bridging theoretical views and academic disciplines. With 
this in mind, this project aims to be part of the foundation of this innovative and exciting evolution in affective 
sciences.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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