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Robust digital‑twin airspace 
discretization and trajectory 
optimization for autonomous 
unmanned aerial vehicles
Mo ElSayed * & Moataz Mohamed 

The infiltration of heterogenous fleets of autonomous Unmanned Aerial Vehicles (UAVs) in smart 
cities is leading to the consumerization of city air space which includes infrastructure creation of 
roads, traffic design, capacity estimation, and trajectory optimization. This study proposes a novel 
autonomous Advanced Aerial Mobility (AAM) logistical system for high density city centers. First, 
we propose a real‑time 3D geospatial mining framework for LiDAR data to create a dynamically 
updated digital twin model. This enables the identification of viable airspace volumes in densely 
populated 3D environments based on the airspace policy/regulations. Second, we propose a robust 
city airspace dynamic 4D discretization method (Skyroutes) for autonomous UAVs to incorporate the 
underlying real‑time constraints coupled with externalities, legal, and optimal UAV operation based 
on kinematics. An hourly trip generation model was applied to create 1138 trips in two scenarios 
comparing the cartesian discretization to our proposed algorithm. The results show that the AAM 
enables a precise airspace capacity/cost estimation, due to its detailed 3D generation capabilities. 
The AAM increased the airspace capacity by up to 10%, the generated UAV trajectories are 50% more 
energy efficient, and significantly safer.

Keywords Autonomous UAV logistics, Resilient transportation infrastructure, Energy-efficient trajectory 
optimization, Aerial mobility operation model, Drones, Digital twin models

List of symbols
O  Set of solid obstacles in LiDAR data
∂O  Solid boundaries of obstacle
χO  Indicator function of O
−→
N ∂O(u)  Inward surface vector normal at point u
F̃
(
f0
)
  Gaussian smoothing filter

S  Oriented batch matrix points
P̂  Surface Patch at point s
�V   Vector field
∇  Vector Divergance operator
ϐ  Octree notation
Fo  Associated node function at o
�V(q)  Gradient field indicator function
Ω(s)  Octa closest depth nodes
αo,s  Trilinear interpolation weights
δo  Flight policy buffer distance (minimum clearance)
υ̂  Polygon center projection
υ′  Polygon surface sample
wmin  Minimum point on polygon
O  Minimum normal vector to the tangent polygon plane
b̂  Mesh base point
Ꞙ  UAV viable airspace volume
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Q  Rotation matrix
ωi  Weighing variable
�T  3 × 1 Translation vector
N  Matrix of B-spline basis functions
P  Matrix of curvature degrees
g  Acceleration due to gravity
βmin  Minimum flight altitude
βmax  Maximum flight altitude
FUB  Urban block airspace
FHDR  High density routes airspace
⌣

S  Polygon segment
qobs  Obstacle geometrical center
D(q)  Lane disruption function
Bobs  Effective matrix of obstacles
ṽ   Initial lane vector flight velocity
v  Traversing UAV velocity
M  Model mesh
δV  Lane proximity for vertical policy parameter
u  Solid boundary points u ∈ ∂O
s  Matrix points s ∈ S
f  Field points
o  Octree nodes o ∈ ϐ
e  Mesh polygons counter
h  Polygon vertices counter h ∈ w
k̂  Total number of trajectory vertices
î   Trajectory vertices counter
q  Trajectory vertices
γ  Total number of lanes
k  Destination section counter
v  Angular velocity
θ̇  Angle time derivative
τ  Torque
Cτ  Constant of torque
I  Electric current input
V  Rotor voltage feed
R  Coil resistance
Cp  Proportionality constant
P  Power consumption
Th  Rotor thrust
vL  Loft velocity
ρair  Density of air
a  Area covered by each rotor
C  Overall constant
v̇  Angular velocity vector
In  Inertia
Fd  Drag force
m  Mass
σf   Horizontal flight angle in roll axis
ρref   Reference lane curvature
dl  Target lane change longitudinal distance
ẋmax  Maximum UAV lateral acceleration
δH  Lane proximity for horizontal policy
p (q)  Perpendicular vector to the UAV path
t (q)  Tangential vector to the UAV trajectory
MA  Matrix of rotation within both body and inertial frames
ф, θ, ψ  Pitch, Roll, and Yaw angles

According to the United Nations, the world population is expected to reach 10.1 billion by 2100, cities are grow-
ing exponentially across the  globe1. Given the limited space and resources, the concept of a smart city emerged, 
which is designed for the optimum usage of space and supplies along with an efficient distribution of resources. 
Smart cities are, by default, designed to achieve resilient communities that maximize the integration between 
humans and  robotics2. Accordingly, the use of autonomous systems is considered a dire need to enable cities’ 
resilience and to cope with the economic, social, and environmental disruptions arising from expansions and 
increased population density. This has been highlighted recently with novel corona virus (COVID-19) pandemic, 
which necessitated quarantining and city lockdowns worldwide.

Autonomous systems’ integration in cities is featured in several applications such as robotic manufacturing, 
robotic construction, and autonomous transportation systems. Unmanned Aerial Vehicles or System (UAVs or 
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UAS) or ‘drones’ are utilized in a variety of civil and military tasks such as cargo transport, emergency manage-
ment, and search and rescue  missions3,4.

This technological transformation is often equated to the paradigm shift created in automobiles by Henry 
Ford in the early twentieth century. In other words, the creation of roads, traffic design, and planning can be 
applicable to the consumerization of city air space. While UAV applications are relatively easier in rural areas, 
however, several challenges arise with the anticipated proliferation of heterogenous UAV fleets in low-altitude 
airspace of dense urban areas given characteristics of cities and the definition of relevant decision  variables5. 
These challenges can be bundled according to the elements of the autonomous UAV system, the UAV itself, and 
the city airspace as the hosting infrastructure.

As it relates to the UAV, and to maintain the overall weight of the UAV, a trade-off is inevitable between the 
on-board power source, processing unit, and sensors essential for autonomy, and the transported payload limits 
and/or the flight range. This trade-off decreases the practicality of the whole independent UAV  system6. Signifi-
cant advancements in UAV technologies promise an increased energy efficiency, lighter airframes, and improved 
power-to-weight ratio for DC motors. However, these improvements are not expected to reflect substantially 
on the existing performance in the near  future7,8. Therefore, research has depended on developing routing algo-
rithms or trajectory planning and optimization heuristics to tackle current UAV  limitations9. Most relevant to 
low altitude airspace management (LAAM) applications is a UAV Routing and Trajectory Optimization Problem 
(RTOP), where a fleet of UAVs visits a set of waypoints (missions) assuming UAV kinematics (position, velocity, 
and acceleration), and dynamic (forces and moments) constraints. This represents half of the solution, since it 
depends on the presence of a viable discretized airspace that respects all other constraints.

Considering city airspace challenges, different variables exist. First, massive fleets of UAVs operating in highly 
dense cities raises serious safety issues as huge damage can be sustained to pedestrians and public or private 
property. This damage can be caused by the crashing of a UAV due to a technical malfunction or mid-air colli-
sions due to airspace interference and  congestion10–12. Second, UAV onboard communication and GPS navigation 
modules are vulnerable to security breaches due to the unencrypted nature, which makes it easily  spoofed13,14. 
Third, given their data collection abilities, sensors, and high-precision onboard cameras, UAVs can be perceived 
as remotely controlled surveillance  equipment15 as they can be hacked to collect personal data or track individu-
als using wireless localization techniques. Fourth, the proximity to public operation causes pedestrians to feel 
uncomfortable or dwellers to feel that their privacy is being  invaded3.

Given these challenges and the traditional concepts of city security, liability, and aviation airspace regulations, 
the need to regulate UAV operation pushed international, federal, and local governments to navigate unchartered 
territories, with boundaries of civil regulatory authority over UAVs ill-defined12,16. Currently, several countries 
have imposed UAV operational restrictions based on proximity to population and man-made structures. While 
these regulations alone can control leisure UAV use, however, heterogenous fleet operation with projections of 
massive volumes of UAVs is too large for the current Air Traffic Control structure to  handle17,18.

Reacting to that, two types of research exist, one group focusing on enabling safe urban airspace operation 
through geofencing and airspace discretization or air traffic control. The other group works on developing rout-
ing algorithms or path/trajectory planning heuristics for conventional cartesian airspace. While some of the 
previous research consider some of the aforementioned challenges/parameters, others fall short in providing 
comprehensive applicable frameworks/solutions3,4. The adoption of UAVs in autonomous transportation within 
smart cities hinges on the development of a full city aerial-infrastructure framework for operation (airspace 
discretization and geofencing), navigation (trajectory planning), and traffic control of swarms of UAVs running 
on robotic operation systems (ROS)19. This framework must consider all challenges raised by previous studies 
across all parameters before proceeding into a real-life execution phase.

In this respect, the present study develops a novel autonomous Advanced Aerial Mobility (AAM) system for 
high density city centers. The AAM system integrates a digital-twin city-airspace discretization, planning, and 
trajectory optimization algorithm for heterogeneous UAV fleets.

To the authors’ knowledge, this is the first study to integrate live, updated, precise digital models with airspace 
planning for exterior complex urban environments. An extensive review of the most recently developed meth-
odologies integrating GPS data and LADAR for UAV pose estimation and trajectory is provided by  Vaidis20, and 
the latest LiDAR 3D processing techniques by Wang et al.21. This also is the first study addressing the intertwined 
city airspace regulatory challenges and the multiple parameters for efficient UAV operation within digital-twin 
models. The primary aim of this study is to develop a novel comprehensive algorithm that allows autonomous 
AAM operation within civil airspace. The model depends on dynamically updated real-time LiDAR data to simu-
late the actual civil airspace and converge energy-efficient pre-planned obstacle-avoiding trajectories instead of 
active path planning for each UAV. The proposed system solves airspace planning and UAV control/navigation 
challenges, accommodating variable UAV sizes, types, and speeds. Furthermore, ensuring abidance to respective 
airspace regulations and maximizing capacity.

To achieve this aim, the present study,

1. Develops a real-time 3D geospatial mining framework for geo-referenced allocation of trips and UAV task 
assignment based on LiDAR data to create a digital twin model.

2. Proposes a novel city airspace dynamic 4D discretization method (Skyroutes) for UAVs based on legal 
regulations incorporating real-time constraints coupled with external factors. The discretization converges 
a network of keep-in lanes allocated outside the keep-out geofence (dual geofencing).

3. Utilizes a flexible energy use model for multi-rotor UAVs based on the kinematics and dynamic operational 
capabilities and calibrated to measurements from representative experimental UAV  flights22.
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4. Develops a dynamic trajectory optimization method tailored for the proposed discretization method coupled 
with a novel 3D lane-change and compare the solutions’ efficiency to the existing algorithms in the literature.

5. The developed models are applied to a real-world case study to computationally simulate UAV transportation 
operations delivery applications.

In this study, after presenting the airspace discretization model, we formally define the UAV routing and 
trajectory optimization based on quadcopter kinematics and dynamics. We utilize Newton–Euler derived dif-
ferential equations to simulate the operation of UAV brushless DC rotors. Thereafter, we utilize a complementing 
simplified real-time Dynamic Programming (DP) arc-routing method to determine minimum Snap and energy 
trajectory for a fleet of UAVs visiting a set of arcs between origin locations and destinations. In this respect, the 
presented study provides an original contribution to the AAM challenge.

After this introduction, a literature review focusing primarily on different approaches to UAV-city-integration 
through civil air-space discretization and UAV trajectory planning research is presented in “Literature review”. 
“Methods” introduces the study methodology, while “City digital twin model” and “Airspace discretization 
model description” include the Digital-twin model and the proposed urban airspace discretization derivation 
model respectively. The modified energy-optimal trajectory planning and UAV task assignment framework are 
detailed in “Trip generation, Cartesian routing, and UAV energy consumption”. “Case study, results, and discus-
sion” reports on the case study, the results, and the discussion, while conclusions are presented in “Conclusions 
and future studies”.

Literature review
Currently, UAVs’ operation is limited below flying altitude of commercial aircraft to avoid collision potential. 
Globally, this can be generally defined as zero to 150 m over ground  level23. Although autonomous UAV mission 
control can be performed onboard with the reliance on sensors, GPS, and computation. However, in proximity 
to buildings and in case of severe weather conditions, UAVs are prone to loss of GPS signal or sensor failure 
jeopardizing the efficiency and stability of the entire  network24,25. Hence, off-board preloaded mission planning 
maximizes safety, utility, reliability, and mitigates the need for onboard multiple sensors saving weight for pay-
load and decreasing costs. Autonomous operation within densely built-up areas could interfere with  UAVs26.

In response to that, earlier research on LAAM recommended the development of a unified urban airspace 
system or ‘urban air mobility,’ to manage the safe operation of UAVs within low-altitude civilian airspace. For 
instance, in 2006, the International Civil Aviation Organization (ICAO) declared the need for international 
harmonized terms and principles to guide the civil use of  UAVs27. Later in 2020, the term Advanced Aerial 
Mobility (AAM) was coined by NASA denoting the ecosystem incubating the emergence of these disruptive 
technologies in both urban and rural  contexts28. The published report outlines a vision for the city airspace and 
air traffic management environment.

The main concept is to establish a national framework through a unified infrastructure with levels of com-
plexity for all manned and unmanned aerial vehicles of any size or type to control traffic, separation, and flight 
trajectories. The airspace traffic network is to be based on data sharing and utilized as a nationally controlled 
utility provided for various mobility operators similar to current ground road  networks28. To that end, the eco-
nomic, social, and regulatory success of the system is dependent on addressing some fundamental challenges 
which can be summarized as follows:

• Safety and security: any AAM must ensure the safety of public and private property and users such as collision 
avoidance, limiting extreme proximity and mitigation of street level drivers’ visual distraction. In addition, 
including cybersecurity against communications signal hacking beside other system vulnerabilities in extreme 
weather conditions and disruptive  events29,30.

• Environmental impacts: this entails minimizing or eliminating GHG emissions, noise, and impact on 
 wildlife22.

• Flexibility and resilience: the system’s ability to recover quickly from unexpected events and limit the cascad-
ing impact. Furthermore, the ability of the system to evolve with the emergence of newer UAV technologies, 
software, and operational  concepts31.

• Regulation: develop standardized national policies to govern operation and allow insurance and tax or toll 
collection.

• Social acceptance: being a disruptive technology with a social stigma, experimental real-world operations and 
scenario-based analyses can convince the users that the urban obtrusiveness risk is acceptable, and efficient 
to overcome cost barriers.

To tackle these challenges, over the last decade ample research has aimed to provide solutions or guidelines, 
those can be bundled in two groups according to the targeted study area, airspace planning research and UAV 
navigation and control research.

Urban airspace planning
The concept of airspace planning as explained from the AAM perspective and challenges is new to the research 
 community28. However, a substantial part of this area is commonly researched under the UAV Traffic Manage-
ment (UTM) keyword, where ample literature  exists32,33. With that said, only literature on obstacle-rich lower 
urban airspace is considered in this review rather than obstacle-free higher-altitude airspace.

The most researched concept of separating flyable airspace from obstacles in UTM is known as  Geofencing34. 
Geofence is a virtual perimeter applied statically or dynamically in a real-world application in positive (keep-in) 
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or negative (keep-out). While the keep-in geofence is a 3D volume to maintain, the keep-out is applying volu-
metric restriction to certain extents. With current UAV regulation generally including a minimum distance or 
protection boundary around static objects (e.g., people, buildings, and structures) and altitude  limit23, keep-out 
is the most deployed and researched  methodology35.

Urban airspace planning depends on two factors, namely the quality of the 3D environment model and the 
geofencing technique utilized. The accuracy of estimating a real-time state of UAVs is highly dependent on 
digitally replicating the real-world environment. This relies primarily on the collected surrounding sensor data. 
Literature has mainly depended on 3D GIS, Digital Surface Model (DSM), or Google’s 3D city data for their 
system  simulations36–38. While 3D maps provide viable results, they fall short to include details and dynamic 
changes to the real-world environment. The missing details and changes include transmission towers, utility 
poles, power lines, construction equipment including cranes, and street level vegetation.

The integration of airspace planning and geofencing has been studied under various discretization 
 morphologies37–41. Most comprehensively, Hoekstra et al.36 illustrate all the discretization morphologies (Fig. 1). 
In all morphologies, on‐board avionics implement the preloaded regulation and specific flight plan autonomously, 
and the flight trajectory is governed through the geofence.

Another stream of studies targeting specific challenges exist in the literature. Although they do not provide 
holistic solutions, however, their conclusions and recommendations are exceptionally valuable for building on 
towards the objective of this study. D’Souza et al.42 tested the flight deviation from planned path due to wind 
disturbances. Their study concluded that PID controller stabilization can decrease the minimum lateral distance 
from buildings up to 5 m. Similarly, Johnson et al.43 tested applying several minimum lateral distance alternatives 
on the ability of UAVs to detect and avoid buildings. Their results showed poor detection capabilities with narrow 
urban corridors. Recently, Cho and  Yoon44 compared three scenarios for the case study of Seoul city, namely 
keep-out, keep-in, and dual geofencing. They concluded that keep-in exhibited more robust behavior than the 
keep-out. The study recommended integrating both geofencing methods while applying dynamic parameters 
given the geospatial complexity and flight purposes. More recently, Torija et al.45 compared a series of audio-
visual scenarios for UAV operation in cities to investigate the impacts of UAV noise. They concluded that the 
UAV operations along busy roads might aid in the mitigation of the overall community noise impact.

Overall, the concept of AAM has been mirrored globally in numerous studies with the aim of establishing a 
comprehensive UAV airspace discretization framework. However, most research has focused on the integration 
of one or two challenges rather than addressing all challenges.

Table 1 presents a summary of the most relevant literature outlining the solutions and recommendations for 
each challenge. Although several other studies address the same topic, the following limitations were applied in 
the filtration process. (1) The oversimplification of the problem, which makes the solutions less robust for city-
scale application. (2) Proprietary restrictions that prohibits the open collaboration on developing, integrating, 
and testing the suggested  solutions18. (3) Solutions not targeted for autonomy and beyond visual line-of-sight 
(BVLOS), since solutions for piloted systems are significantly different and not  viable46.

UAV flight navigation and control
Given a fleet of UAVs and a volume of designed urban airspace, the actual navigation and mission control can be 
described as a series of complex mathematical problems. First, the NP-hard UAV Task Assignment (TA) problem 
refers to optimally assigning missions to a set of UAVs based on mission  constraints47. While TA shares similar 
characteristics with Vehicle Routing Problem (VRP), there are a few key  differences48,49. Unlike VRP, TA allows 

(A) Layered 
discretization

(B) Tubed 
discretization

(C) Zonal discretization (D) Full mix 
discretization

Figure 1.  Different airspace discretization  morphologies36. Source: Patrinopoulou et al., 2022.
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multiple stops, heterogeneous fleet operation, and mission subtours. The output for both VRP and TA is a pairing 
between a set of O-Ds, and assigned vehicles along with a set of waypoints.

Second, to connect these waypoints and form a UAV flyable path, the problem is known as Path Planning (PP). 
PP is defined as the process of constructing a geometric path from a starting point to an end point given a 2D or 
3D domain. While PP can include the impact of wind or other constraints, the problem formulation is extensively 
simplified to be solved  heuristically50. In a real-world application, it is imperative to couple the generated path 
with UAV constraints, kinematics, and  dynamics51. In this respect, the integration of kinematics and dynamics 
with routing is known as optimal motion (trajectory) planning or Trajectory Optimization (TO). Closely related 
to the Optimal Control (OC) problem, TO leverages motion equations to model the spatiotemporal changes 
of the UAV system while minimizing a scalar performance index such as flight time or fuel  consumption52. A 
detailed literature review of the research focused on these problems can be found in the  literature19. They con-
clude that on one hand, the UAV routing and task assignment literatures have mostly neglected complex UAV 
constraints. On the other hand, TO research has fallen short in integrating other noise and safety challenges.

Research about integrated routing and trajectory optimization is  scarce19, however, there are ample studies 
discussing different methods for UAV navigation and mission control. Literature can be classified based on meth-
odology into three major groups. (1) Mixed-Integer Linear Programming and exact algorithms (such as branch 
and bound or Euclidean minimum spanning tree), where an optimal solution is guaranteed; (2) Metaheuristics 
such as Evolutionary algorithms, Particle Swarm Optimization, and Ant Colony, where a solution is not guar-
anteed; (3) Heuristics that includes merging different heuristics or special cases of algorithms such as hybrid 
Tabu Search-Simulated  Annealing53. Several other methods are presented in the literature without belonging to 
a specific group. To focus on relevant literature, we only present in Table 2 studies that can perform combined 
routing and trajectory optimization independent of urban airspace planning. Therefore, obstacle avoidance (static 
or dynamic) and 3D environment operation are imperative  capabilities54.

To that end, while limitations of case-by-case studies in the literature can be addressed, all routing and tra-
jectory optimization methods presented utilize a cartesian discretization rather than incorporating a discrete 
airspace planning and discretization component leading to a full-mix airspace concept. In this concept, airspace 
is unstructured and UAV traffic is fully dependant on onboard sensing, self‐regulation, and obstacle avoidance 
under stochastic conditions. Although the full-mix airspace concept allows for maximum speed and freedom, 
given heterogenous fleet operation, it severely limits the energy efficiency, airspace capacity, as well as jeopard-
izing system‐wide safety. Hence, a full-mix concept fails to address the aforementioned AAM  challenges22.

The innovation in this study diverges from existing work primarily through its dynamic 4D discretization 
method known as “Skyroutes” , which contrasts with traditional Cartesian discretization methods. In lieu of 
Table 2, Skyroutes is designed to be open-source and incorporate real-time constraints along with legal and 
optimal UAV operation considerations based on kinematics. This allows accounting for wind consideration. 
Furthermore, the simplified computational burden allows for real-time applicability to a heterogeneous fleet/
swarm operation. Prior relevant studies have relied on 3D GIS Digital Surface  Models63–65 or similar data sources 
for system  simulations60–62, which, while effective, do not account for dynamic changes to the real-world environ-
ment and often lack the details necessary for accurate urban airspace planning.

Integrating real-time, high-resolution digital twins in the proposed AAM system represents a significant 
advancement in urban airspace management, providing a more accurate and dynamic method for airspace 
capacity estimation and UAV trajectory optimization. This system not only improves upon the limitations of 
existing approaches with its detailed and adaptive modeling but also demonstrates the potential for increased 
airspace capacity and safety in urban environments. The novel Skyroutes discretization method, in particular, 
represents a key differentiation from traditional methods, offering a more efficient and flexible solution for 
airspace management in densely populated urban settings. The proposed system is not a stand-alone platform. 
However, it could be applied within a platform similar to the European U-Space66.

Table 1.  Urban airspace planning literature.

Project Safety and security Environmental impacts Flexibility and resilience Regulation Social acceptance

Metropolis  project36

Full mix, layered, zonal, and 
tubed Optimal route geometry Flow management, separa-

tion, and conflict avoidance
Considers only average 
regulation strictness

Presenting alternative 
scenarios

Limited static airspace planning in two models. Exclusive limitation of operation within obstacle-free airspace decreases mission range for smaller 
UAVs and increases mission time for emergency application

Singapore’s TM-UAS37,38

Full mix (AirMatrix), over 
buildings, and over roads N/A Flight and risk management Varying degrees of regula-

tion
Presenting alternative 
scenarios

Limited static waypoint concept. Limited route optimization and flexibility with UAV types and sizes given only constant speed or random speed 
optimization limitation in traffic control

Australia’s Smart Skies 
 project39

Automated separation man-
agement system N/A Sense-and-Act Systems Local current regulation N/A

Limited model details. Limited route planning and optimization capabilities through the developed Mobile Aircraft Tracking System (MATS)

NASA  UTM40,41
Collision avoidance N/A Contingency management 

and re-routing FAA regulation Public safety illustration

Limited multi-modal airspace discretization and modification
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Methods
The study proposes a novel three-step sequential methodological approach (Fig. 2). Each step is detailed in the 
following sub-sections. In the first process, a digital-twin for the simulated case study is built and actively updated 
for real-time changes and disruptions.

Subsequently, the system obtains two streams of input for a set of variables through an online connection. 
The first stream of input relates to mission planning while the second stream relates to the area-specific flight 
regulations adopted. Using a keep-out geofence, all geometry is interpreted into physical obstacles. The second 
process starts by sorting the heterogenous input UAV and applying our proposed novel Skyroutes algorithm 
to produce a discretized airspace. This triggers the third process for task assignment, routing, and trajectory 
optimization. The fourth process is the final system output including the maximum airspace capacity. At the 
end of the procedure, the framework visualizes the UAV trajectories and provides the trajectories. An active 
loop is initiated between the UAV proportional–integral–derivative (PID) controller to correct the trajectory 
navigation as the operation progresses.

City digital twin model
Detailed spatial information infrastructure crucial for the AAM system, however, it should be lightweight enough 
for the Ground Control System (GCS) and Central Control System (CCS) to handle in real-time. Given the num-
ber of details in urban environments and spatial approximation of object-based 3D information pose significant 
challenges on computational power and time. In this study we only require a level of tolerance < 1 m excluding 
take-off and landing, which is a function of onboard sensors and under slow flight speeds.

The city is divided into small bands using a 3D clustering method proposed by Youn et al.67 to maintain 
the memory consumption and computational power within viable limits. Their UAV 3D clustering proposes 
a 20-level grid division. Having equal division possess two challenges, first, the obstacle details are not equal 
comparing urban to rural contexts, which leads to computing memory unbalance. Second, the synchronization 
between this independent classification versus existing addressing and GPS positioning system adds a layer of 
computationally demanding processing. We modify their clustering system via 3-digit postal code classification 
to ease the geo-referencing with existing census population density for trip generation (Fig. 3). Further explana-
tion of this partitioning scheme is beyond the scope of this study.

For each selected airspace planning zone, first, DSM is imported and overlaid to the OpenStreetMap (OSM)68 
which acts as the base map that includes the vector data for precision 3D GIS alignment. The GIS map includes 
most data layers such as streets, zones, functions, and property outlines. Second, to Incorporate vertical building 
façade details (windows and balconies), municipal open-data environment is imported, scaled, and georeferenced 
in the simulation model. Finally, most recent real-life LiDAR data is merged in the model for interpolation and 
updates to make sure the digital-twin model can truly reflect the reality once UAVs are deployed in a large scale.

Since LiDAR data are characterized by noisy patterns due to errors and the complexity of surfaces, these 
datasets require further processing to be usable for discretization. A variety of 3D extraction algorithms is 
discussed in the  literature21. For the purpose of airspace planning and navigation for UAVs, there is no need for 

Table 2.  Relevant UAV 3D routing and trajectory optimization literature.

Method/author(s) Method Application Simulation/experimental verification

Trajectory optimization of multiple quad-
rotor UAVs in collaborative assembling  task55

Genetic algorithm Uncapacitated Multi UAV trajectory opti-
mization Simulation

No real time applicability for heterogeneous fleet/swarm operation. No wind consideration

3D off-line path planning for aerial vehicle 
using distance transform  technique56

Multi criteria decision analysis Off-line path planning Simulation

No real time applicability for heterogeneous fleet/swarm operation. Limited UAV dynamics accountability and lacking wind considera-
tion

A heuristic mission planning algorithm for 
heterogeneous tasks with heterogeneous 
 UAVs57

Heuristic algorithm Mission planning for heterogeneous tasks Simulation

No real time applicability and wind consideration. Limited UAV dynamics accountability

3D multi-constraint route planning for UAV 
low-altitude penetration based on multi-
agent genetic  algorithm58

Genetic algorithm Mission multi-constraint route planning Simulation

No real time applicability for heterogeneous fleet/swarm operation. Limited UAV dynamics accountability and lacking wind considera-
tion

Distributed pseudolinear estimation and 
UAV path optimization for 3D target 
 tracking59

Gradient-descent algorithm UAV path optimization for 3D target track-
ing Simulation

No real time applicability for heterogeneous fleet/swarm operation and wind consideration

Online path planning for UAV using an 
improved differential evolution  algorithm60

Differential Evolution Algorithm Online path planning for UAV Simulation

No real time applicability and wind consideration. Limited UAV dynamics accountability

Trajectory planning for unmanned aerial 
vehicles in complicated urban environments: 
A control network  approach61

control network and Dubins curve Algo-
rithm Two-stage control network approach Simulation

No applicability for huge-scale cities, the control network could contain billions of links and it may cause the path-finding problem 
computationally burdensome/over-simplification of the city model

3D path planning and real-time collision 
resolution of multirotor drone operations in 
complex urban low-altitude  airspace62

3D voxel jump and Markov decision process Autonomous drone collision-free path 
planning Simulation

Originated from the classical 2D grid map JPS method considers only diagonal or straight directions/over-simplification of the city 
model
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distinction between urban elements such as buildings and trees., (i.e., the objective is to avoid all obstacles). In 
this study, we modify a Freeform objects reconstruction algorithm via Poisson method proposed by Kazhdan 
et al.69 instead of a topographical or building extraction algorithm. The Poisson method is widely popular due to 
its scalability and efficiency where it can reconstruct freeform objects fast and with reasonable  accuracy21. The 
solution Eqs. (1–4) are outlined in the appendix as they are auxiliary to the research question.

At this point, we have attained realistic iso-surfaces to construct a mesh of the existing real-world city envi-
ronment. However, to comply with regulations, the horizontal distance or protection boundary around objects 

Figure 2.  The developed methodology.
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must be added to the obstacles model. Therefore, the model is shifted by a distance δo to offset obstacle meshes 
outward according to the applicable flight regulative distance. This is a direct application of the mathematical 
problem known as constant-distance offset (CDO) or specifically Minkowski sums for 3D geometries. Since the 
dataset contains complex non-convex polygons, we overcome this by utilizing a modified 3D scaling algorithm 
to shift each boundary representation (Brep)/ mesh face with the exact policy enforced distance. The Minkowski 
sum of two geometry sets A and B is defined as A⊕ B = {a+ b|a ∈ A, b ∈ B} . If we take A to be the arbitrary 
input mesh and B a sphere of the given radius equal to policy-driven value δo centered at the origin, then an 
offset surface is defined as the boundary of their Minkowski sum. Detailed mathematical formulation for solid 
offsetting can be found in the work of Rossignac and  Requicha70.

Given the city’s complex highly detailed polygonal mesh, each obstacle boundary O with Brep/mesh faces 
interpolates polygons 

∫ e
opo = (x, y, z) = [(x1, y1, z1 ), ( x1, y1, z1 ), …, ( xw , yw , zw)]. The new shifted faces are pre-

scribed by set of vertices, υ’’ = (x′′, y′′, z′′ ). However, the new offset boundaries’ sum can include parts of spheres, 
cylinders, and prisms corresponding to vertices, edges, and faces of the mesh, respectively. To have closed Brep 
suitable for Boolean operations, the union of these different elements is essential. For the octree with depth ϐ 
De, the octree root cell is initialized as the bounding box of the offset surface.

To optimize memory for this model size, we further discretize these bounding boxes into smaller voxels that 
are merged into a unified surface later. The voxel layer is divided into overlapping tiles to ensure a tight surface. 
For a maximum octree refinement ( κ ) and a grid of tiles (grid), the voxel grid is ((2κ − 1)grid + 1)3 . To eliminate 
invalid self-intersecting geometries in tight urban canyons Fig. 3a, we use a filtration condition where the invalid 
surface polygons are removed when they do not have a neighbor polygon with δo ≤ minimum offset distance. 
Remaining polygons are processed utilizing a modified Dual Contouring  Algorithm71,72. The modified method 
is adjusted for model processing to optimize computational power and eliminate noise. In Rhinoceros modelling 
the obstacle boundary O for each polygon e , the minimum normal vector to the tangent polygon plane O , center 
projection υ̂ , and the surface sample projection υ̂′ are given by:

where δmin is the minimum offset distance; wmin is the minimum offset distance point on polygon.

(1)O
T
= O

T
wmin + δo − δmin

(2)υ̂′ = υ̂ + O(O
T
(wmin − υ̂)+ δo − δmin)

Figure 3.  Overlay of 3D data sourcing, Blue (municipal), Green (postal), Black (lidar).
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To guarantee the generated cells lie on the surface, a smoothing mesh function is utilized. For the final gen-
erated offset mesh M, a relaxation force pulls every vertex υh in the mesh vertices towards υ′ while offset force 
pulls υ towards υ ′′ as follows:

where b̂ is the base point on mesh M with the minimum distance to υh . This mesh relaxation techniques allow 
the inclusion of tight urban geometries, which could significantly impact the airspace capacity. Furthermore, 
it allows a better applicability for other keep-in geofences that we are not using in the study such as the shape 
method by Edelsbrunner et al.73.

The smoothed mesh helps with the adoption of a novel dynamic meshing technique similar to CFD in 
buildings  simulations74. The dynamic mesh accommodates and changes according to the model space, in self-
intersecting geometries Fig. 4a or around obstacles, the mesh gets stricter (i.e., the spacing between graph verti-
ces gets smaller) and vice versa in wider or obstacle-free areas where the mesh spacing gets wider as illustrated 
in Fig. 4b,c. This cartesian meshing will be explained in “Trip generation, cartesian routing, and UAV energy 
consumption” for graph-based solvers.

To proceed with airspace planning, we create a virtual box with the bottom as the 3D model ground surface, 
side boundaries taken from the simulated city patch and the top is constructed at the maximum flight altitude 
(βmax) given from the simulated policy. A Boolean subtraction process subtracts the entire 3D model with an 
offset value of the minimum horizontal distance from property as the δo offset value from the airspace boundary 
virtual box. The resultant volume (Ꞙ) is the UAV motion viable airspace.

To keep the Digital-Twin updated, loop 1 is performed within a predetermined time-step to input the updated 
LiDAR data with any significant changes that might cause disruption. Data is processed in (1–8); thereafter, the 
airspace discretization model is updated. A queen UAV is expected to update in the defined time step. In this 
study, we utilize a combination of variance estimation model-driven and point cloud-based Iterative Closest 
Point (ICP) methods to align the geometry of two roughly pre-registered, partially overlapping, rigid, noisy 3D 
point  sets76. The code is written in Python.

Given the stored city model mesh set M and the new LiDAR dataset M*, for each point υ∗
h ∈  ∂M*, we allocate 

the closest complementing point(s) υh in M. Consequently, we compute the incremental transformation using 
a weighted least-squares function given  by77:

where Q is rotation matrix, 
−→
T  is the translation vector. The weighing variable ωh is set to zero if the Euclidean 

distance (ED) between υ∗
h and υh defined as (dh � d ( υ∗

h , υh )) is larger than the maximum tolerance threshold 
δmax set to 1 m in this study. This determines the motion in existing elements of the model such as limited move-
ment urban elements (trees, scaffolds, and construction equipment). However, new elements in the LiDAR data 
that falls within the boundary of (Ꞙ) are added as identified obstacles O undergoing the process in (1–8) to be 
integrated with the new mesh set M.

(3)υ ′
=

1

w

∑

h

υh

(4)υ ′′
= b̂+ δo

υ − b̂

�υ − b̂�

(5)min(
Q,�T

)
∑

h
ωh

∥∥∥Mh −

(
QM∗

h + �T

)∥∥∥
2

Figure 4.  (a) Self-intersecting urban mass, Grey (original geometry), Red (offset geometry). (b) CFD 
 meshing75. (c) Dynamic meshing illustrated on urban mass after smoothing.
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Airspace discretization model description
In this section, the proposed airspace discretization method is formally explained. A brief explanation of the 
UAV flight trajectory dynamics is presented in “Dynamic trajectory properties” The novel airspace discretization 
model morphology is discussed in “Airspace discretization morphology”. The proposed keep-in geofence and geo-
metrical disruption of UAV flight trajectories (Skyroutes algorithm) are discussed in “Robust Skyroutes algorithm”.

Dynamic trajectory properties
In this study, we utilize two different airspace discretization methods, namely, segment-based and cartesian-
based. While segmental discretization includes a path geometrical optimality component, cartesian-based paths 
are, by default, generated as a set of straight-line segmented polyline paths. The complexity of the geometry 
depends on the mission initiation and destination locations, flight policy, and the characteristics of the obstacles 
to be evaded. Since UAVs propagate along a continuous trajectory, a hard-angled segmented flight path is not 
feasible or may lead to overshooting from the keep-in geofence. Similarly, the integration between both types of 
generated paths in a single flight plan requires a viable geometric transition Fig. 5a.

In the literature, this problem was tackled by Bézier curves to reform the generated flight  path78. However, 
common generating algorithms of Bézier curves can tend to be computationally  inefficient79. In this study, 
interpolated fit-point ‘cubic’ splines are adopted for computational efficiency. The method is based on B-spline 
interpolation function and UAV motion equations. A B-spline with fit points transitions from cartesian point 
cloud reference is utilized to reform vertex to curve transition (Fig. 5b). For the UAV, the generated path is a 
B-spline rather than a set of straight-line segments polyline. Although for cartesian discretization, most optimal 
trajectory generation algorithms (Table 2) adopt their individual methodologies to generate the most energy 
efficient trajectories. However, this base B-spline method is needed as the shortest path for optimization in some 
methods. The curve equation for path correction is given by:

where k̂ is the number of vertices along the trajectory; N is the matrix of B-spline basis functions for vertices q̂i  to 
q̂i+1 ; the degree of curvature is determined by ( deg ) based on the UAV kinematics, the detailed iterative process 
is outside the scope of this study; and P̂i  is the matrix of curvature degrees for vertices q̂i  to q̂i+1.

Airspace discretization morphology
The four different airspace discretization morphologies are discussed in the literature and summed up in “Urban 
airspace planning”, Fig. 1. In Elsayed and  Mohamed22,80–82, the impact of airspace regulations and flight path 
geometry/trajectory on the energy consumption and GHG emissions was illustrated, however, the study results 
showed the challenge of failed missions. In this study, we overcome the mission failure and inviable trajectories 
by proposing a novel logistic dynamic discretization morphology that combines the advantages from each dis-
cretization method and eliminates the disadvantages.

Starting with city obstacle mesh M, the city’s viable airspace can be divided into two volumetric sets FHDR 
and FUB. FHDR can be defined as High density routes (HDR) airspace where all missions connecting different 
city blocks will have to navigate to comply with the flight regulations. This is illustrated in Fig. 6a, and it is the 
volume mostly aligning with the city major road network starting from minimum flight altitude (βmin) up to 
maximum flight altitude (βmax). This volume is obstacle free with a minimum clearance distance of (δo) from 
the nearest obstacle. FHDR is further discretized in “Robust Skyroutes algorithm” into a hybrid model between 
Layers, zones, and tubes.

In comparison, FUB can be defined as Urban block (UB) airspace illustrated in Fig. 6b. It is the air volume 
above buildings aligning with city urban blocks specifically between major roadways. The airspace starts from a 
minimum clearance distance of (δo) from the obstacles (buildings and others). Similar to FHDR, it extends up to 
the maximum flight altitude (βmax). Origins and destinations without major road access will only have access to 
the airspace through the air volume above these blocks to access the FHDR network.

(6)C(q) =

k̂∑

î=0

Nî,deg (q)P̂i

Figure 5.  Quadcopter motion dynamics. Source: Authors created by Rhinoceros 3D, version 7, rhino3d.com. 
(a) Inertial and body frames, and Euler angles φ, θ and ψ. (b) Vertex transition vs curve transition path.
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Given the size of the discretized model and complexity of the details, especially the number of geometrical 
intersecting features, computational complexity grows quickly with the number of obstacle patches ∂O and the 
timestep t. The greatest challenge of all is the enforcement of the geofence constraints simultaneously with the 
UAV constraints, to ensure safe operations. These constraints also become increasingly difficult to process as 
the 3D urban model consumes the memory allocation, and the UAV mission demand increases, thereby creat-
ing more potential conflicts. To reduce the computational complexity and maximize memory usage, we adopt a 
commonly used strategy to dissect the problem through a rolling horizon framework (Fig. 6c). Rolling horizon 
has been applied to solve a variety of time-dependent optimization problems in aerial transport such as aircraft 
 scheduling83.

Instead of discretizing the entire city obstacle mesh M, we divide the set into a series of subproblems, each 
defined by an initial coordinates qo ∈ Ꞙ and a rolling processing window {qi, qi+Δ} where [Δ ≪ Fedge]. We ensure 
overlapping in the solution by reiterating the last section {qi , qi+ η} where [η ≪ Δ] after a subproblem converges. 
This overlap reduces the possibility of redundant or invalid solutions and guarantees accounting for all obstacles. 
The rolling horizon method is illustrated in Fig. 6c, where solid rectangles represent the ongoing discretization 
process at current timestep, and grey zones highlight the converged solutions saved in the memory.

Given the FHDR cross section at Jo such as in Fig. 6a,b, we construct a polygonal vertical surface and contour 
it horizontally and vertically to dimensions Â and B̂  respectively, where { ̂A ≤ (Street width) − (2 × δo)} and { ̂B ≤ 
βmax—βmin}. ( ̂A ) will determine the maximum allocation of UAV lanes horizontally, and ( ̂B ) will determine the 
maximum allocation of lanes vertically. Equations (11–13) for contouring are illustrated in the appendix. We 
can utilize the maximum area of each inscribed polygon for UAV lanes. This ensures maximum capacity and 
avoids the formation of bottle necks, which will require further lane traffic management and will decrease the 
traveling speed and energy utilization.

Whether the payload is confined in the UAV frame or suspended by a wire, during the UAV motion around 
the pitch, roll, and yaw angles, the payload will swing with motion, especially with aggressive maneuvers. It is 
crucial to reduce the payload oscillation to avoid damage and guarantee safe operation. Hence, we design the 
UAV keep-in geofence to account for the payload motion as illustrated in Fig. 7.

In cross section, the UAV lane can be considered a circle with radius r. Assuming an FHDR airspace volume 
with dimensions Â and B̂ starting from cross section Jo to Jk, we can consider the horizontal lanes as lofted cyl-
inders. Hence, a typical cylinder packing problem is used. In 2D, this problem is equivalent to the circle packing 
problem where the aim is to maximize the airspace capacity of lanes (circles) while maintaining the minimum 
radius r such as in Birgin et al.84. To maximize the lane airspace capacity, given γ lanes of radius r and a polygonal 
FHDR airspace, we utilize a nonlinear optimization model to solve the problem as follows:

Figure 6.  Proposed discretization morphology. (a)  FHDR High density routes airspace. (b)  FUB Urban block 
(UB) airspace. (c) Rolling horizon airspace discretization framework.
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By equating the objective function to zero, if the lanes fit in the cross section, the solver terminates and 
inscribes the circles.

Given the centers of circles in (11–15), UAVs start at j; and jk is the destination. We can extrapolate the keep-in 
geofence volumetric tubes with vector flight velocity ṽ . Where q = (x, y, z) is defined as the initial location coordi-
nates for UAV aligned with the center of circular keep-in geofence number ( ̃i  ) within the cartesian referencing 
system. The orthogonal geofence grid of UAV pathways (lanes) are modeled by scaling up Peng et al.  Algorithm85:

At flight velocities over 3 m/s, translational lift increases the power efficiency significantly. While the speed 
profile will vary based on the path geometry and the status of the UAV (loaded or unloaded). To achieve the 
best energy efficiency, constant v speeds are maintained above 10 m/s and below 20 m/s to maintain the viable 
route while capitalizing battery utilization. It is worth noting that UAV energy limitations will still apply based 
on battery capacity.

(7)min
∑γ

ĩ=1

∑γ

j̃>̃i
max

(
0,4r2 − d2

ĩ̃j

)2

(8)
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Figure 7.  Payload motion within circular keep-in geofence.

Figure 8.  Proposed hybrid layered, zonal, and tubed discretization.
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Figure 8 shows the proposed morphology combining layered, zonal, and tubed discretization. For each flight 
bearing (eastbound, westbound, northbound, and southbound) the lanes are superimposed (layered) for two 
objectives; (1) avoid potential intersection, (2) allow empty space above and below the keep-in geofence for lane 
merging on left and right turns. The layers are shown in yellow and green depending on the flight direction. 
Furthermore, the tubes (circular lane keep-in geofence) are represented in blue and red depending on the vec-
tor of flight direction. The arrows in Fig. 8. represent the heading of vector lane velocity ṽ  which is organized to 
allow slower v speeds on the rightmost and leftmost lanes and highest v speeds towards the middle. The zones 
represented in magenta are the individual property buffer acting as ‘ramps’ for UAVs taking off/landing from 
the street-level or balconies/ terraces. These zones are NFZs except for authorized UAVs.

While the proposed framework can function at this level efficiently, “Robust Skyroutes algorithm” illustrates 
the geometrical modification based on UAV kinematics, which is essential with each digital twin model update 
and in case of disruption or complex geometrical street grids with obstacle protrusions.

Robust Skyroutes algorithm
To model the lane disruption, we develop based on disturbed flow to generate sky lanes by scaling up the Peng 
et al. VF-based novel  algorithm85 and the interfered fluid dynamical  system72, we describe obstacles as attractive 
fields through a function. Obstacles in mesh M registered after the smoothing process in (9) can be expressed 
here as a finite set of welded simplified volumes in cartesian planning space (x, y, z), each with a geometrical 
center at qobs = (xobs, yobs, zobs), and axial dimensions 

(
xδ , yδ , zδ

)
 . The obstacle function becomes:

where q = (x, y, z) is defined as the UAV inertial frame location coordinates within the point cloud referencing 
system. While the proposed method is based on the artificial potential field (APF) method  by86 in modeling the 
disruption, however, the proposed method is more robust with a single solution rather than a local optimum. The 
disruption function D(q) and the modified vector flight velocity v at any timestep can be determined utilizing the 
effective matrix of obstacles ( Bobs ) in obstacle boundary set ( u; where u ∈ ∂O) impacting the UAV lanes as follows:

where the lane trajectory angle to the obstacle is denoted by δV for the vertical policy parameter and δH the 
horizontal policy parameter.

Lemma 1  Assuming the perpendicular and tangential vectors form a right angle, and p(q)Tr .v(q) = 0. It indicates 
that the trajectory lanes can avoid obstacles [Bobs] within legally allowed tolerances [δmin].

Lemma 2 v(q).̃v(q)Tr ≥ 0 , which indicates that the trajectory can successfully reach the segment destination [Jk].

Lemma 3 v ∝ δV It indicates that the magnitude of the repulsive and tangential trajectory velocity is directly propor-
tional to the lane proximity horizontal and vertical policy parameters. i.e., following the edge of the boundary of effec-
tive matrix of obstacles Bobs precisely is inversely proportional to the proximity of the lane to the avoided obstacles.

Theorem 1 If Lemma 1 is satisfied, Lemma 2 is satisfied, and Lemma 3 is satisfied for any obstacle set in mesh M, 
we can guarantee the feasibility of UAV traffic lanes and trajectories.

L.1. Proof Suppose the perpendicular vector the UAV trajectory is p (q); and the tangential vector to the UAV 
trajectory t (q) at point qi on the surface of a single obstacle within mesh M are perpendicular the following from 
Eq. (17) and (18) stands true:
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From (22) we can deduce that with the absence of a value for the perpendicular component, the UAV trajec-
tory using the artificial potential field generated path will not intersect with the obstacle mesh. Figure 9 shows 
the generated trajectory avoiding a concave tight obstacle trap area.

L.2. Proof Given the mission’s distance between takeoff and landing (J and Jk) is relatively short, theoretically 
v≈ṽ  , applying these yields

Taking α is the deviation angle between the vector flight velocity vl and the obstacle perpendicular vector to 
the UAV trajectory. While F(q) ≥ 1 and (cosα)2 ≤ 1 we can deduct:

(14)
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Figure 9.  Lemma 1trajectory avoiding concave obstacle trap areas  [Bobs] within legally allowed tolerances.
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From (26) we can deduce that the UAV trajectory will successfully reach the segment destination [Jk].
L.3. Proof. The vector flight velocity v at any timestep which was explained in (19) can be rewritten as:

Similar to the disruption function in (20) three terms are described; ṽ(q) can be explained as the attractive 
velocity given by the maximum UAV allowed speed by the applicable civil flight regulation policy; second term 
[ p(q)Tr .̃v(q)

|F(q)|
δV (q)−1

.p(q)Tr .p(q)
p(q) ] is the APF repulsive velocity; [ p(q)Tr .̃v(q)

|F(q)|
δH (q)−1

.�t(q)�.�p(q)�
t(q) ] is the APF tangential 

velocity.
The concept behind controlling the trajectory is to avoid off-shooting and reduce the risk factor (ξ), this 

is defined as the possibility of UAV derailing from the designated lane or trajectory, hence risking potential 

(19)∴ v(q).̃v(q)Tr ≥ 0

v(q) = ṽ(q)D(q)

(20)v̄(q) = ṽ(q)−
p(q)Tr .̃v(q)
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Figure 10.  (a) UAV failing to maintain lane trajectory. (b) UAV following lane trajectory.

Figure 11.  (a) UAV lane trajectory options. (b) Different combinations of δV and δH.
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collision or traffic disruption. Figure 10 shows a UAV failing to maintain trajectory due to the path infeasibility 
or kinematic incompatibility.

To achieve the maximum speed on a feasible path while ensuring a consistent keep-in geofence, either the 
speed is reduced leading to time/energy consumption  inefficiencies80, or the trajectory is modified. Different 
combinations of δVandδH are tested such as in Fig. 11. As illustrated, the produced trajectory shows that the 
magnitude of the repulsive and tangential trajectory velocity is directly proportional to the lane proximity hori-
zontal and vertical policy parameters.

Based on the numerical formula, an algorithm is developed for trajectory propagation dynamics. This algo-
rithm is capable of solving both the discretization and trajectory planning problems in a three-dimensional 
environment. The algorithm has a unique two-step procedure. The process of the algorithm can be explained 
as follows:

• Initialization and loop 1: the algorithm starts by setting up the environment, including the grid, obstacles, 
origins, destination points (O–D), and other parameters necessary for trajectory planning. This stage aims at 
adjusting a 3D solid mesh for obstacles using freeform object reconstruction, tangent calculation, and offset 
processing to generate the mesh of obstacles with the keep-out geofence based on the updated digital twin 
and flight policies.

• Main loop: the core of the algorithm involves iterating through potential paths and dynamically adjusting 
them based on the evolving environment and obstacle positions by modifying theoretic trajectories (‘sky 
routes’ at policy-allowed elevations) with expected flight velocity v(q) at every time step, which is adjusted 
according to the presence of obstacles. This is achieved using a reformation disruption matrix; vertical and 
horizontal tangential deformations are imposed on the matrix “D (q)” and considering the UAV’s maximum 
allowed speed, the repulsive velocity from obstacles, and the tangential velocity to navigate around obstacles. 
This ensures that the UAV’s path avoids collisions and maintains a safe and viable trajectory.

The algorithm in pseudocode is presented as follows:
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Algorithm 1. Pseudocode for the Robust Skyroutes Algorithm

Trip generation, Cartesian routing, and UAV energy consumption
To test the operability and assess the efficiency of the proposed algorithm, a high-traffic load operation duration 
has to be simulated. An urban transportation simulation requires access to the specific location demand data. 
However, real-life georeferenced demand data is protected under different privacy laws. In this study, we model 
the origin and destination trips by adopting a realistic approximation from statistical prediction models that 
have been used in trip generation models and proved a high level of accuracy and  robustness22.
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To generate a heterogenous trip generation in terms of UAV size and trip nature (package delivery, flying 
taxi, or ambulance), we assume that the model follows a Poisson-distribution. The Poisson distribution is com-
monly used in various transportation demand modelling since it is considered an activity that will occur at a 
constant rate over a duration of  time87. The mean variation is based on the simulation area census population 
density. The trip generation Eqs. (28–31) are outlined in the appendix for reference. The density map and the 
probability generation algorithm based on this Poisson distribution are coded in Python and overlaid on the 
city digital twin model. The resultant O-D matrix is the base for the TA. UAVs are assumed to start the trip by 
Vertical Takeoff (VTO) from the roof of the origin building mesh and ending the trip by Vertical Landing (VL) at 
the destination roof. To link the transportation tasks among generated O-D geolocations on the city digital twin 
model mesh generated in “Airspace discretization model description”, an area allocation and UAV assignment 
planning process is applied, however, TA does not fall within the scope of this study.

To assess the robustness of the proposed algorithm in this study, a single serving coverage area is considered, 
and each UAV is assigned one trip per timestep. Multiple randomized trip objectives, payload, duration, and 
travel distance determine the UAV size. The city digital twin is divided into clusters or volumetric patches accord-
ing to several parameters including urban density and maximum building-footprint area. While for traffic and 
lane management, a first-come-first-serve queuing protocol is implemented. A full 3D GIS mining framework 
similar to neural networks is proposed and illustrated in Fig. 12. After the digital twin data is processed, the 
autonomous UAV trip generation and TA allocation loop is provided with pairs of coordinate points (latitude 
and longitude) via GPS link. The trips are generated based on the pre-explained Poisson distribution randomly 
to produce the full range of trips length and route complexity. The Skyroutes algorithm routes the trip and blocks 
the allocated lane segment [v(q)] at the utilized timestep T for other UAV trips.

The UAV lane-trajectories resulting from the algorithm depends on δV , δH values. These values are deter-
mined for each lane based on lane designated speed, hence the resulting geometry as discussed by ElSayed and 
 Mohamed22,80. To reach the optimal energy consumption and speed, the UAV motion is simulated based on the 
quadrotor physics. Mainly, the power divided on rotors that define the way the UAV moves and response, such 
forces, torque and thrusts are the key to UAV motion.

While UAV flight dynamics differ by airframe type, the main variants are fixed-wing and multi-rotor. Unlike 
fixed-wing UAVs, a multirotor possesses more than two rotors with hovering capabilities, such as quadrotors 
and hexarotors. For Quadcopters, a multirotor is controlled by altering the relative speed of each rotor to adjust 
the thrust and torque produced by each propeller opposing drag vector about the center of rotation. The four 
propellers are positioned at the corners of a square chassis as a pair of rotating blades. The motion equations are 
explained in the appendix (Eqs. 32–46).

The calculated energy consumption in Eqs. (35–40) aligns with real-world experimental results given the same 
input parameters for an experimentally verified model for a loaded quadcopter from the literature in Stolaroff 
et al.88 and ElSayed and  Mohamed22. Results illustrated in Fig. 13 show high agreement at lower velocities, with 
a 5% discrepancy at higher velocities due to discrepancies in model assumptions.

At flight velocities over 3 m/s, translational lift increases the power efficiency significantly. While the speed 
profile will vary based on the path geometry and the status of the UAV (loaded or unloaded), to achieve the best 
energy efficiency velocities are maintained above 10 m/s and below 20 m/s in the generated lanes to maintain 
the viable route while capitalizing battery utilization.

Although the Skyroutes algorithm creates the main trajectories, the last trip leg in the local traffic zones FUB 
operate under a full-mix airspace pattern. Due to the low traffic density, this airspace hardly needs regulation, 
the cartesian discretization is utilized to find the first/last leg of a trajectory using any of the literature solving 
algorithms. In this study, we utilize a modified Random Reduction Tree (RRT). A basic RRT works through 
three functional procedures, firstly the ‘generation’, finds by calculation a path between qint ‘starting vertex’ and 
qend ‘destination’ vertex which is obtained by growing a random search tree. The tree branches out in a highly 
dimensional environment to search for possible vertices from the starting vertex towards the destination with bias 
along the direct connector vector. Secondly, ‘the expansion’, a random vertex qrand is picked and a line segment 
‘edge’ is interpolated between the new vertex and last tree vertex in the list. With each iteration, a new edge and 

Figure 12.  Proposed 3D GIS mining framework.
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vertex are added to the path and the tree list expands till the destination vertex becomes a part of the tree. This 
leads to the third and final process ‘termination condition’.

Although highly successful, this basic calculation method becomes memory consuming. Moreover, the con-
vergence rate is relatively slow in cases of complicated path planning where the chance of collision is significantly 
high in an obstacle rich environment such as our case study. Utilizing the A-star algorithm approach, in this 
case, amends this downfall and ensures the solving tree is only considering the most relevant areas of the point 
cloud tree. Whereas in a typical RRT the whole model space is populated with a point cloud and is considered 
for the solution. On the other hand, the Astar transforms the search into a function of the range of vertices 
confined along the direct path between qint and qsos, this becomes the point populated domain, and the function 
is formulated as follows:

where q̇t ∈ Q is the initiation point vector; u̇t ∈ U is the destination vector; vt is a random process disturbance 
appropriately determined; Dt is the measurement vector and qi is a random component of the qt tree.

Similar to Dijkstra algorithm, the Astar algorithm contains an open list of the potential waypoints qfree vertices, 
in addition to a closed list of all the visited vertices and a simple cost equation for solving as follows:

where subscript i stands for the vertex call number in the RRT; Ti is the total cost (path length to minimize from 
qint to qend) similar to Eq. (15); Ci is the current ith cost from qint to current vertex; Ei is the estimated cost of 
ith vertex from the current vertex to the qend destination vertex. To simplify the solution and solving time, the 
algorithm is also written and compiled in Python.

(21)q̇t = f
(
qt − 1, u̇t − 1, vt

)

(22)Dt = h
(
qt , vi

)

(23)Ti = Ci + Ei
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Figure 13.  Experimental verification of calculation model.

Figure 14.  (a) Macro scale GTA census  map89. (b) Aerial image of the study area (marked in red) and city 
 context90. Source for (a): https:// www150. statc an. gc. ca/ n1/ en/ catal ogue/ 16- 508-X; Source for (b): Google maps 
with a Microsoft word 365 markup edit, google.com/maps.

https://www150.statcan.gc.ca/n1/en/catalogue/16-508-X
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Case study, results, and discussion
A case study of a real 3D urban area in the densest section of the City of Toronto, one of the biggest urban centers 
in North America, was used to test the model and algorithm. With a population density of 4149.5 p/km2, occu-
pied with various commercial, residential, and infrastructure buildings, the area represents a typical example of 
a mixed-use urban center. The area is covered in clusters 50 and 51, East York Patch, with an approximate area 

Table 3.  Comparison of computational performance.

Element Settings

Algorithm

Unit

Base model Dijkstra Modified RRT Skyroutes

1-Digital-Twin Solution image

2-Simulation parameters Solving base Type of path generation distance between vertices solu-
tion time

B-Spline
2
221

Bezier Curves
2
89

Lanes
N/A
74

Sec

3-Processing power Processor: Intel Core I9 CPU with single core utilization of 2.20 GHz; Memory: 64 GB

Table 4.  Results of the O–D trip demand model.

Discretization method Cartesian and proposed Skyroutes

Service area 3,663,251  m2

Poisson λ parameter Six 3-digit allocations

Average trip distance (min, max) 811.26 (24.32, 2059.35) m

Average ED between destinations (spread) 52.1 m

Mission count (trips) 1138

Longest route ED 2059.35 m

AM peak 9–10 a.m.

PM peak 4–6:30 p.m.

Figure 15.  (a) O–D points (in red) ED of peak-hour trips (in green). (b) Study area in old Toronto showing 
height distribution of structures in airspace. Source for (a): Authors created by Rhinoceros 3D, version 7, 
rhino3d.com; source for (b): Authors created by Rhinoceros 3D, version 7, rhino3d.com.
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of 3.16  km2, presented in Fig. 13b. It features dense high-rise buildings and airfields, which can be complex for 
other discretization methodologies Fig. 14b.

Based on the Canadian census population density maps (Fig. 13a), a base-case scenario operation model was 
conducted as outlined in the methodology section on six downtown three-digit postal code areas and the associ-
ated geocoded information. Only local trips within the study area are modeled given the UAV range limitations 
on a single charge roundtrip. Results of the daily O–D Poisson generation are reported in Table 3, while peak-
hour (5 p.m.) trips (around 1138 trips) are visualized in Fig. 14a. The ED is shown in green lines for UAV trips.

We carried out the Skyroutes discretization and cartesian discretization for performance comparison. In this 
section, we compare the results between the two schemes on three fronts, namely, Airspace utilization repre-
sented by the utilization factor (U) metric; hazard mitigation factor represented by the risk factor (ξ) metric; 
and Kinematic and energy efficiency represented by the total change in Euler angles (RAD). Considering the 
computational performance, results in Table 4 show the proposed Algorithm is comparatively similar to the 
solution time of Rapidly-exploring Random Trees (RRTs) and significantly better compared to Dijkstra. A thor-
ough discussion on the performance has been explained for complex environments with dynamic elements in a 
previous  study81. We have also illustrated the computational effectiveness by a simple test run against the Gurobi 
solver demonstrating significantly low solution  time91.

Geofencing results compared to cartesian discretization
In the case study, airspace between 30 and 150 m (100 m for strict regulations) is considered for the UAV traf-
fic. Starting with city obstacle mesh M, the airspace was first divided into the two volumetric sets FHDR and FUB 

Dual Geofence
U (150; 3; 3)

Proposed Skyroutes
U (150; 3; 3)

U (100; 5; 3) U (100; 5; 3)

Skyroutes lanes                    α-ball                    FUB 

Discretization Method Cartesian Skyroutes

βmax (min, max) 30, 150 30, 150

δo (min, max) 1, 21 1, 21

r (min, max) 1, 21 1, 21

Figure 16.  (a) Cartesian grid discretization, keep-in (red), Keep-out (blue). (b) Skyroutes discretized airspace, 
lanes (blue),  FUB (red).
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described in the methodology section. Then, the Skyroutes morphology at δH = 1 yielded 40 levels of keep-in 
lanes flowing along the FHDR shown in Fig. 15a. Similarly, the airspace was discretized into a three-dimensional 
regular grid of 3 m and 5 m for strict regulations, resulting in a 440 × 360 × 40 α-ball Cartesian grid in a dual 
geofence Fig. 15b.

To compare the results across both methods, we use a utilization factor U (βmax; δo; r) for cartesian discre-
tization, where (δo) is the minimum clearance distance from the nearest obstacle; and r is the keep-in radius for 
UAVs; (βmax) is the maximum flight altitude dictated by the applicable flight policy. For the Skyroutes algorithm, 
O-Ds without major road access utilize the FUB for the first/last leg in the trip connecting to the lanes. Figure 15a 
highlights the results of maximized utilization of airspace with lean flight policies, the α-ball utilization coverage 
in 3D is U (100; 5; 3) = 88.1% and U (150; 3; 3) = 93.1%, respectively. This is due to the added airspace volumes 

(a)

(b)
Discretization Method Cartesian Proposed Skyroutes
βmax (min, max) 30, 150 30, 150
δo (min, max) 1, 21 1, 21
r (min, max) 1, 21 1, 21
Total airspace capacity (min, max, std. deviation) 2, 2928940, 614713 15, 3003324, 631581
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Figure 17.  Discretization airspace capacity matrices. (a) Cartesian discretization airspace capacity matrix. (b) 
Proposed Skyroutes discretization airspace capacity matrix.
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in the cartesian discretization, the same utilization gains are reflected in the Skyroutes algorithm results as the 
maximum flight altitude βmax increases, hence adding more lanes for UAVs.

These results highlight several observations, first, the benefits of using the Mesh M generated from LiDAR 
point cloud (lines 1 to 33 in Algorithm1) as a more precise tool in airspace capacity estimation as compared 
to other 2D methods in the literature where capacity is calculated by a series of horizontal 2D slicing planes. 
Second, the benefits of dual (keep-in and keep-out) geofencing technique allow higher control to apply airspace 
flight policies and NFZs.

While the airspace utilization increases significantly in both discretization methods with leaner flight policies 
(5% for cartesian and 10% for Skyroutes), however, the cartesian discretization shows higher sensitivity to the δo 
value, as compared to the Skyroutes method, which relies heavily on the βmax. The proposed Skyroutes algorithm 
shows a higher level of robustness in eliminating the inconsistency of airspace utilization variance with altitude 
through a linear behaviour compared to an exponential behaviour in the cartesian morphology. By eliminat-
ing bottlenecks as UAVs propagate in lower airspace for main trajectories in the FHDR, the exponentially higher 
estimates of utilization in FUB indicates higher UAV traffic above buildings.

This proves the substantial benefits of using the Skyroutes algorithm over the cartesian method in airspace 
capacity estimation that further aligns with the AAM civil airspace safety and privacy objectives.

Similarly, Fig. 16 shows the results of airspace capacity utilization and loss in terms of different βmax at variable 
values for δo and r. The results’ matrix heatmaps show the robustness of the proposed methodology in estimat-
ing airspace capacity with extreme precision. Overall, the effect of geofencing was most restrictive in the lower 
altitude levels, when βmax ≤ 60 due to the high-density obstacles. However, the impact on cartesian discretization 
is significantly more severe compared to the impact on the Skyroutes discretization. Also, generally it can be 
noticed in all altitudes and across different δo and r combinations, the Skyroutes discretization yields a higher 
airspace capacity. This is due to the advantage of using the cylinder/circle packing subroutine Eqs. (14–15) to fit 
more lanes as compared to the cartesian division.

Furthermore, due to the island effect in cartesian discretization if an airspace patch has less than 25 m (this 
is dominant in lower altitudes with higher δo and r combinations) of travel range, the entire discretized patch 
is not considered in the capacity estimation. This is not the case for Skyroutes since the lane discretization is 
performed in 3D, which sometimes allow only a narrow path in higher altitudes to utilize this entrapped discre-
tized airspace void in lower altitudes. The matrices presented in Fig. 16 can guide policymakers in finding the 
regulation combinations to achieve a desired level of civil airspace utilization, and to evaluate the operational 
feasibility based on trade-offs between βmax, δo, and r.

Airspace utilization and loss matrices prove more efficient and robust in airspace capacity estimation as 
compared to 2D graphs and curves. Matrices highlight the severe impact of higher δo and r combinations ≥ 10 m 
in lower airspace levels βmax ≤ 60. This highlights the sensitivity to altitude in tighter urban scenarios such urban 
centers and high-rise downtown areas. It also highlights the flexibility of dual geofencing (keep-in and keep-out) 
in determining the safe airspace utilization. Whereas higher airspace altitude βmax ≤ 60 shows a slightly greater 
advantage to cartesian discretization over Skyroutes, results show a 10% increase in airspace capacity estima-
tion as the free-mix airspace model is applicable. In general, digital-twin volumetric 3D approach shows robust 
capability to assess airspace capacity with different policy permutations.

Air traffic safety and hazard mitigation performance
In this section, we present the differences in airspace safety and hazard mitigation between cartesian and Sky-
routes discretization. While, noise reduction is illustrated by visualizing the UAV trajectories around the study 
area, safety is defined by a risk factor (ξ), which is the proximity of the UAV trajectories to moving obstacles and 
other UAV trajectories or the possibility of the UAV derailing from the designated lane or trajectory. Figure 17 
shows Cartesian and Skyroutes discretization airspace UAV trajectories at 5 pm for the study area. To assess the 
robustness of the proposed algorithm, we utilize the modified RRT* as well as several relevant UAV 3D routing 
and trajectory optimization literature from Table 2 for each UAV trip and only use the most efficient results for 
the cartesian method.

The results show several trends, first, the significant difference in noise reduction, as UAV trajectories avoid 
the utilization of airspace above urban blocks in Skyroutes trajectory optimization versus the cartesian trajecto-
ries. This is with the exception of take-off and landing (last leg) performed as part of the TO task and amalga-
mated to the total given mission trajectory to avoid the outlined accident risk. Second, the Skyroutes results show 
a significant airspace order as compared to cartesian methods due to the aggressive use of the airspace above 
urban blocks  FUHD to achieve the shortest trajectory possible. The proposed algorithm regulates all trajectories 
in the  FHD volume mostly aligning with the study area’s major road network starting from the minimum flight 
altitude (βmin) up to the maximum flight altitude (βmax).

Further, Fig. 18 shows the results of cross trajectory proximity for both discretization methods. Skyroutes algo-
rithm shows a significant reduction in the instances of cross trajectory proximity where trajectories are in closer 
proximity (distance between trajectories at any point is < 3 m or intersecting) at a critical time window ≤ 30 s. 
The lane geometrical design and timestep queuing method allows optimizing the trajectories by spacing them 
whenever possible mitigating multiple trajectory collision. Along the same lines, Fig. 19 shows the significant 
reduction in the trajectory Euler transformations (explained in Fig. 7) which ensures the integrity of the payload 
within the keep-in geofence and reducing the risk factor (ξ) of UAV derailing from the designated trajectory.

Kinematic and energy efficiency
The results show up to 30% lengthier trajectories (in 8.2% of the cases), and up to 10% increase for the rest of 
the trajectories for the Skyroutes discretization as compared to cartesian discretization, Fig. 19. This increase 
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in route length comes from the instances where origins or destinations are deep in the congested areas of the 
airspace or from the need for multiple lane changes due to the queue. However, the overall energy consump-
tion is up to 50% lower in more than 60% of the trips for the proposed Skyroutes discretization and trajectory 
optimization algorithm.

This is due to the consistency of the trajectory as stretches of straight lines in the keep-in lanes allow UAVs 
to maintain the maximum efficient speed of 20 m/s without the need for deceleration on maneuvers as in the 
case with the cartesian trajectories. This is illustrated in Fig. 20 as the total change in Euler angles along the UAV 
trajectories. Less change in trajectory angular motion means significant reduction in rotor torque changes allow-
ing the UAVs to travel a longer distance at the optimal discharge rate and decreases the depletion of  charge80.

Conclusions and future studies
In this study, we proposed a novel autonomous Advanced Aerial Mobility (AAM) system for high density city 
centers that dynamically discretizes the viable airspace into UAV trajectories. By incorporating the city’s digital-
twin model through interpolating LiDAR data and a dual keep-in and keep-out geofence, our method expands 
the functionality beyond airspace capacity assessment to test different flight policies and measure the tradeoffs 

Figure 18.  Discretization airspace trip trajectories. (a) Cartesian discretization airspace trip trajectories 5 pm. 
(b) Proposed Skyroutes discretization airspace trip trajectories 5 pm.
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between them. Furthermore, the proposed algorithm converges energy-efficient UAV trajectories while minimiz-
ing the safety hazards and sound pollution.

Since UAVs are assumed to be automatically piloted by an embedded mission control system, in a heterog-
enous fleet situation or a multi-user traffic control narrative, the onboard flight controller on each UAV requires 
a pre-planned trajectory with multiple contingencies (alternative routing) for specific mission assignment and 
teamwork logistics. This highlights the benefits of the proposed Skyroutes with multiple lanes rather than a full-
mix airspace morphology.

In the hypothetical case of a complex urban scenario, we demonstrated that the digital-twin model is crucial 
for the precision and safety of pre-planned UAV trajectories. The proposed Skyroutes algorithm was able to 
identify narrow urban corridors and maximize the airspace capacity up to 10% increase in a severely restricted 
airspace by connecting isolated airspace volumes through a circle packing sub-routine as compared to cartesian 
discretization, which was unable to tackle this challenge efficiently. A case study of Toronto city center, Canada 
illustrated the robust capabilities of the proposed algorithm in a real 3D environment.

The cartesian airspace discretization allows the applicability of a variety of trajectory optimization algorithms 
in a full-mix airspace morphology, while the Skyroutes capitalizes on the energy-efficient trajectories and regulat-
ing the airspace traffic management through combining several airspace morphologies. For cartesian discretiza-
tion, on the one hand, a tight mesh (waypoint vertices) results in a slower and more complicated graph-solving 
task due to the significantly large size of the solving domain. On the other hand, a wider mesh results in less 
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Figure 19.  Cross trajectory proximity results.
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Figure 20.  Total trajectory length results.



27

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12506  | https://doi.org/10.1038/s41598-024-62421-4

www.nature.com/scientificreports/

available solutions and more unutilized tight spaces within the dense city urban form where spacing between the 
towers can be less than three meters wide. The application of dynamic meshing method in digital-twin models 
shows the agility of capturing urban details, where building protrusions, setbacks, construction tools (such as 
cranes) and other architectural features such as street vegetation and landscape elements within the urban set-
ting are taken into consideration. This allows the solving algorithm to diminish collision chances and relieve 
the reliance of on-board sensors. Also utilize tight spacing within the study area while avoiding the probability 
of algorithm’s solution errors that could cause obstacle collisions. The Skyroutes discretization is more adaptive 
and can deliver significantly higher airspace usability coupled with more challenging capabilities especially in 
highly restrictive airspace.

The proposed Skyroutes algorithm successfully demonstrated the ability to analyze the flight policy combina-
tions in the case study. The precision in estimating the airspace capacity showed high sensitivity to the variables, 
which suggests that the current approach that relies on 2D or cartesian discretization measures needs further 
evaluation for effective urban UAV operations. The proposed algorithm illustrated the difference in safety and 
energy-efficiency of the converged trip trajectories. The results also show significant improvements over car-
tesian discretization, the overall energy exerted by UAVs to overcome a lengthier trajectory is outweighed by 
lower torque changes, lower energy consumption, and lower noise levels avoiding urban airspace over inhabited 
areas. Furthermore, reduced cross-trajectory proximity and the proposed lane change sub-routine allows higher 
coordination and safety by providing alternate routing in case of disruptive events.

One of the possible limitations of the proposed algorithm is the universal applicability on any urban scenario. 
Since the urban density and city morphology adds limitations for every unique situation. If a civil authority seeks 
a specific flight policy that can apply to all cases of diverse geospatial complexity to operate autonomous civil 
UAV flights, it can either be prone to higher risk factors or severely restrict the viable airspace and UAV size/
type choice. While the proposed method can efficiently determine the adequate policy combination (βmax; δo; 
r), simulations are inevitable for precise results. In addition to evaluating the airspace usability, our approach 
generates a crucial dataset to model civil airspace in 3D. Identifying the continuity of trajectories will be neces-
sary for structured urban airspace design and path planning. This will strategically serve developers, planners 
and decision-aiding authorities such as the Model Aeronautics Association of Canada (MAAC) to operationalize 
UAVs in the near future. The integration of smart, sustainable and autonomous robotics for transportation in 
smart cities represents a silver bullet solution for the aforementioned challenges. In the future, we plan to add 
more uncertainties such as wind dynamics to add robustness to the proposed airspace discretization algorithm 
and increase energy-efficiency.

Data availability
The LiDAR and the 3D city model utilized in this study are available through the Toronto City Data Catalog at 
https:// mdl. libra ry. utoro nto. ca/ colle ctions/ geosp atial- data/ toron to- lidar- 2015. https:// www. toron to. ca/ city- gover 
nment/ data- resea rch- maps/ open- data/.
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Figure 21.  Total change in Euler angles along UAV trajectories results.
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