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Assessing the efficacy of 2D and 3D 
CNN algorithms in OCT‑based 
glaucoma detection
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Xiaoyi Raymond Gao 1,2,3*

Glaucoma is a progressive neurodegenerative disease characterized by the gradual degeneration of 
retinal ganglion cells, leading to irreversible blindness worldwide. Therefore, timely and accurate 
diagnosis of glaucoma is crucial, enabling early intervention and facilitating effective disease 
management to mitigate further vision deterioration. The advent of optical coherence tomography 
(OCT) has marked a transformative era in ophthalmology, offering detailed visualization of the macula 
and optic nerve head (ONH) regions. In recent years, both 2D and 3D convolutional neural network 
(CNN) algorithms have been applied to OCT image analysis. While 2D CNNs rely on post‑prediction 
aggregation of all B‑scans within OCT volumes, 3D CNNs allow for direct glaucoma prediction from 
the OCT data. However, in the absence of extensively pre‑trained 3D models, the comparative 
efficacy of 2D and 3D‑CNN algorithms in detecting glaucoma from volumetric OCT images remains 
unclear. Therefore, this study explores the efficacy of glaucoma detection through volumetric OCT 
images using select state‑of‑the‑art (SOTA) 2D‑CNN models, 3D adaptations of these 2D‑CNN models 
with specific weight transfer techniques, and a custom 5‑layer 3D‑CNN‑Encoder algorithm. The 
performance across two distinct datasets is evaluated, each focusing on the macula and the ONH, 
to provide a comprehensive understanding of the models’ capabilities in identifying glaucoma. Our 
findings demonstrate that the 2D‑CNN algorithm consistently provided robust results compared to 
their 3D counterparts tested in this study for glaucoma detection, achieving AUC values of 0.960 and 
0.943 for the macular and ONH OCT test images, respectively. Given the scarcity of pre‑trained 3D 
models trained on extensive datasets, this comparative analysis underscores the overall utility of 2D 
and 3D‑CNN algorithms in advancing glaucoma diagnostic systems in ophthalmology and highlights 
the potential of 2D algorithms for volumetric OCT image‑based glaucoma detection.

Glaucoma, a neurodegenerative disease affecting nearly 80 million people  globally1, is characterized by the 
progressive degeneration of retinal ganglion cells, leading to vision  impairment1–5. It stands as a leading 
contributor to irreversible vision loss, often going undetected until considerable damage has  occurred6–8. In 
developed countries, almost half of the individuals with glaucoma remain  undetected9,10, while in developing 
countries, the number of undetected cases can reach as high as 90%11. Therefore, early, and accurate diagnosis is 
essential to reduce further visual deterioration. In this regard, advances in optical coherence tomography (OCT) 
present a promising avenue, offering a viable means for early glaucoma detection.

By providing detailed visualization of crucial ocular structures, such as the macula and optic nerve head 
(ONH)12–14, OCT offers an exceptional opportunity to study the effects of vision-related diseases such as 
glaucoma. While automated algorithms have significantly streamlined the analysis of intricate details in OCT, 
the interpretation of data from these automated systems still requires expert input for accurate predictions. 
Consequently, deep learning (DL) based algorithms have garnered considerable popularity in streamlining OCT 
image analysis, providing substantial insights for deriving meaningful  conclusions15–19.

Previous reports on DL-based algorithms for predicting glaucoma from OCT images showed a predominant 
use of the 2D convolutional neural network (CNN) compared to 3D-CNN models for glaucoma detection. For 
instance, Mehta et al.15 proposed a multimodal model leveraging various ocular and clinical data for glaucoma 
detection. Their OCT-based model employs a 2D-CNN-based DL framework with a  Densenet20115 backbone to 
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train on each B-scan from OCT volumes obtained from the UK Biobank (UKB) Supplementary Materials. The 
model provides final glaucoma predictions by collectively analyzing each B-scan of the OCT volume, achieving 
a notable AUC score of 0.950.

Additionally, Christopher et al.20 introduced a 2D-CNN-based approach that capitalizes on the wide-angle 
swept-source OCT images to extract relevant RNFL features for improved glaucoma classification. Their method 
has been shown to surpass glaucoma detection based on conventional metrics, such as circumpapillary RNFL 
thickness, standard automated perimetry, and frequency-doubling technology visual field tests. Furthermore, 
Garcia et al.21 introduced an innovative algorithm that combines manually crafted features with a 2D-CNN 
algorithm, incorporating tailored residual and attention modules to achieve robust glaucoma detection. This 
combination enhances the discrimination between healthy, early, and advanced glaucoma samples, resulting in 
superior classification accuracy.

In contrast to the 2D-CNN-based methodology, Maetschke et al.22 proposed a 3D-CNN algorithm for 
glaucoma detection. Their 3D-CNN-based model directly classifies healthy and glaucomatous eyes from 
unsegmented OCT volumes of the ONH region, attaining a robust AUC of 0.940 on the test dataset. Following 
a similar trajectory, Yasmeen et al.23 introduced an attention-guided 3D DL model for analyzing OCT images 
to detect glaucoma. The proposed model operates through three pathways with different inputs but the same 
model architecture and, when validated, achieved an AUC of 0.983, outperforming traditional models and 
other machine learning methods. Despite the promising outcomes of 2D and 3D-CNN algorithms in glaucoma 
detection, our review highlights a research gap. Specifically, research examining the 2D and 3D-CNN algorithms 
for glaucoma detection, particularly through weight transfer techniques to enhance 3D models’ performance 
across diverse OCT datasets, is notably limited.

Considering that macular and ONH OCT inherently offers volumetric imaging data and given the scarcity 
of pre-trained 3D models trained on extensive datasets, the importance of examining the strengths of current 
2D and 3D-CNN models in detecting glaucoma from OCT volumes cannot be underestimated. While 2D-CNN 
models may not utilize volumetric information available in OCT volumes, they benefit from a wealth of pre-
trained models, offering better generalization in smaller datasets. In contrast, although 3D-CNN models can 
leverage the volumetric information, they are often limited by a notable scarcity of pre-trained models and 
large volume datasets. Even though there are ways to incorporate transfer learning, i.e., through dimensionality 
expansion of 2D-CNN  models24–26, such techniques remain approximate and possibly not fully optimized.

Therefore, our study investigates the effectiveness of select 2D and 3D-CNN algorithms for OCT-based 
glaucoma detection by leveraging DL models, including 2D and 3D versions of  ResNet1827,28 and  DenseNet12129, 
and a 5-layer 3D-CNN-Encoder  model22. In this study, we utilized dimensionality expansion to adapt 2D models 
for 3D applications, enabling weight transfer from an ImageNet1k-trained 2D model to improve a 3D model’s 
performance. Through extensive evaluations using two publicly available volumetric OCT image datasets, the first 
available through the  UKB30 focusing on the macula and the other published by Maetschke et al.22 focusing on 
ONH—this study underscores the robust performance of 2D-CNN algorithms in detecting glaucoma compared 
to their 3D counterparts and the weight transfer method tested in this study. These findings underscore the 
strengths of 2D-CNN in glaucoma detection via volumetric OCT images and point out the limitations of current 
weight transfer techniques for 3D-CNN models. They also highlight the potential of 3D algorithms and the 
necessity for future research to improve 3D-CNNs’ performance in glaucoma detection. Therefore, the findings 
of this study have the potential to transform diagnostic approaches in the field of ophthalmology using OCT-
based datasets.

Results
Table 1 presents the comparative performance of various models trained on the macular-OCT and ONH-OCT 
test datasets. The evaluation metrics include tenfold cross-validation (CV) average values for the AUC, accuracy, 
sensitivity, and specificity. Accuracy, sensitivity, and specificity scores, calculated based on the Youden Index, are 
specific to datasets and models, thus providing a qualitative assessment of the model’s performance. Meanwhile, 
Fig. 1 displays the box plots of the evaluation metrics obtained from the macular-OCT and ONH-OCT test 
datasets during the tenfold CV study.

Table 1.  Comparative performance of models on macular-OCT and ONH-OCT test datasets: average AUC, 
accuracy, sensitivity, and specificity values from tenfold CV. CV cross-validation, CNN convolutional neural 
network, OCT optical coherence tomography, ONH-OCT optic nerve head OCT, Acc accuracy, Sen sensitivity, 
Spe specificity.

Models Pre-trained

macular-OCT ONH-OCT

AUC ACC Sen Spe AUC ACC Sen Spe

2D-ResNet18 Yes 0.960 0.901 0.891 0.913 0.943 0.890 0.917 0.910

3D-ResNet18 No 0.928 0.863 0.885 0.861 0.823 0.750 0.730 0.820

3D-ResNet18 Yes 0.937 0.890 0.850 0.900 0.863 0.810 0.810 0.820

3D-DenseNet121 No 0.938 0.901 0.848 0.923 0.889 0.818 0.806 0.857

3D-DenseNet121 Yes 0.945 0.905 0.878 0.915 0.906 0.840 0.829 0.880

3D-CNN-Encoder No 0.910 0.852 0.820 0.873 0.931 0.844 0.821 0.921
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For the macular-OCT dataset, the pre-trained 2D-ResNet18 model emerged as the top performer, achieving 
an AUC of 0.960, and showcasing an accuracy, sensitivity, and specificity of 0.910, 0.891, and 0.913, respectively. 
These results were closely followed by the pre-trained 3D-ResNet18 and 3D-DenseNet121, which posted an AUC 
of 0.937 and 0.945, respectively. Conversely, the 3D-ResNet18, 3D-DenseNet121, and 3D-CNN-Encoder models, 
trained from scratch on this dataset, recorded AUCs of 0.928, 0.938, and 0.910, respectively, highlighting the 
advantage of utilizing weight transfer technique to improve 3D models.

Regarding the ONH-OCT dataset, the 2D ResNet18 model once again surpassed its 3D counterparts tested 
in this study, achieving an AUC of 0.943, an accuracy of 0.890, a sensitivity of 0.917, and a specificity of 0.803. 
Among the 3D models utilized for this dataset, the 3D-CNN-Encoder model outperformed the other 3D models 
by achieving an AUC of 0.931. Meanwhile, the 3D-ResNet18 and its pre-trained version achieved AUCs of 
0.823 and 0.863, respectively, while the 3D-DenseNet121 and its pre-trained counterpart recorded AUCs of 
0.889 and 0.906, respectively. The diminished AUCs observed in 3D-ResNet18 and 3D-DenseNet121 models 

(a) Box plot of the evaluation metrics obtained during 10-fold CV for macular-OCT dataset.

(b) Box plot of the evaluation metrics obtained during 10-fold CV for ONH-OCT dataset.

Figure 1.  Box plots of evaluation metrics AUC, accuracy, sensitivity, and specificity obtained through tenfold 
cross-validation on the test data. This figure presents the box plot of the evaluation metrics AUC, accuracy, 
sensitivity, and specificity obtained through tenfold cross-validation on the test data. Subfigure (a) illustrates 
the results for the Macular-OCT model, while subfigure (b) displays the results for the ONH-OCT model. 
The AUC values box plot reveals that, for both macular-OCT and ONH-OCT datasets, the 2D CNN model 
delivers superior overall results. Additionally, the 2D model yields robust results for other essential metrics 
such as accuracy and sensitivity. Among the 3D CNN models, the pre-trained 3D-ResNet18 outperformed 
the 3D-ResNet18 model trained from scratch. Notably, the 3D-CNN-Encoder exhibits superior performance 
compared to the 3D-ResNet18 models when tested on the ONH-OCT dataset, while delivering subpar 
performance on the macular-OCT dataset. AUC  area under the receiver operating characteristic curve, OCT 
optical coherence tomography, macular-OCT macural-OCT, ONH-OCT optic nerve head OCT.
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on the ONH-OCT dataset might potentially be attributed to a predisposition for overfitting. We suspect that 
this overfitting is due to the inherent complexity of the 3D models employed, compounded by the smaller size 
of the dataset and lower resolution of the images utilized in this study.

Moreover, the box plot analysis (as depicted in Fig. 1) of the AUCs obtained from the tenfold CV emphasizes 
the steadfast performance of the 2D model. This illustration also demonstrates an overall strong performance 
achieved by the pre-trained 3D CNN models compared to their counterparts trained from scratch. Therefore, 
a significantly larger dataset could greatly enhance the 3D model’s performance. Overall, as indicated by the 
results presented in Table 1 and Fig. 1 for the models tested in this study, the 2D-ResNet18 model consistently 
exhibited higher performance across both volumetric OCT datasets in the tenfold CV.

Discussion
Glaucoma, a prevalent neurodegenerative disease affecting millions worldwide, necessitates early and precise 
diagnosis to mitigate irreversible vision loss. OCT has emerged as a powerful tool in ophthalmology, offering 
detailed insights into ocular structures. In this study, we investigated the effectiveness of select 2D and 3D CNN 
algorithms for glaucoma detection using both macular and ONH OCT images.

Our findings demonstrate that the pre-trained 2D-ResNet18 model provides robust results when applied 
to volumetric OCT datasets. The consistent performance of the 2D-ResNet18 model on both macular-OCT 
and ONH-OCT datasets indicates its potential to improve diagnostic practices in ophthalmology, especially 
considering the scarcity of large glaucoma datasets or the lack of 3D-CNN models trained on extensive datasets. 
Notably, compared to the 3D-CNN models tested in this study, the 2D-ResNet18 model achieved the highest 
AUC scores of 0.960 and 0.943 on macular-OCT and ONH-OCT, respectively.

Furthermore, when considering the comparison between 2D and 3D CNN algorithms, it is beneficial 
to highlight several advantages of 2D-CNN models. 2D-CNN models encompass a wider array of available 
pre-trained models, decreased computational complexity in model training, easier to interpret and visualize 
intermediate model layers due to lower dimensionality, simplified data augmentation due to existing libraries and 
lower dimensionality, and enhanced scalability. Moreover, in light of data scarcity and appropriate pre-trained 
3D models, the application of 2D-CNNs is not only limited to glaucoma detection, it can be extended to other 
medical fields with reasonable accuracy and  performance31–33. Consequently, considering the results presented 
and the evident benefits of 2D algorithms, their significance cannot be underestimated in glaucoma detection.

Despite yielding robust results, this study is not devoid of limitations. For instance, our analysis indicated that 
the 3D-ResNet18 and 3D-DenseNet121 models exhibited severe tendencies towards overfitting when applied 
to the ONH-OCT dataset. These findings suggest that the inherent complexity of the model may not be ideally 
suited for this dataset, featuring a resolution of 64 × 64 × 128. Therefore, the study could have benefited from a 
higher resolution and larger ONH-OCT dataset. These outcomes reiterate the importance of model selection in 
achieving optimal performance.

Another limitation is the scarcity of the large OCT volume dataset and pre-trained state-of-the-art (SOTA) 
3D-CNN models. While it is plausible that a 3D model pre-trained on a comprehensive dataset could significantly 
enhance the model’s accuracy, further research is required. Therefore, in future studies, we intend to explore 
additional models and datasets as they become available. Additionally, we also plan to pre-train a 3D-CNN model 
from scratch by curating a substantial corpus of medical and other volumetric image datasets to improve models’ 
performance in smaller glaucoma-specific volumetric datasets. These will provide more comprehensive insights 
into the comparative performance between 2D and 3D-CNN counterparts. Nevertheless, based on the publicly 
available glaucoma datasets and the ML resources readily available at our disposal, it is evident that 2D-CNN 
algorithms consistently deliver better results in glaucoma detection compared to the 3D-CNN algorithms and 
the weight transfer method utilized in this study for these datasets.

In conclusion, our investigation provides a thorough understanding of the strengths of 2D and 3D-CNN 
architectures in OCT-based glaucoma detection. Despite the loss of volumetric information in each 2D B-scan 
derived from the OCT volume; the 2D-CNN model still provides robust results by aggregating the prediction 
of all B-scans. The higher accuracy of 2D-CNN models underscores their potential to drive advancements in 
glaucoma diagnosis and management, especially considering the scarcity of pre-trained 3D CNN models trained 
on adequately large datasets and the constraints posed by the smaller sizes of glaucoma-specific datasets. It is 
also essential to emphasize that while the 2D approach yields excellent results, the selections of 2D and 3D ML 
algorithms are inherently problem-specific, demanding continuous efforts for ongoing progress. Therefore, by 
shedding light on the comparative performance of select 2D and 3D-CNN models on these smaller glaucoma 
datasets, our research aids in refining diagnostic tools in ophthalmology by highlighting the robust performance 
of 2D-CNN models and providing probable future direction to improve the performance of 3D-CNN models, 
thus, making a significant stride towards improving glaucoma detection techniques.

Materials and methods
Macular OCT data
For the macular-OCT dataset, we utilized the UKB  dataset30, an ongoing project comprising health records of 
over half a million individuals aged between 40 and 70 years. Within this extensive dataset, a subset of spectral 
domain macular-OCT images was released for approximately 87,000 participants, captured between 2009 to 
2013 using the TOPCON 3D OCT 1000 Mk2 device. Each OCT volume consists of 128 B-scans, of which each 
represents a 512 × 650 pixel grayscale image. As the B-scan index advances from 0 to 127, the OCT B-scans 
progressively shift from the superior region down to the inferior region. Our access and use of the UKB data 
were approved under application #23424 in accordance with their Access Procedures and Ethics regulations. We 
obtained fully de-identified data. Informed consent was obtained from the participants for their participation 
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in the study by the UKB Committee upon recruitment. The study protocol was approved by The North West 
Multi-centre Research Ethics Committee.

In our cohort selection, we extracted participants with OCT scans from the UKB dataset consisting of both 
glaucoma cases and healthy individuals. Glaucoma cases were identified by the ICD-10 code H40.1, indicative 
of primary open-angle glaucoma (POAG). The healthy participants in our study had not reported any glaucoma 
or other eye-related conditions. Building upon previous research, we further refined our selection of healthy 
participants by excluding those who reported secondary health issues, such as high blood pressure or obesity, 
and those whose visual acuity was reported worse than 20/30 on the logMAR chart. After these exclusions, 
our dataset comprised of 255 individuals with glaucoma (~ 448 eyes) and 2,812 healthy participants (~ 5,619 
eyes). For our research, we randomly chose 765 healthy individuals (about three times the number of cases 
encompassing ~ 1,530 eyes) from the healthy group and incorporated all 255 participants diagnosed with POAG. 
Figure 2 displays the age and sex distribution of the study sample.

Optic nerve head OCT data
For the ONH-OCT, we utilized the publicly available OCT image dataset provided by Maetschke et al.22. This 
ONH-OCT dataset contains a collection of 1110 OCT volumes derived from 624 patients, imaged using a Cirrus 
SD-OCT Scanner (Zeiss, Dublin, CA, USA), focusing on the ONH region. Each publicly available OCT volume 
corresponds to a down-sampled version of 64 × 64 × 128 voxels, originating from the 200 × 200 × 1024 voxel 
dimensions. The dataset includes 263 scans representing healthy individuals and 847 cases were attributed to 
primary open-angle glaucoma (POAG) based on the provided labels. Demographic information, such as gender 
and race distribution, as well as mean values and standard deviations for patient age, intraocular pressure, and 
visual field test results, have previously been  reported22.

Train, validation, and test splits
We employed a tenfold cross-validation (CV) strategy to train and assess the performance of 2D and 3D-CNN 
algorithms on the macular-OCT and ONH-OCT datasets. Within each fold, we used stratified splitting to ensure 
a balanced representation of healthy and glaucomatous individuals and partitioned the dataset into 80% for 
training, 10% for validation, and 10% for testing. Special precautions were taken to ensure that data from eye 
images of a single individual were allocated to the same data split.

Data preprocessing
Before model training, each B-scan and OCT volume underwent a series of preprocessing steps. Initially, 
images were cropped and resized to 224 × 224 pixels to align with the specifications of models pretrained on the 
ImageNet1k dataset. This was followed by standardizing the images to ensure their intensity ranges matched 
those of the images used for pretraining. To enhance the models’ ability to generalize, data augmentation 
techniques were employed, such as random horizontal and vertical flips, rotations, and translations. While the 
data augmentation and preprocessing pipeline was similar for both 2D and 3D models, special attention was 
given to ensure that all slices within a given volume underwent identical augmentations during the training of 
3D models.

2D Models
The primary DL architecture chosen for our 2D model is ResNet18, a convolutional neural network consisting 
of 18 deep layers. ResNet18 is part of the ResNet (Residual Network) family, known for its utilization of residual 
 blocks27,28 to address the vanishing gradient problem common in deep models, thereby facilitating the training of 
very deep networks. The selection of ResNet18 is driven by its relative simplicity and efficiency in model training 

Figure 2.  Age and sex distribution of the UKB study sample. The figure demonstrates the age and sex 
distribution present within the glaucoma (cases) and non-glaucoma (controls) individual in the UKB dataset.
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and previously demonstrated robust performance in disease  detection34,35. This choice enhances its resistance to 
overfitting when working with smaller datasets.

Our model begins with training on all B-scans (i.e., 128 for macular-OCT and 64 for ONH-OCT) collectively 
to generate per-B-scan glaucoma predictions. To achieve this, we consolidate each volume to match the 
corresponding number of B-scans and labeled each B-scan accordingly based on the labels of the OCT volume. 
As a result, after model training, the model can provide glaucoma predictions on a per-B-scan basis, rather than 
at the volume level. Therefore, these predictions are then aggregated using  XGBoost36 to obtain final glaucoma 
prediction. We implemented the DL model using the PyTorch framework in Python and utilized a pre-trained 
ResNet18 model trained on the ImageNet1K dataset as the foundation for our architecture. The DL framework 
used in this work is depicted in Fig. 3.

During the fine-tuning process, we adopted a batch size of 64 and employed the Adam optimizer with an 
initial learning rate of 0.001 and an epsilon value of 0.1. The model underwent 50 epochs of training, with the 
best-performing model being determined based on the lowest loss observed in the training phase. For loss 
calculation, we employed the binary cross-entropy (BCE) loss function.

XGBoost
To aggregate the results from all available OCT B-scan predictions obtained from the 2D model, XGBoost was 
trained and validated with a split between training and validation data. The hyperparameters for the macular-
OCT-based XGBoost model were set as the following learning rate 0.01, maximum depth 3, subsample 0.7, alpha 
0.1, and lambda 0.5. Similarly, the hyperparameters for the ONH-OCT-based XGBoost model were learning rate 
0.01, maximum depth 3, subsample 0.7, colsample_bylevel 0.2, alpha 0.1, and lambda 0.5. Each XGBoost model 
was trained for 2000 epochs, and the best model was selected based on the lowest BCE loss.

3D‑models
In this study, we explored two distinct 3D architectures: the 3D-ResNet18, 3D-DenseNet12129, and the 3D-CNN-
Encoder. The 3D-ResNet18 and 3D-DenseNet121 are three-dimensional adaptations of their 2D counterparts, 
specifically designed to leverage the unique strengths of each architecture in volumetric contexts. In contrast 
to ResNet18, which utilizes residual connection, DenseNet121 employs a dense connectivity approach, directly 
linking each layer to every other, ensuring maximum information flow and excelling in detail-rich feature 
recognition due to its 121-layer  depth29. To develop the 3D version, we replaced the 2D layers of the original 
model with 3D counterparts, maintaining the original model’s essence but increasing the dimensionality. Transfer 
learning was also utilized; by employing dimensionality expansion, we adapted pretrained weights from the 
2D CNN model to fit the 3D  counterparts24–26. The weight transfer technique employed in this study mirrors a 
strategy elucidated by Ebrahimi et al.24, wherein they leveraged dimensionality expansion to iteratively replicate 
2D CNN weights into their 3D equivalents. Xue et al.25 also utilized a similar weight transfer technique to enhance 
the performance of their 3D model. In both works, comprehensive training of all layers was undertaken. Given 
the inherent approximations associated with the adaptation of 2D weights to a 3D model, it is recommended 
to train all layers for optimal results. Moreover, Ebrahimi et al.24 and Xue et al.25 trained their models on 264 
and 263 volumetric images, respectively, achieving robust results. This illustrates the weight transfer technique’s 
success in training full models effectively on smaller datasets.

The 3D-CNN-Encoder architecture, depicted in Fig. 3b, is based on the foundational framework described 
in Maetschke et al.’s  study22. This model consists of five convolutional layers, each incorporating a batch 
normalization layer, with the first layer including both a max pool and a batch normalization layer. Kernel sizes 
for these convolutional layers are set at 7 for the first, 5 for the second, and 3 for the others. The max pooling layer 
follows with a kernel size of 1 and a stride of 2. Each batch normalization is succeeded by a ReLU activation layer. 
The architecture concludes with a global average pooling layer feeding 32 features into the final fully connected 
layer, which is then used for predicting glaucoma.

During the fine-tuning process, we noticed that the hyperparameters for model training on both datasets 
converged to similar values. Consequently, we employed a batch size of 16 for both the 3D-ResNet18 and 
3D-DenseNet121 models and a batch size of 64 for the 3D-CNN-Encoder model, all utilizing the Adam 
optimizer. The learning rates were set at 1e-5 for both the 3D-ResNet18 and 3D-DenseNet121 models and at 
0.001 for the 3D-CNN-Encoder model, respectively. Each of these 3D models underwent 50 epochs of training, 
and we selected the best model based on achieving the lowest BCE loss.

Performance metrics
The performance of the model was evaluated using a comprehensive set of metrics, including accuracy, sensitivity, 
specificity, and the area under the receiver operating characteristic curve (AUC-ROC). To generate ROC curves, 
we used the ‘roc_curve’ function from scikit-learn to plot the true positive rate (sensitivity) against the false 
positive rate (1-specificity) at various threshold settings. To determine the accuracy, sensitivity, and specificity 
of the model, we utilized the Youden  Index37, which identifies the best balance between sensitivity and specificity 
for each model and each particular dataset. However, the Youden Index does not generalize effectively across 
different datasets and models. For this reason, it was utilized in this study primarily to support the results 
qualitatively, rather than serving as a definitive tool for validating the model’s performance.
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(a) Deep learning framework for 2D and 3D CNN models.

(b) Architecture of the 3D-CNN-Encoder model used in this study.

Figure 3.  Deep learning framework utilized with the 2D and 3D CNN models. This figure illustrates the deep 
learning (DL) framework utilized with the 2D and 3D CNN models. Subfigure (a) displays the DL framework 
employed in this study, encompassing a data preprocessing pipeline, responsible for both data preprocessing and 
augmentation before the images are input into the model. Following this, a DL backbone (specifically, ResNet18 
sourced from PyTorch’s torchvision library) is used for feature extraction, culminating in a final fully connected 
layer dedicated to glaucoma prediction. In contrast, subfigure (b) showcases the 3D-CNN-Encoder model, 
which is built from scratch and structured around five convolutional layers and a fully connected layer for the 
final prediction. DL deep learning, CNN convolutional neural network, OCT optical coherence tomography.
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Data availability
The data used in this paper is publicly available except the UKB data which was obtained via contract using 
application ID #23424. Applications to access the data can be completed at: https:// www. ukbio bank. ac. uk/ enable- 
your- resea rch/ apply- for- access. Informed consent was obtained from the participants for their participation 
in the study by the UKB Committee upon recruitment. The study protocol was approved by The North West 
Multi-centre Research Ethics Committee.
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