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Fine‑tuning digital FIR filters 
with gray wolf optimization 
for peak performance
Anand R 1*, Sathishkumar Samiappan 2,4 & M. Prabukumar 3,4

The design of optimum filters constitutes a fundamental aspect within the realm of signal processing 
applications. The process entails the calculation of ideal coefficients for a filter in order to get a 
passband with a flat response and an unlimited level of attenuation in the stopband. The objective 
of this work is to solve the FIR filter design problem and to compare the optimal solutions obtained 
from evolutionary algorithms. The design of optimal FIR low pass (LP), high pass (HP), and band stop 
(BS) filters is achieved by the utilization of nature‑inspired optimization approaches, namely gray 
wolf optimization ,cuckoo search, particle swarm optimization, and genetic algorithm. The filters 
are evaluated in terms of their stop band attenuation, pass band ripples, and departure from the 
anticipated response. In addition, this study compares the optimization strategies applied in the 
context of algorithm execution time which is achievement of global optimal outcomes for the design 
of digital finite impulse response (FIR) filters. The results indicate that when the Gray wolf algorithm 
is applied to the development of a finite impulse response (FIR) filter, it produces a higher level of 
performance than other approaches, as supported by enhanced design precision, decreased execution 
time, and achievement of an optimal solution.

Filtering is typically the most intricate procedure employed in signal processing. In digital signal processing, 
filters change the spectrum of the input signal so that the output signal has the right spectrum properties. Digital 
filters are widely used because they have linear phase characteristics, work accurately, are stable at high tempera-
tures, can be changed with a programmable processor, can multiplex, log data, and can be used over and over 
again. They can work with both real-time and stored data and can be built in both hardware and  software1. There 
are two types of digital filters: finite impulse response (FIR) filters and infinte impulse response (IIR) filters. If 
there is no need for phase shift, FIR filters are the best choice to choose. FIR filters are also naturally stable systems 
that aren’t as affected by the limited word length effect. On the other hand, IIR filters have fewer factors, use less 
memory, and are used when there needs to be a sharp cut-off2. Unlike the design of IIR filters, the design of FIR 
filters is not related to the design of analogue filters. The design of FIR filters is primarily focused on directly 
approximating the given magnitude response, while also typically requiring the phase response to be linear. The 
transfer function H(z) of length N + 1 is a causal Finite Impulse Response (FIR) polynomial of degree N, where 
z−1 represents the backward shift operator is shown in Eq. (1).

A sequence x(n) with a finite duration and length N+1 can be fully described by N+1 samples of its discrete 
Fourier transform X(e−jw) . Therefore, it is feasible to create a FIR filter by determining N+1 samples of its 
frequency response or impulse response h(n), resulting in a filter length of N+1. The conditions for the linear 
phase design are as follows:

Researchers have devised and implemented heuristic evolutionary optimization  algorithms3 in accordance with 
the principles of natural selection and evolution. The genetic algorithm optimization (GAO), which was intro-
duced in 1975, is a class of probabilistic search algorithms designed for general purposes. It draws inspiration 
from natural genetic populations and aims to evolve solutions to optimization and search problems with a high 
degree of success. Substantial effort has been dedicated to the construction of optimum filters using GAO and 
its  variations4. PSO has the ability to handle functions that are not differentiable and have many  objectives5,6 and 

(1)h(n) = ±h(N − n)
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guarantees global solutions. Developed in 1996, differential evolution (DE) is an additional stochastic, popula-
tion-based optimization  technique7,8. Methods for designing FIR filters utilizing the DE algorithm are detailed 
in  reference9. An additional bio-inspired algorithm is cuckoo search optimization (CSO), which was introduced 
in 2007 and is more versatile by incorporating the intelligent foraging behavior and intriguing characteristics of 
a honey bee swarm in its quest for  sustenance10,11. Cuckoo-search optimization (CSO) is one of the most recent 
meta heuristic optimization techniques inspired by nature; it was created in  200912,13. Recent research suggests 
that among several nature-inspired algorithms, CSO is the most efficient optimization tool for solving structural 
engineering  challenges14,15.

Mirjalili et al.16 introduced the GWO, a novel meta heuristic algorithm that emulates the natural hunting 
mechanism and social hierarchy of grey wolves. The algorithm consists of three primary stages: encircling prey, 
pursuing prey, and attacking prey. The mathematical representation of the leadership hierarchy of wolves des-
ignates the ideal option as alpha, with the second and third optimal alternatives being represented as delta and 
beta, respectively. The remaining possible solutions are assumed to be  omega17.

An exhaustive and integrated examination of GWO is utilized to design a FIR LP, HP, and BS filter in this 
article. By utilizing a comparable design methodology, it is possible to modify these filters to create a additional 
FIR filters like band pass filter. The process of developing an ideal filter entails determining the filter coefficients 
that generate a passband ripple response of minimal magnitude and a stopband attenuation that is of significant 
magnitude. This is determined by the coefficients that are computed using  GWO17. A comparative analysis is con-
ducted between the designs and alternative bio-inspired optimization techniques, namely PSO, CSO, and GAO.

The structure of this research work as follows. Section refs2 delineates the mathematical formulation of the 
problem pertaining to the design of the FIR filter with cost function estimation. The algorithms utilized in the 
design of the FIR filter are the subject of Section refs3, which also describes the implementation of these algo-
rithms that are specific to the problem at hand. Section refs4 describes the results and analysis of the simulations 
that were conducted. Section refs4 provides a detailed analysis of the effectiveness of FIR filters and an update 
on the progress of GWO in compared to other algorithms. Section refs5 provides the concluding remarks for 
the entire endeavor.

Classification of finite discrete length sequences
Derived from the principles of geometric symmetry
Geometric symmetry is a significant factor in digital signal processing applications, as evidenced by the utilization 
of finite discrete samples. There are two types of geometric symmetric are used: (i) N-point symmetric and (ii) 
N-point anti-symmetric18,19. The following condition should be satisfies for a length N-point symmetric response:

The following condition should be satisfies for a length N-point anti-symmetric response:

where N can be either even or odd samples, based on N values the 4 different types of geometric symmetric 
condition are formed. Figure 1 shows the four types of geometric symmetry with center for symmetry.

From the Fig. 1, In the cases of type 1 and type3 sequences, the point of symmetry lines up with one of the 
samples in those sequences. This is why it is called “whole-sample symmetry.” For type 2 and type 4 sequences, on 
the other hand, the point of symmetry is in the middle of two center samples, which is why this type of symmetry 
is called “half-sample symmetry.” Thus, sequences of types 1, 2, 3, and 4 are called whole sample symmetric, half 
sample symmetric, whole sample anti-symmetric, and half sample anti-symmetric,  respectively20.

Type 1: symmetric sequence with N=odd
Type 1 linear phase odd length sequence, the corresponding Fourier transform of the sequence is shown in Eq. 
(4),

Type 1: symmetric sequence with N=even
Type 2 linear phase even length sequence, the corresponding Fourier transform of the sequence is shown in 
Eq. (5),

Type 3: anti‑symmetric sequence with N=odd
Type 3 linear phase even length sequence, the corresponding Fourier transform of the sequence is shown in 
Eq. (6),
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Type 4: anti‑symmetric sequence with N=even
Type 4 linear phase even length sequence, the corresponding Fourier transform of the sequence is shown in 
Eq. (7),

Consequently, the FIR filter design error function possesses L+2 or L+3 extrema, where L denotes the greatest 
limit of symmetry. Usually, extra ripple (side lobe) filters are those that have more than L+2 changes or ripples 
in their form. We can raise the number of the filter to get rid of the ripples. But as the order goes up, it may take 
longer and be more difficult to build the structures. So, we came up with a new way to cut down on the ripples 
and improve the performance of the FIT filter design using meta-heuristic  optimizations21,22.

Cost function estimation for high pass and band pass FIR filter
In this paper, we  used23 cost function for high pass filter is modified as  follows24:

where, α = N−1
2

 , Ep and Es is the pass and stop band error for low pass FIR filter which can be formulated by [];
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(8)φ = α × Ep + (1− α)× Es

(9)Es = bTCb

Figure 1.  (a) Type 1: Order =11 (b) Type 2: Order=10 (c) Type 3: Order=11 (d) Type 4: Order=10.
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where, b is the symmetric sequences, stop band error has two coefficients P and Q are to be calculated by:

In case of pass band error C are calculated by:

In case of band stop filter, the FIR filter cost function can be defined as:

where, Es1 and Es2 as same as discussed previous, only limit has to consider for the same. Here, the goal of this 
work is to reduce the side lobe and reduce the transition  band25.

Grey wolf optimization
Grey wolf optimization (GWO) is a meta-heuristic algorithm proposed initially in 2014 by  Mirjaliali16. Grey 
wolves employ this method of locating the optimal solution through the use of social hierarchy and foraging 
 strategies17. This grey wolf has the advantages of being loyal to pack members, working together in a pack, and 
being a dominant pack leader. The wolf helps to find the decision-making of the optimal bands. GWO algorithm 
mimics the leadership and hunting mechanism of grey wolves which is shown in algorithm 1.

The Mathematical model of GWO algorithm is discussed in following steps: (i) Convergence of social hier-
archy and hunting strategy. (ii) Find fitness solution of Alpha (α) wolf. (iii) Find the second and third best fit 
solution, Beta (β) and Delta (δ) wolves respectively. (iv) Finally, Omega (ω) of these three  wolves16. Grey Wolf 
encircle the prey during hunting and so, encircling model behavior is shown in Eqs. (15) and (16),

where, t is the iteration, 
{

Xp

}

 is location of the pray, {X} is the wolf position location and {A} {C} are coefficient 
vectors. It has the value of A = 2× a× {r1} − a and C = 2× r2 respectively. Here {r1}, {r2} , are random vectors 
that range from 0 to 1 and The component exhibits a linear drop from 2 to 0 during the iterations, enabling the 
wolf to attain any location within the range of the two  spots14.

Algorithm 1.  FIR filter design using GWO.

Finally, the position of the grey wolves is shown in Eq. (17), and the flow chart of GWO optimization is 
shown in Fig. 2.
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Proposed methodology
A summary is provided of the procedures followed in order to address the filter design problem using gray wolf 
optimization (GWO). In the process of designing FIR LP, HP, and BS filters, respectively, the error target functions 
(fitness functions) specified in Eqs. (6) and (7) are utilized to evaluate each potential solution. To make a Nth 
order FIR filter, the best way to solve this problem is to get N+1 symmetric filter coefficients. This is made sure 
of by setting the symmetry condition on the coefficients that need to be improved. For symmetric coefficients, 
h(n) = h(N − 1− n) , and h(n) = −h(N − 1− n) for anti-symmetric coefficients. The range of values for n is 0 
to N. This means that the filter that was built has a linear phase  response2.

Filter design using GWO
The subsequent procedures for implementing the Grey Wolf Optimization (GWO) algorithm for the design 
challenges of Finite Impulse Response (FIR) filters are outlined. The equations represent the objective functions 
of the cost estimation, as indicated by Eqs. (8) and (14), which are assessed at each iteration for the potential 
solutions in the construction of FIR filters. The adaptive values of a and A determine the parameter values of 
gray wolf population and exploration and exploitation. These two factors are dynamically adjusted and facilitate 
a seamless transition between exploration and exploitation. When decreasing the value of A, the first half of the 
values will be dedicated to exploration, while the remaining values will be focused on exploitation. The proposed 
flow are described in the Fig. 3. There will be only two ways to improve the GWO performance by adjusting a 
and C. The following steps are to followed to find the optimal FIR filter coefficients.

Step 1: Augment the gray wolf population by 100, a= [0, 1], c= [0, 2] and A= [0, 1] and maximum objective 
function is fixed as − 1. +1 for LPF and BSF. We assume that number of iterations as N=4000.

Step 2: Assume an initial population randomly, where each individual represents a set of variable filter coef-
ficients x=[x0, x1, x2…xN]. The variable x denotes the collection of N+1 filter coefficients that are to be 
improved.

Step 3: Calculate the gray wolf fitness functions of the wolves that were randomly created initially, as well as 
the objective function in Eqs. (8) and (14) at iteration i.

Step 4: Produce a novel solution utilizing the hunting position model as depicted in the Eqs. (9) and (10).
Step 5: Remove the wolves with the lowest fitness values based on the probability and create a new wolf.
Step 6: Calculate gray wolf the fitness functions of all the new wolves and update the best wolves (best filter 

coefficient).
Step 7: Continue executing steps 2 to 6 iterative until the last iterations of the cost function, resulting in the 

acquisition of the best wolves and their corresponding optimal filter coefficients, denoted as x.

The process of configuring algorithm control parameters is a formidable challenge. The nature of the problem at 
hand renders it an optimization problem, and the algorithm’s efficacy might be significantly impacted in relation 
to the specific problem being addressed. In the existing body of literature, there is a lack of a specific and clearly 
defined approach for the task at hand. The process of optimizing parameters. Researchers conducted comprehen-
sive simulations using several sets of parameter values as indicated in their study. The concept of “range” refers 
to the extent or scope of something. It is often This paper use a similar  methodology13. Conducting numerous 
simulations with minor adjustments to the values of the control parameters, while adhering to the specified range 
indicated in the study. According to the  literature18, in this study, the selection of parameters for each algorithm 
is conducted subsequent to thorough analysis and evaluation. Several simulations were conducted using a range 
of values as described in the previous research. The filter design method is outlined in Table 1.

Figure 2.  Flow chart of GWO.
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In the context of genetic algorithms (GAO), the selection process is carried out by employing a tournament 
operator with a size of 6. This approach enhances the effectiveness of the selection process by providing a selection 
pressure, so enabling the identification of the most optimal individual. The recommended crossover probability 
falls within the range of 0.6 to 0.95. In this particular case, it has been set to 0.8. This choice is based on the obser-
vation that the algorithm consistently converged within a significant number of iterations when the crossover 
probability was below this value. Conversely, increasing the crossover rate resulted in premature convergence. 
The mutation probability varies between 0.001 and 0.05. The solution exhibits reduced disturbance when low 
values are utilized, whereas a high mutation rate provides increased diversity. In this study, a fixed mutation rate 
of 0.01 is employed to augment the capacity for exploration. In order to achieve efficient exploration perfor-
mance, PSO algorithm parameter are typically adjusted to a value of 2. The observed range of particle velocity 
is determined to be within the interval [0, 1]. The higher success rate of CSO can be attributed to its reliance on 
a limited number of parameters. The study reveals that no fine-tuning is necessary, and the CSO method is not 
affected by any modifications in the parameters pa and  dimensions14. When pa is equal to 0.25, a set portion of 
one-fourth of the time is allocated for the exploitation process, while the remaining three-fourths are dedicated 

Figure 3.  Flow chart of proposed methodology.

Table 1.  Parameters for controlling the design of a finite impulse response (FIR) filter.

Parameters Symbol PSO CSO GA MFO WOA BBA GWO

Population size dim 100 100 100 100 100 100 100

Iteration N 4000 4000 4000 4000 4000 4000 4000

Filter coefficients − 1, +1 − 1, +1 − 1, +1 − 1, +1 − 1, +1 − 1, +1 − 1, +1

Parameters
C1, C2 for PSO
A, C for CSO
α,β , δ for GWO

2, 2 2, 2 2, 2 2, 2 2, 2 2, 2

Particle velocity vmin , vmax 0.01, 0.2 – – –

Inertia weight W 0.2 – – 0.2 –

Discovering rate Pa – 0.25 – 0.25 0.25 0.5

Mutation rate Adaptive value 0.01 2
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to exploring the search space in pursuit of a global solution. This ensures the fulfillment of the global optimal 
criterion with a greater likelihood. For GWO, mutation rate is fixed on 2 based on  literature13 with discovering 
rate of 0.5. In terms of learning parameters, A is between [0,2] and C value fixed by 1. For all the case, limits of 
filter coefficients are fixed, − 1, +1 for LPF and BSF respectively.

Experimental Results
The evaluation of the performance of the FIR filters that have been built using various evolutionary algorithms 
(EA) is conducted through the analysis of the filter function, efficiency, and the execution time of the algorithms. 
The simulations were performed using MATLAB 2023A on a computer system featuring an Intel Core i3 CPU 
operating at a frequency of 2.3 GHz and 8 GB of RAM. The results presented in this study were derived from an 
extensive series of approximately 30 simulation trials, wherein the parameters were randomly altered. To ascertain 
the efficacy of the optimally constructed filter via Grey Wolf Optimization (GWO) and other meta heuristic opti-
mization techniques, we also adopt the standard Parks McClellan’s (PM) technique, which is commonly utilized 
for designing equiripple filters, for the sake of comparison. The collection of solutions in which the lowest fitness 
value is attained is documented as the optimal solution. Table 1 presents the governing parameters for the four 
algorithms, namely CSO, PSO, GA, and  GWO13.

Low pass FIR filter
The following are the FIR design specifications: The filter order is represented by N = 18 and 19, respectively, 
and the cut-off frequency is indicated by ωc = 0.34 . The cost objective function for the algorithms employed in 
this work is denoted by Eqs. (1) to (4). The derived optimal filter coefficients for the 20th and 21st order FIR) 
Low pass filter utilizing Particle Swarm Optimization (PSO), Cuckoo Search Optimization (CSO), Genetic 
algorithm Optimization (GAO), and Grey Wolf Optimization (GWO) approaches are described from Tables 2, 
3  respectively. Table 4 shows the qualitative analysis for 21st order low pass FIR filter and compared with 6 dif-
ferent metaheuristic optimization algorithms.  

The Fig. 4 for 20th order and 5 for 21st order shows a graphical comparison of the magnitude response of the 
designed FIR low pass filter. The plot clearly demonstrates that GWO possesses the highest capacity to reduce 
signal strength in the stopband region. The filters are defined principally by their levels of lowest stop band 
attenuation (Astop) and maximum passband attenuation (Apass). These measures are given in Table 4 for 20th 
order and 5 for 21st order FIR low pass filters. From this Table 4,It has been discovered that a GWO produces 
the lowest stopband attenuation of − 36.59dB in comparison to PSO (− 16.06dB), GAO (− 14.40dB) and CSO 

Table 2.  For N=18, 19th order coefficients with symmetric values.

Optimization Coefficients PSO CSO GAO GWO

h(0)=h(19) 0.014325 − 0.00926 − 0.00257 0

h(1)=h(18) − 0.02002 0.01698 0.01406 0.00165

h(2)=h(17) − 0.02022 0.02894 0.03078 0.00736

h(3)=h(16) 0.01091 − 0.02545 − 0.02801 − 0.01010

h(4)=h(15) 0.00244 − 0.00845 − 0.00916 − 0.00449

h(5)=h(14) − 0.08648 0.40421 0.42748 0.26741

h(6)=h(13) − 0.17510 1.02628 1.06199 0.80239

h(7)=h(12) − 0.12731 0.87674 0.89216 0.77428

h(8)=h(11) 0.07381 − 0.56386 − 0.56739 − 0.53934

h(9)=h(10) 0.26580 − 2.13600 − 2.13748 − 2.12551

Table 3.  For N=19, 20th order coefficients with symmetric values.

Optimization Coefficients PSO CSO GAO GWO

h(0)=h(18) 0.10568 0.03232 0 1.32106

h(1)=h(17) − 0.03585 − 0.03179 − 0.00380 − 0.33290

h(2)=h(16) − 0.15768 − 0.17322 − 0.04275 − 0.84045

h(3)=h(15) 0.00486 0.00542 0.00204 0.01570

h(4)=h(14) − 0.39200 − 0.42598 − 0.21980 − 0.85196

h(5)=h(13) 1.29051 1.36261 0.89864 2.08189

h(6)=h(12) 1.48673 1.53286 1.2164 1.93082

h(7)=h(11) − 4.50701 − 4.56827 − 4.12587 − 5.05055

h(8)=h(10) − 0.98409 − 0.98740 − 0.96270 − 1.01217

h(9) 6.47714 6.47715 6.47714 6.47714
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(− 12.20dB). However, the maximum passband attenuation of GWO is 0.03dB, which is minimum from all the 
other method and same for Table 5 also. In terms of execution time, it is taking very less time to compute the 
filter coefficients compared to other methods. This is due to the GWO algorithm has better computing perfor-
mance and it has capability to work together in a pack of symmetry coefficients with very less convergence rate.

The stopband attenuation coefficients of the developed FIR low pass filter are presented in Tables 6 and 7. 
As seen in Table 6, the average value of the GWO based FIR low pass filter is significantly low, which indicates 
the consistent performance of the stopband region. The same observation applies to Table 7. The magnitude 
response of the suggested filter is depicted in Figs. 4 and 5. From these figures, GWO shows better performance 
with very less discontinuity of the FIR filter whereas PSO, GAO and CSO has the moderate discontinuity and 
almost all the optimization has same magnitude of overshoot. The maximum normalized passband ripple of FIR 
low pass filter of GWO is 0.0129 for 21st order filter and 0.0769 for 20th order filter, which makes a overshoot 
of 0.0041% above the ideal response.

Table 4.  Qualitative analysis for 21st order low pass FIR filter.

Algorithm Minimum stopband attenuation (db) Minimum stopband attenuation Execution time (sec)

GWO − 33.47 0.03 0.374

PSO − 20.37 0.57 3.1518

GAO − 16.57 0.36 3.414

CSO − 16.24 0.79 0.4236

MFO − 22.41 0.45 0.524

WOA − 19.47 0.09 0.914

BBA − 24.79 0.37 1.754

Figure 4.  Magnitude response for the 21st order FIR Low pass filter.

Table 5.  Qualitative analysis for 20th order low pass FIR filter.

Algorithm Minimum stopband attenuation (db) Minimum stopband attenuation Execution time (sec)

GWO − 36.59 0.03 0.371

PSO − 16.06 0.46 3.471

GAO − 14.40 0.30 3.14

CSO − 12.20 0.94 0.4214

MFO − 17.41 0.14 0.471

WOA − 20.85 0.47 0.547

BBA − 12.43 0.65 1.987



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:12675  | https://doi.org/10.1038/s41598-024-62403-6

www.nature.com/scientificreports/

High pass FIR filter
The design specifications are outlined as follows: The filter order is denoted as N = 18 and 19, while the cut-off fre-
quency is represented as ωc = 0.34 . The cost objective function for the FIR high filter design algorithms utilized in 
this study is represented by Eqs. (1) to (4). The function is assessed at each iteration to find an optimal solution 8.

The Figs. 6 and 7 clearly describes that GWO has the maximum ability of attenuating signal in stopband 
region. These measures are given in Table 8 for 20th order and 9 for 21st order FIR high pass filters. From this 
Table 9, its observed that a GWO yields the minimum stopband attenuation of − 31.80dB in comparison to PSO 
(− 6.58dB), GAO (− 7.66dB) and CSO (− 5.40dB). However, the maximum passband attenuation of GWO is 
0.07dB, which is minimum from all the other method and same for Table 8 also. In Tables 10 and 11 shows a 
stopband attenuation coefficients of the designed FIR high pass filter. As indicated in Table 10, the mean value 
of the GWO based FIR high pass filter is significantly low, which indicates the consistency of the performance 
in the stopband region. The same observation applies to Tables 4, 7. The magnitude response of the developed 
filter is depicted in Figs. 6 and 7. Based on the data, it can be observed that GWO exhibits superior performance 
with little discontinuity in the FIR filter. On the other hand, PSO, GAO, and CSO have moderate levels of dis-
continuity. Additionally, all optimization methods exhibit similar levels of overshoot. The FIR high pass filter of 

Table 6.  Quantitative analysis for 21st order low pass FIR filter.

Algorithm Maximum Mean Variance Standard deviation

GWO 0.0128 0.0108 0.0001 0.0003

PSO 0.0891 0.0748 0.0005 0.0020

GAO 0.0931 0.0782 0.0005 0.0021

CSO 0.0783 0.0658 0.0004 0.0017

MFO 2.5484 2.1407 0.0145 0.0563

WOA 0.1405 0.1180 0.0008 0.0031

BBA 1.0931 0.9182 0.0062 0.0241

Table 7.  Quantitative analysis for 20th order low pass FIR filter.

Algorithm Maximum Mean Variance Standard deviation

GWO 0.0796 0.0669 0.0005 0.0018

PSO 0.0513 0.0431 0.0003 0.0011

GAO 0.0546 0.0458 0.0003 0.0012

CSO 0.0429 0.0360 0.0002 0.0009

MFO 2.9401 2.4697 0.0167 0.0649

WOA 0.0748 0.0628 0.0004 0.0017

BBA 1.0546 0.8858 0.0060 0.0233

Figure 5.  Magnitude response for the 20th order FIR Low pass filter.
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GWO has a maximum normalized passband ripple of 1.8343 for a 21st order filter and 0.04378 for a 20th order 
filter. This results in an overshoot of 0.0037% above the optimal response.

Figure 6.  Magnitude response for the 21st order FIR High pass filter.

Figure 7.  Magnitude response for the 20th order FIR High pass filter.

Table 8.  Qualitative analysis for 21st order high pass FIR filter.

Algorithm Minimum stopband attenuation (db) Minimum stopband attenuation Execution time (sec)

GWO − 39.10 0.04 0.4124

PSO − 31.75 0.40 2.5518

GAO − 30.80 0.26 3.169

CSO − 30.02 0.57 0.4936

MFO − 30.67 0.47 0.879

WOA − 27.67 0.85 1.245

BBA − 26.58 0.94 1.4587
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Band stop FIR filter
The Band stop FIR filter designs specification are as follows, filter order will be 20th and 21st, the cut-off fre-
quency was fixed ωc1 = 0.35π and ωc2 = 0.73π . The objective fitness function of GWO is defined Eqs. (13) and 
(14). The optima filter coefficients are limited to a maximum of +1 and minimum of − 1.

The Fig. 8 for 20th order and 9 for 21st order for 21st order shows a graphical comparison of the magnitude 
response of the designed FIR low pass filter. These measures are given in Table 12 for 20th order and 13 for 21st 
order FIR band-stop pass filters. From this Table 13, its observed that a GWO produces the minimum stopband 
attenuation of − 28.65dB in comparison to PSO (− 20.37dB), GAO (− 15.05dB) and CSO (− 17.52dB). However, 

Table 9.  Qualitative analysis for 20th order high pass FIR filter.

Algorithm Minimum stopband attenuation (db) Minimum stopband attenuation Execution time (sec)

GWO − 31.80 0.07 0.3452

PSO − 6.58 0.46 2.917

GAO − 7.66 0.38 3.894

CSO − 5.40 0.97 0.3961

MFO − 18.41 0.54 1.414

WOA − 21.2 0.29 1.57

BBA − 8.54 0.65 1.987

Table 10.  Quantitative analysis for 21st order high pass FIR filter.

Algorithm Maximum Mean Variance Standard deviation

GWO 1.8343 1.5408 0.0104 0.0405

PSO 2.0508 1.7227 0.0116 0.0453

GAO 2.1061 1.7691 0.0120 0.0465

CSO 1.3803 1.1594 0.0078 0.0305

MFO 2.9258 2.4577 0.0166 0.0646

WOA 2.5807 2.1678 0.0146 0.0570

BBA 3.1061 2.6091 0.0176 0.0686

Table 11.  Quantitative analysis for 20th order high pass FIR filter.

Algorithm Maximum Mean Variance Standard deviation

GWO 0.0438 0.0368 0.0002 0.0010

PSO 0.0495 0.0416 0.0003 0.0011

GAO 0.0508 0.0427 0.0003 0.0011

CSO 0.0625 0.0525 0.0004 0.0014

MFO 1.8924 1.5896 0.0107 0.0418

WOA 0.1099 0.0923 0.0006 0.0024

BBA 1.0508 0.8827 0.0060 0.0232

Table 12.  Qualitative analysis for 21st order band pass FIR filter.

Algorithm Minimum stopband attenuation (db) Minimum stopband attenuation Execution time (sec)

GWO − 28.645 0.05 0.4714

PSO − 20.372 0.43 2.524

GAO − 15.045 0.28 3.424

CSO − 17.521 0.91 0.4956

MFO − 20.98 0.55 0.948

WOA − 29.12 0.14 1.414

BBA − 32.44 0.77 2.458
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Table 13.  Qualitative analysis for 20th order low pass FIR filter.

Algorithm Minimum stopband attenuation (db) Minimum stopband attenuation Execution time (sec)

GWO − 32.28 0.04 0.4714

PSO − 14.09 0.61 2.9874

GAO − 16.37 0.38 3.457

CSO − 10.47 0.70 0.5985

MFO − 14.24 0.77 1.214

WOA − 28.69 0.47 2.24

BBA − 15.42 0.98 2.101

Table 14.  Quantitative analysis for 21st order band-stop FIR filter.

Algorithm Maximum Mean Variance Standard deviation

GWO 1.3570 1.1398 0.0077 0.0300

PSO 1.2021 1.0097 0.0068 0.0265

GAO 1.5673 1.3165 0.0089 0.0346

CSO 0.7751 0.6511 0.0044 0.0171

MFO 1.8903 1.5878 0.0107 0.0417

WOA 1.7496 1.4697 0.0099 0.0386

BBA 2.5673 2.1565 0.0146 0.0567

Table 15.  Quantitative analysis for 20th order band-stop FIR filter.

Algorithm Maximum Mean Variance Standard deviation

GWO 1.4960 1.2566 0.0085 0.0330

PSO 0.9838 0.8264 0.0056 0.0217

GAO 2.2922 1.9254 0.0130 0.0506

CSO 0.6387 0.5365 0.0036 0.0141

MFO 1.7938 1.5068 0.0102 0.0396

WOA 1.4721 1.2365 0.0084 0.0325

BBA 3.2922 2.7654 0.0187 0.0727

Figure 8.  Magnitude response for the 21st order FIR Band-stop filter.
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the maximum passband attenuation of GWO is 0.05dB, which is minimum from all the other method and same 
for Table 12 also. In Tables 14 and 15 shows stop-band attenuation coefficients of the designed FIR band-stop 
pass filter. As seen in 14, The fact that the mean value in the GWO-based FIR band-stop pass filter is very low 
indicates that the performance of the stopband region is consistent, and the same for the Table 15. In Figs. 8 and 
9, the magnitude response of the designed filter is shown. From these figures, GWO shows better performance 
with very less discontinuity of the FIR filter whereas PSO, GAO and CSO has the moderate discontinuity and 
almost all the optimization has same magnitude of overshoot. The maximum normalized passband ripple of 
FIR band-stop pass filter of GWO is 1.357 for 21st order filter and 1.496 for 20th order filter, which makes an 
overshoot of 0.0046% above the ideal response.

This section provides a comprehensive analysis of the developed Finite Impulse Response (FIR) filter, high-
lighting the improvements achieved in the filter design (Low Pass Filter, High Pass Filter, Band Stop Filter) 
utilizing GWO compared to PSO, GAO, and CSO. The GWO design exhibits a higher percentage improvement 
in low pass filter characteristics compared to the other designs illustrated in Figs. 10 and 11. The GWO-based 
lowpass filter coefficients demonstrate a significant enhancement of 39.18%, 88.13%, and 5.93% compared to 
filters based on PSO, GAO, and CSO, respectively, in terms of achieving the least stopband attenuation. The 
greatest ripples created demonstrate an improvement of 51.49%, 11.07%, and 5.09% compared to the PSO, 
GAO, and CSO designs, respectively. Significant progress has been observed in the execution time of the low 

Figure 9.  Magnitude response for the 20th order FIR Band-stop filter.

Figure 10.  Percentage improvement in GWO compared with other optimization for 20th order low pass filter.
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pass filter design process, as depicted in Figs. 10 and 11. The GWO algorithm converges rapidly and terminates 
to identify an optimal coefficient. The GWO design exhibits a higher percentage improvement in high pass 
filter characteristics compared to the other designs illustrated in Figs. 12 and 13. The study demonstrates that 
the GWO-based lowpass filter coefficients outperform those based on PSO, GAO, and CSO by 18.8%, 83.83%, 
and 11.80%, respectively, in terms of achieving the smallest stopband attenuation. The greatest ripples created 
demonstrate an improvement of 23.23%, 16.45%, and 9.7% compared to the PSO, GAO, and CSO designs, 
respectively. Significant progress has been made in the execution time of the low pass filter design process, as 
depicted in Fig. 12. The GWO algorithm converges rapidly and terminates when it finds the optimal coefficient. 
The GWO design exhibits a higher percentage improvement in band pass filter characteristics compared to the 
other designs illustrated in Fig. 14. The GWO-based lowpass filter coefficients show a significant improvement 
of 28.88%, 81.32%, and 11.41% compared to filters based on PSO, GAO, and CSO, respectively, in terms of 
minimal stopband attenuation. The highest ripples achieved demonstrate an improvement of 38.83%, 4.88%, 
and 42.88% compared to the PSO, GAO, and CSO designs, respectively. Significant progress has been observed 

Figure 11.  Percentage improvement in GWO compared with other optimization for 21st order low pass filter.

Figure 12.  Percentage improvement in GWO compared with other optimization for 2oth order high pass filter.
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in the execution time of the low pass filter design process, as depicted in Fig. 15. The GWO algorithm converges 
more rapidly and terminates to discover an optimal coefficient.

The results of the study demonstrate a substantial enhancement in the design of HP and BS filters through 
the utilization of gray wolf optimization techniques. These filters exhibit a high level of accuracy and may be 
effectively implemented in many applications. The comparative analysis reveals that the proposed filter, developed 
utilizing the grey wolf optimizer (GWO), exhibits superior performance in comparison to the genetic algorithm 
optimizer (GAO)7, Particle Swarm Optimizer (PSO)11,23,26, and Cuckoo search optimizer (CSO), Moth flame 
(MFO), Whale optimization (WAO) and binary Bat optimization (BBA)13,24.

Conclusion
This study addresses the performance evaluation of constructed finite impulse response (FIR) filters, namely 
Lowpass, Highpass, and Bandstop filters, utilizing several metaheuristic algorithms, particularly PSO, GAO, CSO, 
and GWO. The goal of the design is to determine the filter coefficients that minimize the absolute relative error 

Figure 13.  Percentage improvement in GWO compared with other optimization for 21st order high pass filter.

Figure 14.  Percentage improvement in GWO compared with other optimization for 20th order Bandpass pass 
filter.
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between the filter’s response and the desired output. The solution that was observed demonstrates an effective 
design that meets the criteria of achieving a high level of attenuation in the stopband and maintaining a uniform 
response in the passband of a digital filter. To facilitate the design of Lowpass, Highpass, and Bandstop filters, 
it is possible to employ transformations on the provided design methodology. After conducting a comparative 
analysis of three optimization algorithms on a standardized platform and with comparable specifications, it was 
found that the grey wolf optimization (GWO) yielded the most optimal solution. The filter based on the GWO 
algorithm exhibited the lowest design error and exhibited superior performance in terms of magnitude response, 
with strong attenuation in the stopband, minimal ripples in the passband and stopband, and a nearly identical 
transition width. Additionally, it demonstrated the shortest execution time. Moreover, this results in increased 
flexibility when building the finite impulse response (FIR) filter, since there is no need for meticulous adjustment 
of parameters. Therefore, it can be inferred that the grey wolf optimization (GWO) is the most optimal heuristic 
algorithm within the scope of this particular research domain. Presently, our focus lies on the issue of system 
identification utilizing the grey wolf optimization (GWO) algorithm to maximize outcomes with the objective 
of achieving a reduction in filter length.
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