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Analysis of some dynamical 
systems by combination of two 
different methods
Abdul Hamid Ganie 1, A. M. Zidan 2, Rasool Shah 3, Ali Akgül 4,5 & Murad Khan Hassani 6*

In this study, we introduce a novel iterative method combined with the Elzaki transformation 
to address a system of partial differential equations involving the Caputo derivative. The Elzaki 
transformation, known for its effectiveness in solving differential equations, is incorporated into the 
proposed iterative approach to enhance its efficiency. The system of partial differential equations 
under consideration is characterized by the presence of Caputo derivatives, which capture fractional 
order dynamics. The developed method aims to provide accurate and efficient solutions to this 
complex mathematical system, contributing to the broader understanding of fractional calculus 
applications in the context of partial differential equations. Through numerical experiments and 
comparisons, we demonstrate the efficacy of the proposed Elzaki-transform-based iterative method 
in handling the intricate dynamics inherent in the given system. The study not only showcases the 
versatility of the Elzaki transformation but also highlights the potential of the developed iterative 
technique for addressing similar problems in various scientific and engineering domains.

Keywords  Elzaki transformation, New iterative method, Caputo derivative, System of partial differential 
equations

Fractional calculus, deeply rooted in applied mathematics, has been a cornerstone in achieving more accurate 
modeling results when compared to traditional derivatives. Its significance extends across a multitude of disci-
plines, impacting fields like electronics, visco-elasticity damping, signal processing, transport systems, genetic 
algorithms, communication, biology, robotics, physics, chemistry, and finance. The ongoing research in this 
area, as reflected in the works of numerous scholars1–6, underscores the continual exploration and discoveries 
within fractional calculus. In particular, the study of fractional-order partial differential equations (PDEs) has 
emerged as a focal point, attracting keen interest from researchers. This attention is justified given the diverse 
and novel applications fractional calculus offers. Researchers have responded by developing various methods to 
solve fractional linear and nonlinear PDEs, with innovative techniques like the local meshless approach finding 
application in addressing specific challenges such as the time-fractional and anomalous mobile–immobile solu-
tion transport mechanism7–12. These advancements collectively contribute to the evolving landscape of fractional 
calculus applications and methodologies.

Fractional PDEs have attracted the attention of numerous academics in recent decades due to its applications 
in various fields of applied sciences. Fractional derivative (FD) has a higher level of adaptability in the model and 
generates wonderful tools for depicting the historical context of the variable and genetic traits of each dynamic 
framework. There has been extensive research towards the advancement of scientific and mathematical arrange-
ments for all fractional PDEs. Burgers equation (BE) is one of the most important and fundamental nonlinear 
PDEs that includes diffusive and nonlinear proliferation affects13. BE was developed as a model of turbulent fluid 
movement, which is a complex field of study. For higher derivatives, Naiver-Stokes and BEs are comparable. 
The FBEs can depict the Unidirectional generating cycle of pitifully nonlinear sound waves through a gas-filled 
line. FD is the result of the memory-storage impact of the divider grating. By means of the boundary layer14. 
It is also used to exhibit in bubbly fluids and shallow water wave, in addition to a number of other fractional 
calculus applications15,16.
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In 2006, D.G. Jafari proposed a new iterative technique for solving nonlinear mathematics problems17,18. Jafari 
et al. initially implemented Laplace transformation in the iterative method. In order to estimate the approximative 
effects of the FPDE scheme, they developed a modified version of the iterative Laplace transform algorithm19. 
ILTM to solve linear and nonlinear PDEs including fractional-order Fokker–Planck equations20, time-fractional 
Zakharov–Kuznetsov equation21, and fractional-order Fokker–Planck equations22.

Preliminaries
Definition
We describe the fractional Abel-Riemann operator D̟ of order ̟  by23–25:

where  ∈ Z+ , ̟ ∈ R+ and

Definition
The Abel-Riemann fractional integral operator Jψ is given as23–25

The operator of basic properties:

Definition
We describe the Caputo fractional operator D̟ of ̟  by23–25:

Definition

Definition
The Elzaki fractional Caputo operator is defined as:

The general discussion of proposed method
Think about how the fractional PDEs are defined:

where M linear and N non-linear terms.
with the initial condition

Apply the Elzaki transformation of equation (3), we have

D̟ν(ζ ) =

{

d

dζ  ν(ζ ), ̟ =  ,

1
Ŵ(−̟)

d
dζ 

∫ ζ

0

ν(ζ )

(ζ−ψ)̟−+1 dψ ,  − 1 < ̟ <  ,

D−̟ν(ζ ) =
1

Ŵ(̟)

∫ ζ

0

(ζ − ψ)̟−1ν(ψ)dψ , 0 < ̟ ≤ 1.

J̟ν(ζ ) =
1

Ŵ(̟)

∫ ζ

0

(ζ − ψ)̟−1ν(ζ )dζ , ζ > 0, ̟ > 0.

J̟ζ  =
Ŵ( + 1)

Ŵ( +̟ + 1)
ζ +ψ

,

D̟ζ  =
Ŵ( + 1)

Ŵ( −̟ + 1)
ζ −ψ

.

(1)CD̟ν(ζ ) =

{

1
Ŵ(−̟)

∫ ζ

0

ν (ψ)

(ζ−ψ)̟−+1 dψ ,  − 1 < ̟ <  ,

d

dζ  ν(ζ ),  = ̟ .

(2)
J̟ζ D̟

ζ g(ζ ) =g(ζ )−

m
∑

k=0

gk(0+)
ζ k

k!
, for ζ > 0, and  − 1 < ̟ ≤  ,  ∈ N .

D̟
ζ J̟ζ g(ζ ) =g(ζ ).

E[D̟
ζ g(ζ )] = s−̟

E[g(ζ )] −

−1
∑

k=0

s2−̟+kg (k)(0), where  − 1 < ̟ <  .

(3)D̟
ℑ µ(ζ ,ℑ)+Mµ(ζ ,ℑ)+ Nµ(ζ ,ℑ) = h(ζ ,ℑ),  ∈ N ,  − 1 < ̟ ≤  ,

(4)µk(ζ , 0) = gk(ζ ), k = 0, 1, 2, . . . ,  − 1,
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using the inverse Elzaki transformation Eq. (6), we get

As through iterative method

the nonlinear terms N is given as

substituting Eqs. (8), (9) and (10) in Eq. (7), we can obtain the following solution

We using the following iterative technique

Finally, the Eq. (3) and (4) provide the m-terms solution in series form is define as

Example
Take into account the following fractional system of partial differential equations in three dimensions:

with initial condition

When we use equation (refex1) to apply the Elzaki transform, we get

(5)E[D̟
ℑ µ(ζ ,ℑ)] + E[Mµ(ζ ,ℑ)+ Nµ(ζ ,ℑ)] = E[h(ζ ,ℑ)].

(6)E[µ(ζ ,ℑ)] =


∑

k=0

s2−̟+ku(k)(ζ , 0)+ s̟E[h(ζ ,ℑ)] − s̟E[Mµ(ζ ,ℑ)+ Nµ(ζ ,ℑ)],

(7)µ(ζ ,ℑ) = E−1

[{


∑

k=0

s2−̟+kuk(ζ , 0)+ s̟E[h(ζ ,ℑ)]

}]

− E−1
[

s̟E[Mµ(ζ ,ℑ)+ Nµ(ζ ,ℑ)]
]

.

(8)µ(ζ ,ℑ) =

∞
∑

=0

µ (ζ ,ℑ).

(9)N





∞
�

=0

µ (ζ ,ℑ)



 =

∞
�

=0

N
�

µ (ζ ,ℑ)
�

,

(10)N





∞
�

=0

µ (ζ ,ℑ)



 = µ0(ζ ,ℑ)+ N

�


�

k=0

µk(ζ ,ℑ)

�

−M

�


�

k=0

µk(ζ ,ℑ)

�

.

(11)

∞
∑

=0

µ (ζ ,ℑ) =E−1

[

s̟

(


∑

k=0

s2−ζ+kuk(ζ , 0)+ E[h(ζ ,ℑ)]

)]

− E−1

[

s̟E

[

M

(


∑

k=0

µk(ζ ,ℑ)

)

− N

(


∑

k=0

µk(ζ ,ℑ)

)]]

.

(12)µ0(ζ ,ℑ) = E−1

[

s̟

(


∑

k=0

s2−ζ+kuk(ζ , 0)+ s̟E(g(ζ ,ℑ))

)]

,

(13)µ1(ζ ,ℑ) = −E−1
[

s̟E[M[µ0(ζ ,ℑ)] + N[µ0(ζ ,ℑ)]
]

,

(14)µm+1(ζ ,ℑ) = −E−1

[

s̟E

[

−M

(


∑

k=0

µk(ζ ,ℑ)

)

− N

(


∑

k=0

µk(ζ ,ℑ)

)]]

, m ≥ 1.

(15)µ(ζ ,ℑ) ∼= µ0(ζ ,ℑ)+ µ1(ζ ,ℑ)+ µ2(ζ ,ℑ)+ · · ·,+µ (ζ ,ℑ), m = 1, 2, . . . .

(16)

∂̟µ

∂ℑ̟
− ν

∂µ

∂ζ
−

∂ν

∂ℑ

∂µ

∂ϕ
= 1− ζ + ϕ + ℑ,

∂̟ ν

∂ℑ̟
− µ

∂ν

∂ζ
+

∂µ

∂ℑ

∂ν

∂ϕ
= 1− ζ − ϕ − ℑ, 0 < ̟ ≤ 1

(17)u(ζ ,ϕ, 0) = ζ + ϕ − 1, ν(ζ ,ϕ, 0) = ζ − ϕ + 1.
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Using the inverse Elzaki transform

First, we using the NITM, we get

The series form answer is provided as

The approximate solutions is achieved as

(18)
E[µ(ζ ,ϕ,ℑ)] = s2(ζ + ϕ − 1)+ s̟E

{

ν
∂µ

∂ζ
+

∂ν

∂ℑ

∂µ

∂ϕ
+ 1− ζ + ϕ + ℑ

}

,

E[ν(ζ ,ϕ,ℑ)] = s2(ζ − ϕ + 1)+ s̟E

{

µ
∂ν

∂ζ
+

∂µ

∂ℑ

∂ν

∂ϕ
+ 1− ζ − ϕ − ℑ

}

.

(19)
µ(ζ ,ϕ,ℑ) = ζ + ϕ − 1+ E−1

[

s̟E

{

ν
∂µ

∂ζ
+

∂ν

∂ℑ

∂µ

∂ϕ
+ 1− ζ + ϕ + ℑ

}]

,

ν(ζ ,ϕ,ℑ) = ζ − ϕ + 1+ E−1

[

s̟E

{

µ
∂ν

∂ζ
+

∂µ

∂ℑ

∂ν

∂ϕ
+ 1− ζ − ϕ − ℑ

}]

.

µ0(ζ ,ϕ,ℑ) = ζ + ϕ − 1, ν0(ζ ,ϕ,ℑ) = ζ − ϕ + 1,

µ1(ζ ,ϕ,ℑ) = E−1

[

s̟E

{

ν0
∂µ0

∂ζ
+

∂ν0

∂ℑ

∂µ0

∂ϕ
+ 1− ζ + ϕ + ℑ

}]

,

ν1(ζ ,ϕ,ℑ) = E−1

[

s̟E

{

µ0

∂ν0

∂ζ
+

∂µ0

∂ℑ

∂ν0

∂ϕ
+ 1− ζ − ϕ − ℑ

}]

,

µ1(ζ ,ϕ,ℑ) =
2ℑ̟

Ŵ(̟ + 1)
+

ℑ̟+1

Ŵ(̟ + 2)
, ν1(ζ ,ϕ,ℑ) =

−ℑ̟+1

Ŵ(̟ + 2)
.

µ2(ζ ,ϕ,ℑ) = E−1

[

s̟E

{

ν1
∂µ1

∂ζ
+

∂ν1

∂ℑ

∂µ1

∂ϕ
+ 1− ζ + ϕ + ℑ

}]

,

ν2(ζ ,ϕ,ℑ) = E−1

[

s̟E

{

µ1

∂ν1

∂ζ
+

∂µ1

∂ℑ

∂ν1

∂ϕ
+ 1− ζ − ϕ − ℑ

}]

,

µ2(ζ ,ϕ,ℑ) =
−ℑ2̟+1

Ŵ(2̟ + 2)
−

ℑ2̟

Ŵ(̟ + 2)
,

ν2(ζ ,ϕ,ℑ) =

(

2Ŵ(̟ + 2)− (̟ + 1)Ŵ(̟ + 1)

Ŵ(2̟ + 1)Ŵ(̟ + 2)

)

ℑ2̟ +
ℑ2̟+1

Ŵ(2̟ + 2)
−

2̟Ŵ(̟)ℑ2̟−1

Ŵ(̟ + 1)Ŵ(2̟)
,

µ3(ζ ,ϕ,ℑ) = E−1

[

s̟E

{

ν2
∂µ2

∂ζ
+

∂ν2

∂ℑ

∂µ2

∂ϕ
+ 1− ζ + ϕ + ℑ

}]

,

ν3(ζ ,ϕ,ℑ) = E−1

[

s̟E

{

µ2

∂ν2

∂ζ
+

∂µ2

∂ℑ

∂ν2

∂ϕ
+ 1− ζ − ϕ − ℑ

}]

,

µ3(ζ ,ϕ,ℑ) =
ℑ3̟+1

Ŵ(3̟ + 2)
+

(

2Ŵ(̟ + 2)− (̟ + 1)Ŵ(̟ + 1)

Ŵ(3̟ + 1)Ŵ(̟ + 2)

)

ℑ3̟ +
ℑ3̟

Ŵ(2̟ + 2)

−
2̟Ŵ(̟)ℑ3̟−1

Ŵ(̟ + 1)Ŵ(3̟)
+

(

(2Ŵ(̟ + 2)− (̟ + 1)Ŵ(̟ + 1))2̟Ŵ(̟)

Ŵ(3̟)Ŵ(2̟ + 1)Ŵ(̟ + 2)

)

ℑ3̟−1

−

(

2̟Ŵ(̟)

Ŵ(2̟)Ŵ(̟ + 1)

)

ℑ3̟−2
,

ν3(ζ ,ϕ,ℑ) =
−ℑ3̟+1

Ŵ(3̟ + 2)
+

(

(̟ + 1)Ŵ(̟ + 1)2̟Ŵ(2̟)

Ŵ(3̟)Ŵ(̟ + 2)Ŵ(̟ + 2)

)

ℑ3̟−1
.

.

.

.

µm+1(ζ ,ϕ,ℑ) = E−1

[

s̟E

{

ν
∂µ

∂ζ
+

∂ν

∂ℑ

∂µ

∂ϕ
+ 1− ζ + ϕ + ℑ

}]

,

νm+1(ζ ,ϕ,ℑ) = E−1

[

s̟E

{

µ

∂ν

∂ζ
+

∂µ

∂ℑ

∂ν

∂ϕ
+ 1− ζ − ϕ − ℑ

}]

,

(20)
µ(ζ ,ϕ,ℑ) = µ0(ζ ,ϕ,ℑ)+ µ1(ζ ,ϕ,ℑ)+ µ2(ζ ,ϕ,ℑ)+ µ3(ζ ,ϕ,ℑ)+ · · ·µn(ζ ,ϕ,ℑ).

ν(ζ ,ϕ,ℑ) = ν0(ζ ,ϕ,ℑ)+ ν1(ζ ,ϕ,ℑ)+ ν2(ζ ,ϕ,ℑ)+ ν3(ζ ,ϕ,ℑ)+ · · ·νn(ζ ,ϕ,ℑ).
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when ̟ = 1 , then NITM solution is

The graphical analysis presented in this study focuses on the comparison between the Numerical Iterative 
Technique Method (NITM) and the exact solutions for Issue 1 at ̟ = 1 . Figure 1a,b showcase the precision of 
NITM solutions at varpi = 1 . The close alignment between the NITM and exact solutions is evident in these 
graphs. Furthermore, Fig. 2 provides additional insights, with subgraph (c) illustrating the fractional-order dif-
ferentials for ̟ = 1, 0.8, 0.6, and 0.4 in NITM results at ϕ = 0.5 . Subgraph (d) in Fig. 2 presents a 2D analysis 
of different fractional orders at ̟ = 1, 0.8, 0.6 over time while keeping the space coordinates fixed at ζ = 5 and 
ϕ = 5 . Similarly, Fig. 3a,b depict the exact and NITM solutions for Issue 1 at ̟ = 1 . The graphical comparison 
continues in Fig. 4, where subgraph (c) exhibits the fractional-order differentials for ̟ = 1, 0.8, 0.6, and 0.4 in 
NITM results at ϕ = 0.5 . Subgraph (d) in Fig. 4 extends the analysis to a 2D view of different fractional orders at 
̟ = 1, 0.8, 0.6 over time, maintaining fixed space coordinates at ζ = 5 and ϕ = 5 . Complementing the graphi-
cal representation, Tables 1 and 2 provide quantitative insights, presenting absolute errors and the variations in 
fractional order of ̟  for µ(ζ ,ϕ,ℑ) and ν(ζ ,ϕ,ℑ) . These tables contribute to a comprehensive understanding of 
the accuracy and reliability of the NITM solutions under different scenarios.

Example
Consider the following fractional system of two non-linear equations:

µ(ζ ,ϕ,ℑ) = ζ + ϕ − 1+
2ℑ̟

Ŵ(̟ + 1)
+

ℑ̟+1

Ŵ(̟ + 2)
−

ℑ2̟+1

Ŵ(2̟ + 2)
−

ℑ2̟

Ŵ(2̟ + 1)

+
ℑ3̟+1

Ŵ(3̟ + 2)
+

(

2Ŵ(̟ + 2)− (̟ + 1)Ŵ(̟ + 1)

Ŵ(3̟ + 1)Ŵ(̟ + 2)

)

ℑ3̟ +
ℑ3̟

Ŵ(2̟ + 2)

−
2̟Ŵ(̟)ℑ3̟−1

Ŵ(̟ + 1)Ŵ(3̟)
+

(

(2Ŵ(̟ + 2)− (̟ + 1)Ŵ(̟ + 1))2̟Ŵ(̟)

Ŵ(3̟)Ŵ(2̟ + 1)Ŵ(̟ + 2)

)

ℑ3̟−1

−

(

2̟Ŵ(̟)

Ŵ(2̟)Ŵ(̟ + 1)

)

ℑ3̟−2 + · · ·,

ν(ζ ,ϕ,ℑ) = ζ − ϕ + 1−
ℑ̟+1

Ŵ(̟ + 2)
+

(

2Ŵ(̟ + 2)− (̟ + 1)Ŵ(̟ + 1)

Ŵ(2̟ + 1)Ŵ(̟ + 2)

)

ℑ2̟

+
ℑ2̟+1

Ŵ(2̟ + 2)
−

2̟Ŵ(̟)ℑ2̟−1

Ŵ(̟ + 1)Ŵ(2̟)
−

ℑ3̟+1

Ŵ(3̟ + 2)
+

(

(̟ + 1)Ŵ(̟ + 1)2̟Ŵ(2̟)

Ŵ(3̟)Ŵ(̟ + 2)Ŵ(̟ + 2)

)

ℑ3̟−1 + · · ·,

(21)
µ(ζ ,ϕ,ℑ) = ζ + ϕ + ℑ− 1,

ν(ζ ,ϕ,ℑ) = ζ − ϕ − ℑ+ 1.

Figure 1.   The Exact and NITM results of µ(ζ ,ϕ,ℑ) of Example 1.
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with initial conditions

Apply the Elzaki transform in equation (16), we get

(22)

∂̟µ

∂ζ̟
− ν

∂µ

∂ℑ
+ µ

∂ν

∂ℑ
= −1+ eζ sinℑ,

∂̟ ν

∂ζ̟
+

∂µ

∂ℑ

∂ν

∂ζ
−

∂ν

∂ℑ

∂µ

∂ζ
= −1− e−ζ

sinℑ, 0 < ̟ ≤ 1

(23)µ(0,ℑ) = sinℑ, ν(0,ℑ) = cosℑ.

Figure 2.   The graph of 3D and 2D various fractional-order ̟ = 1, 0.8, 0.6 and 0.4 of Example 1.

Figure 3.   The Exact and NITM results of µ(ζ ,ϕ,ℑ) of Example 1.
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Using the inverse Elzaki transform

(24)
E[µ(ζ ,ℑ)] = s2(sinℑ)+ s̟E

{

ν
∂µ

∂ℑ
− µ

∂ν

∂ℑ
− 1+ eζ sinℑ

}

,

E[ν(ζ ,ℑ)] = s2(cosℑ)− s̟E

{

∂µ

∂ℑ

∂ν

∂ζ
+

∂ν

∂ℑ

∂µ

∂ζ
− 1− e−ζ

sinℑ

}

.

(25)
µ(ζ ,ℑ) = sinℑ + E−1

[

s̟E

{

ν
∂µ

∂ℑ
− µ

∂ν

∂ℑ
− 1+ eζ sinℑ

}]

,

ν(ζ ,ℑ) = cosℑ − E−1

[

s̟E

{

∂µ

∂ℑ

∂ν

∂ζ
+

∂ν

∂ℑ

∂µ

∂ζ
− 1− e−ζ

sinℑ

}]

.

Figure 4.   The graphs of 3D and 2D different fractional-order ̟ = 1, 0.8, 0.6 and 0.4 of Example 1.

Table 1.   The exact and NITM results of µ(ζ ,ϕ,ℑ) and absolute error of Example 1.

(ζ ,ϕ)
u(ζ ,ϕ)at
̟ =0.5

µ(ζ ,ϕ)at
̟ =0.75

µ(ζ ,ϕ)at
̟ =1 Exact

Absolute error
Of HPM26

Absolute error
NITM solution

(0.1,0.1) 0.500817 0.500795 0.500782 0.500782 1.07078×10−11 1.67111×10−12

(0.1,0.3) 0.500853 0.500829 0.50081 0.50081 3.04565×10−9 4.51196×10−11

(0.1,0.5) 0.500878 0.500857 0.500837 0.500837 4.81303×10−8 2.08888×10−10

(0.2,0.1) 0.49812 0.498098 0.498085 0.498085 1.04388×10−11 1.57879×10−12

(0.2,0.3) 0.498154 0.498131 0.498112 0.498112 2.97260×10−10 4.26227×10−11

(0.2,0.5) 0.498178 0.498158 0.498139 0.498139 4.70138×10−9 1.97328×10−10

(0.3,0.1) 0.495491 0.49547 0.495458 0.495458 1.01776×10−11 1.49181×10−12

(0.3,0.3) 0.495525 0.495502 0.495484 0.495484 2.90150×10−10 4.02799×10−11

(0.3,0.5) 0.495548 0.495529 0.49551 0.49551 2.90150×10−10 4.02799×10−11

(0.4,0.1) 0.49293 0.492909 0.492897 0.492897 4.70138×10−9 1.97328×10−10

(0.4,0.3) 0.492963 0.49294 0.492922 0.492922 9.92418×10−12 1.41043×10−12

(0.4,0.5) 0.492985 0.492966 0.492948 0.492948 2.83229×10−9 3.80803×10−11

(0.5,0.1) 0.490433 0.490413 0.490401 0.490401 2.76492×10−10 3.60145×10−11

(0.5,0.3) 0.490465 0.490443 0.490426 0.490426 2.76492×10−10 3.60145×10−11

(0.5,0.5) 0.490487 0.490469 0.490451 0.490451 4.38895×10−9 1.66734×10−10
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First, we using the NITM, we get

The series form solution is given as

The approximate solution is achieved as

µ0(ζ ,ℑ) = sinℑ, ν0(ζ ,ℑ) = cosℑ,

µ1(ζ ,ℑ) = E
−1

[

s
̟
E

{

ν0
∂µ0

∂ℑ
− µ0

∂ν0

∂ℑ
− 1+ e

ζ
sinℑ

}]

,

ν1(ζ ,ℑ) = −E
−1

[

s
̟
E

{

∂µ0

∂ℑ

∂ν0

∂ζ
+

∂ν0

∂ℑ

∂µ0

∂ζ
− 1− e

−ζ
sinℑ

}]

,

µ1(ζ ,ℑ) = sinℑζ̟�∞
k=0

ζ k

Ŵ(k +̟ + 1)
,

ν1(ζ ,ℑ) =
−ℑ̟

Ŵ(̟ + 1)
− cosℑζ̟�∞

k=0

−ζ k

Ŵ(k +̟ + 1)
.

µ2(ζ ,ℑ) = E
−1

[

s
̟
E

{

ν1
∂µ1

∂ℑ
− µ1

∂ν1

∂ℑ
− 1+ e

ζ
sinℑ

}]

,

ν2(ζ ,ℑ) = −E
−1

[

s
̟
E

{

∂µ1

∂ℑ

∂ν1

∂ζ
+

∂ν1

∂ℑ

∂µ0

∂ζ
− 1− e

−ζ
sinℑ

}]

,

µ2(ζ ,ℑ) = �∞
k=0

ζ 2̟+k

Ŵ(2̟ + k + 1)
−�∞

k=0

(−ζ )2̟+k

Ŵ(2̟ + k + 1)
− cosℑ

ζ 2̟

Ŵ(2̟ + 1)
,

ν2(ζ ,ℑ) = cosℑ
ζ 2̟−1

Ŵ(2̟)
+ cos

2 ℑ�∞
k=0

(−ζ )2̟+k−1

Ŵ(2̟ + k)
+ sin

2 ℑ�∞
k=0

ζ 2̟+k−1

Ŵ(2̟ + k)
.

.

.

.

µm+1(ζ ,ℑ) = E
−1

[

s
̟
E

{

νm
∂µ1

∂ℑ
− µm

∂νm

∂ℑ
− 1+ e

ζ
sinℑ

}]

,

νm+1(ζ ,ℑ) = −E
−1

[

s
̟
E

{

∂µm

∂ℑ

∂νm

∂ζ
+

∂νm

∂ℑ

∂µm

∂ζ
− 1− e

−ζ
sinℑ

}]

,

(26)
µ(ζ ,ℑ) = µ0(ζ ,ℑ)+ µ1(ζ ,ℑ)+ µ2(ζ ,ℑ)+ µ3(ζ ,ℑ)+ · · ·µn(ζ ,ℑ).

ν(ζ ,ℑ) = ν0(ζ ,ℑ)+ ν1(ζ ,ℑ)+ ν2(ζ ,ℑ)+ ν3(ζ ,ℑ)+ · · ·νn(ζ ,ℑ).

Table 2.   The exact and NITM results of ν(ζ ,ϕ,ℑ) and absolute error of Example 1.

(ζ ,ϕ)
v(ζ ,ϕ) at
̟ =0.5

v(ζ ,ϕ) at
̟ =0.75

v(ζ ,ℑ) at
̟ =1 Exact HPM26

Absolute error 
NIM
solution

(0.1,0.1) 0.0939215 0.0939015 0.09389 0.09389 5.86860×10−11 3.28081×10−12

(0.1,0.3) 0.0939536 0.0939319 0.0939146 0.0939146 3.04565×10−10 8.85812×10−11

(0.1,0.5) 0.0939757 0.0939571 0.0939391 0.0939391 3.08812×10−8 4.10099×10−10

(0.2,0.1) 0.0915064 0.091487 0.0914759 0.0914759 5.56884×10−11 3.07768×10−12

(0.2,0.3) 0.0915375 0.0915165 0.0914997 0.0914997 2.97260×10−08 8.30963×10−11

(0.2,0.5) 0.0915589 0.0915409 0.0915235 0.0915235 2.92626×10−8 3.84706×10−10

(0.3,0.1) 0.0891657 0.0891469 0.0891361 0.0891361 5.28609×10−12 2.88849×10−12

(0.3,0.3) 0.0891958 0.0891754 0.0891592 0.0891592 2.77382×10−9 3.6107×10−10

(0.3,0.5) 0.0892166 0.0891992 0.0891822 0.0891822 5.01929×10−8 2.71246×10−12

(0.4,0.1) 0.0868965 0.0868782 0.0868678 0.0868678 2.83229×10−9 7.32356×10−11

(0.4,0.3) 0.0869257 0.0869059 0.0868901 0.08688901 2.63019×10−10 3.39055×10−10

(0.4,0.5) 0.0869458 0.0869289 0.0869125 0.0869125 4.76741×10−11 2.54828×10−12

(0.5,0.1) 0.0846961 0.0846784 0.0846683 0.0846683 2.76492×10−10 6.88039×10−11

(0.5,0.3) 0.0847244 0.0847052 0.0846899 0.0846899 2.49480×10−9 3.18537×10−10
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when ̟ = 1 , then NITM result is

The graphical and tabular analysis of example 2 is presented in Figs. 5, 6, 7 and 8, providing insights into 
the performance of the Numerical Iterative Technique Method (NITM) in comparison to the exact solutions. 
Figure 5a,b showcase the precision of NITM solutions at ̟ = 1 , revealing a close match with the actual find-
ings. Moving to Fig. 6c,d illustrate the differential fractional-order for ̟ = 0.8 and 0.6 in the NITM results for 
Issue 2. This differential analysis enhances the understanding of the fractional-order impact on the solutions. 
Similarly, Fig. 7a,b display the exact and NITM solutions for Issue 2 at ̟ = 1 , indicating a noteworthy alignment 
between the two sets of results. Figure 8 provides further insights, illustrating the differential fractional-order 
for ̟ = 1, 0.8, 0.6, and 0.4 in the NITM results for Issue 2. The analysis suggests that time-fractional problem 
results converge toward an integer-order effect as the time-fractional analysis approaches integer order. This 
observation contributes to understanding the relationship between time-fractional and integer-order effects in 
the context of the analyzed problem.

Conclusion
In conclusion, the Numerical Iterative Technique Method (NITM) has been applied to tackle two distinct prob-
lems, providing solutions for each at various fractional orders ( ̟  ). The graphical representations and tabular data 
presented in this study demonstrate the efficacy and accuracy of the NITM in obtaining solutions that closely 
align with the exact results. The close correspondence observed in both Issues 1 and 2 across different fractional 
orders suggests the robustness and reliability of the NITM in handling fractional partial differential equations. 
Furthermore, the differential fractional-order analysis presented in the figures enhances the understanding of 
how changes in the fractional order impact the solutions. Notably, the analysis indicates a convergence of time-
fractional problem results toward an integer-order effect as the fractional order approaches integer values. This 
observation contributes valuable insights into the transition between time-fractional and integer-order dynamics 
within the analyzed problems. The findings of this study underscore the significance of the NITM as a powerful 
tool for solving fractional partial differential equations, providing a viable and accurate alternative to traditional 

µ(ζ ,ℑ) = sinℑ + sinℑζ̟�∞
k=0

ζ k

Ŵ(k +̟ + 1)
+�∞

k=0

ζ 2̟+k

Ŵ(2̟ + k + 1)

−�∞
k=0

(−ζ )2̟+k

Ŵ(2̟ + k + 1)
− cosℑ

ζ 2̟

Ŵ(2̟ + 1)
...,

ν(ζ ,ℑ) = cosℑ −
ℑ̟

Ŵ(̟ + 1)
− cosℑζ̟�∞

k=0

−ζ k

Ŵ(k +̟ + 1)
+ cosℑ

ζ 2̟−1

Ŵ(2̟)

+ cos
2 ℑ�∞

k=0

(−ζ )2̟+k−1

Ŵ(2̟ + k)
+ sin

2 ℑ�∞
k=0

ζ 2̟+k−1

Ŵ(2̟ + k)
+ · · ·,

(27)
µ(ζ ,ℑ) = eζ sinℑ,

ν(ζ ,ℑ) = e−ζ
cosℑ.

Figure 5.   The Exact and NITM results at µ(ζ ,ℑ) of Example 2.
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methods. The successful application of NITM in the examined problems, coupled with the detailed analysis of 
fractional-order effects, contributes to the broader understanding of the dynamics governed by fractional cal-
culus. Overall, this study highlights the NITM’s effectiveness in addressing complex mathematical and physical 
phenomena described by fractional partial differential equations.

Figure 6.   The graph of different fractional-order ̟ = 0.8 and 0.6 of Example 2.

Figure 7.   The Exact and NITM results at µ(ζ ,ℑ) of Example 2.
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