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Multi‑step forecasting of dissolved 
oxygen in River Ganga based on C​
EEM​DAN​‑Ad​aBo​ost​‑Bi​LSTM‑LSTM 
model
Neha Pant 1, Durga Toshniwal 1* & Bhola Ram Gurjar 2

Accurate prediction of Dissolved Oxygen (DO) is an integral part of water resource management. 
This study proposes a novel approach combining Complete Ensemble Empirical Mode Decomposition 
with Adaptive Noise (CEEMDAN) with AdaBoost and deep learning for multi-step forecasting of DO. 
CEEMDAN generates Intrinsic Mode Functions (IMFs) with different frequencies, capturing non-linear 
and non-stationary characteristics of the data. The high-frequency and medium-frequency IMFs, 
characterized by complex patterns and frequent changes over time, are predicted using Adaboost 
with Bidirectional Long Short-Term Memory (BiLSTM) as the base estimator. The low-frequency IMFs, 
characterized by relatively simple patterns, are predicted using standalone Long Short-Term Memory 
(LSTM). The proposed CEEMDAN-AdaBoost-BiLSTM-LSTM model is tested on data from ten stations 
of river Ganga. We compare the results with six models without decomposition and four models 
utilizing decomposition. Experimental results show that using a tailored prediction technique based 
on each IMF’s distinctive features leads to more accurate forecasts. CEEMDAN-AdaBoost-BiLSTM-
LSTM outperforms CEEMDAN-BiLSTM with an average improvement of 25.458% for RMSE and 
37.390% for MAE. Compared with CEEMDAN-AdaBoost-BiLSTM, an average improvement of 20.779% 
for RMSE and 28.921% for MAE is observed. Diebold-Mariano test and t-test suggest a statistically 
significant difference in performance between the proposed and compared models.

Keywords  Complete ensemble empirical mode decomposition with adaptive noise, AdaBoost, Long short-
term memory, Water quality forecasting

Water is an extremely significant and indispensable asset on our planet, necessary for the existence of human 
beings, wildlife, and vegetation. Dissolved oxygen (DO) is an important quality parameter that has been used 
in numerous studies to assess the standard of water quality in aquatic ecosystems1–3. Low levels of DO indicate 
poor water quality, which can be harmful to aquatic life whereas high quantities usually suggest a healthy and 
well-oxygenated aquatic ecosystem. Accurate DO forecasting is critical for successful water resource manage-
ment as it allows authorities to foresee and respond to changes in water quality.

Classic statistical models like Multiple Linear Regression(MLR)4, autoregressive moving average (ARMA)5 
and autoregressive integrated moving average (ARIMA)6 are designed primarily for linear relationships and can 
find it difficult to capture and model the non-linear and non-stationary patterns present in the water quality 
time series data. In recent years machine learning and deep learning models have increasingly been used for 
forecasting which can be attributed to a multitude of factors, encompassing the availability of extensive datasets, 
advancements in computational resources, breakthroughs in neural network architectures, and notable algorith-
mic advancements. A study by Sahoo et al.7 investigates the applicability of Support Vector Regression (SVR) in 
modeling monthly low flows hydrological time series. To forecast Chlorophyll a, Liang et al.8 trained a variety of 
Long Short-Term Memory (LSTM) with different combinations of input variables, hidden layer numbers, and 
lag periods. Sahoo et al.9 uses Convolutional Neural Network combined with bi-directional LSTM for forecasting 
of urban water demand. Zou et al.10 put forth a recommendation for the prediction of water quality in the Beilun 
River by employing a multi-time scale bidirectional LSTM approach. Bi et al.11 offers a hybrid model based on 
a LSTM-based encoder-decoder network and a Savitzky-Golay filter. Huang et al.12 introduced an approach for 
predicting water quality utilizing a combination of k-nearest-neighbor probability rough sets and PSO-LSTM. 
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The accuracy of a artificial intelligence models can be greatly enhanced by boosting and can aid in improving 
generalization and reducing overfitting. In the study by Aldrees et al.13, boosting and bagging ensemble models 
are compared with individual network-based and tree-based models for making predictions. El Bilali et al.14 
discussed the applicability of using AdaBoost and Random Forest for predicting groundwater quality.

Often water quality time series data exhibits large fluctuations, non-linearity, and non-stationary 
characteristics15 which makes the task of forecasting challenging. To address this, pre-processing the data using 
signal decomposition techniques can be useful in transforming the complex dataset into relatively simple sub-
series. Sahoo et al.16, a uses Fourier Transform combined with LSTM to predict daily suspended sediment load. 
Huang et al.17 introduced Empirical Mode Decomposition (EMD) which is a signal processing technique that 
analyzes non-stationary signals by breaking them into Intrinsic Mode Functions (IMFs) according to their 
local characteristics. Wu et al.18 proposed the Ensemble Empirical Mode Decomposition (EEMD) technique 
to overcome the limitations of EMD by reducing the effects of noise and mode mixing in the decomposition 
process. However, EEMD has some drawbacks, such as increased computational complexity and the possibil-
ity of over-smoothing of the IMFs. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise 
(CEEMDAN) technique19 was introduced as an improvement to EEMD, where a fixed noise level is added to 
the signal to generate the ensemble realizations, CEEMDAN employs a noise level that incrementally grows 
and adjusts according to the specific characteristics of the local signal. CEEMDAN has another advantage over 
EEMD in that it is more effective at addressing the issue of mode mixing. Zhang and Yang20 coupled CEEMDAN 
with Gated recurrent units (GRU) to forecast suspended sediment concentration in the Yellow River and outper-
formed Support Vector Machines, LSTM and GRU standalone models. Lu and Ma21 suggested using CEEMDAN 
approach with XGBoost and Random Forest. Zhang et al.22 suggested the decomposition of water quality data into 
IMFs using CEEMDAN algorithm and combining it with LSTM model for forecasting the water quality. Song 
and Yao23 suggests using CEEMDAN decomposition in conjunction with LSTM for water quality prediction.24 
recommends using CEEMDAN and Variational Mode Decomposition (VMD) combined with Least Square Sup-
port Vector Machine (LSSVM) and Extreme Learning Machines (ELM) for estimating water quality parameters.

The ability of CEEMDAN to decompose the time series into IMFs facilitates the separation and analysis of 
various frequency components. This can help to detect the non-linear and non-stationary properties of the data. 
Deep learning and machine learning models have the capacity to learn and represent complex relationships 
between input variables, enabling them to capture both linear and non-linear dependencies in the data. This 
is especially useful in forecasting water quality since the interactions between input factors and water quality 
metrics can be complicated and multifaceted. This motivated us to investigate the potential of CEEMDAN decom-
position in combination with AdaBoost and deep learning models in order to capture the long-term relationships 
accurately for DO forecasting. First, the CEEMDAN technique is used to decompose the data into a set of IMF 
sub-series components. The high and medium-frequency sub-series are forecasted using the Adaboost-BiLSTM, 
while the low-frequency components are forecasted using the standalone LSTM model. For a comprehensive 
analysis, the CEEMDAN-AdaBoost-BiLSTM-LSTM model is evaluated using data collected from ten different 
stations of river Ganga and compared with six standalone models and four models utilizing decomposition. 
Diebold Mariano test and two-sided t-test further suggests that there is a statistically significant difference in 
the forecasting performance of our proposed model as compared to the alternative models.

Methods
Study area and data collection
River Ganga, also known as the Ganges, is a transboundary river that flows through India and Bangladesh. It 
begins in the Himalayas, travels about 2525 kilometers, and empties into the Bay of Bengal. Apart from its cultural 
and spiritual significance, the Ganga River enables inland navigation and supports key sectors like as agriculture, 
fishing, tourism, and hydropower generation, all of which contribute to the local economy. Unfortunately, the 
water in the Ganga river is severely polluted, and the primary sources of which can be attributed to the unregu-
lated release of untreated wastewater, industrial waste, and the inflow of agricultural runoff25,26.

River Ganga has a length of around 1450 kilometers in Uttar Pradesh. The data used in this study was col-
lected from the Uttar Pradesh Pollution Control Board, Government of India. This dataset comprises of real-
time measurements of DO levels obtained through the Real-time Water Quality Monitoring System installed 
at multiple locations along the River Ganga, its principal tributaries, and drains. The water quality data utilised 
in this study is for ten stations of River Ganga and its tributaries in Uttar Pradesh and spans from 1 April 2017 
to 30 September 2021. In the original dataset, the sampling frequency ranged from one sample per hour for the 
years 2017 and 2018 to one sample every 15 min from the year 2019 to 2021. The specific locations analyzed 
in this study are distinctly marked and shown in Fig. 1. More details about the data considered in the study are 
provided in Supplementary Information and Supplementary Table S1.

CEEMDAN
CEEMDAN19 uses an adaptive noise level, which adjusts the noise level of each ensemble realization based on the 
local signal characteristics, to enhance decomposition performance and efficiency. For the CEEMDAN decom-
position process, first, we add white noise to the original time series signal X(t). This can be expressed as follows:

where s0 is the noise coefficient for controlling the signal-to-noise ratio and ωi(t) denotes the ith noise for 
i = 1...N  , where N is the number of times EMD is performed. We use EMD to decompose each Xi(t) into 
IMFi(t) . The first IMF component can be obtained by averaging all the modes. This can be mathematically 
expressed as follows:

(1)Xi(t) = X(t)+ s0ω
i(t)
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The initial residual is computed by subtracting the first IMF from the original signal as follows:

The rest of the IMFs and residual can be calculated as follows:

where, Ek(.) extracts the kth IMF that EMD has decomposed. The calculation of the final residual involves sub-
tracting the sum of all the K IMFs from the original signal, resulting in the following expression

AdaBoost
AdaBoost is a machine learning algorithm developed by by Freund et al.27. It employs a combination of weak 
classifiers to construct a strong classifier with enhanced performance. Although it was originally designed for 
classification problems, it can also be adapted for regression tasks28. In AdaBoost regression, weak learners are 
replaced with regression models that can predict continuous values. The algorithm iteratively fits regression 
models to the data and assigns weights to the samples based on their error. More weight is given to poorly 
predicted samples in subsequent iterations. The final prediction is a weighted combination of all the regression 
models’ predictions, with the weights determined by their performance on the training data. AdaBoost uses the 
following steps for the computation:

Let the data points used for training be (x1, y1) ... (xN , yN ).

Step 1 Initialize the number of iterations as T. Let for the initial iteration, t = 1 and average loss Lt = 0 . Initial-
ize the sample weights distribution as Dt(i) =

1
N  for i = 1...N

Step 2 Using the sample weights, train the regression model. Let f (xi) be the predicted value for the ith sample.
Step 3 For each training sample compute the loss as : lt(i) = |f (xi)− yi|
Step 4 The loss function for each individual training instance can be calculated as:

where, Mt = maxNi=1lt(i)
Step 5 Compute the average loss: Lt =

∑N
i=1 Lt(i)Dt(i)

(2)IMF1(t) =
1

N

N
∑

i=1

IMFi1(t)

(3)r1(t) = X(t)− IMF1(t)

(4)IMFk(t) =
1

N

N
∑

i=1

Ek−1(rk−1(t)+ Ek−1(pk−1ω
i(t)))

(5)rk(t) = rk−1(t)− IMFk(t)

(6)R(t) = X(t)−

K
∑

k=1

IMFk(t)

(7)Lt(i) = lt(i)/Mt

Figure 1.   The geographic locations of the ten stations of River Ganga in Uttar Pradesh, India are denoted by 
blue markers.
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Step 6 Set βt = Lt/(1− Lt)
Step 7 Now, update the weight distribution of all the samples as follows :

Here, Zt is the normalization factor.
Step 8 Now update t = t + 1 and repeat steps 2 to 8 while t ≤ T and average loss function Lt ≤ 0.5

Step 9 Finally, the output can be given as follows:

LSTM
LSTM29 are a special type of recurrent neural network with the capacity to learn long-term dependencies 
by employing cell states to store information about various time periods. A individual LSTM unit’s cell state 
describes the data that has been thought to be relevant up to that date. By using input, output, and forget gates, 
LSTMs control the information flow to the cell states. The input gate assesses the importance of incoming data 
and decides how much of it should be retained in the memory cell. The forget gate regulates which past informa-
tion should be ignored, while the output gate guarantees that only relevant information is produced at each time 
step. The input at the current time step, denoted as xt , and the previous hidden state, denoted as ht−1 , are used to 
calculate the values for the input gate, output gate, and forget gate. These gate values are then utilized to update 
the cell state ct of the LSTM. The output gate is applied to the hyperbolic tangent of the cell state ct to produce 
the final hidden state ht . The equations describing the working of LSTM are as follows:

where, σ represents the sigmoid function, tanh denotes the hyperbolic tangent function and × indicates the 
element-wise multiplication. Wf ,Wi ,Wo,Wc are the input weight matrices and Uf ,Ui ,Uo,Uc are the recurrent 
weight matrices for the forget, input, output and memory cell gate respectively. The bias vectors to the respec-
tive gates are represented by bf , bi , bo and bc . The hidden state and input at timestamp t are denoted by ht and 
xt respectively.

BiLSTM
The BiLSTM layers are comprised of a pair of LSTM layers with one of them handling the input sequence in a 
forward direction and the other one processing it in reverse direction. BiLSTM can capture dependencies and 
patterns that a unidirectional LSTM would miss by analysing the input sequence in both directions resulting in 
a more complete contextual understanding. The equations describing the working of BiLSTM can be expressed 
mathematically as below:

here, Wfx and Wbx are the weight matrices from the input to the recurrent units, and Wfh and Wbh are the weight 
matrices from the recurrent units to themselves for the forward and backward layers respectively. The biases for 
the forward and backward layers are given by bfb and bb . φ is the activation function at the hidden layers. Wfy and 
Wby are the weight matrices, and by denotes the bias for the output layer.

Proposed approach
The steps for developing the model based on CEEMDAN decomposition combined with AdaBoost and deep 
learning are given below and the flowchart of the proposed model is shown in Fig. 2. 

(8)Dt+1(i) =
Dt(i)β

1−Lt (i)
t

Zt

(9)ffin(x) = inf


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βt
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≥
�

t

1

2
log

�

1

βt

�





(10)ft =σ(Uf xt +Wf ht−1 + bf )

(11)it =σ(Uixt +Wiht−1 + bi)

(12)ot =σ(Uoxt +Woht−1 + bo)

(13)ct =(ft × ct−1)+ it × tanh(Ucxt +Wcht−1 + bc)

(14)ht =ot × tanh(ct)

(15)hft =φ(Wfxxt +Wfhhf (t−1) + bfb)

(16)hbt =φ(Wbxxt +Wbhhb(t−1) + bb)

(17)ŷt =σ(Wfyhft +Wbyhbt + by)
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1.	 The first step is to use linear interpolation to fill in the missing values. The data for all the years are combined. 
To ensure consistent sampling frequency across the dataset, the data was extracted at a constant sample rate 
of one observation per hour for all years from the combined dataset.

2.	 The CEEMDAN approach is used to decompose the DO time series data into several IMFs and residual with 
each generated IMF possessing unique and distinctive inherent properties.

3.	 The data is partitioned into training and testing sets with a ratio of 75:25. 10% of the training data is taken 
for validation.

4.	 The data is normalized using min-max normalization, which scales the values to the [0,1] range as follows: 

 where, xn corresponds to normalized value of x. xmin and xmax denotes the minimum and maximum value 
of the variable.

5.	 For each IMF, Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) are utilized to 
choose significant lagged data for constructing the forecasting models. Sliding window based multiple input 
multiple output approach is used to generate a collection of input-output pairs from time series data, with 
an input window providing historical information while the output window representing the target values.

6.	 The zero-crossing rate is calculated to check the fluctuation frequency of the data in each IMF and then 
categorize them into high, medium and low frequency components. If zero-crossing rate of IMF ≥ 0.01 then 
the IMF is categorized as having high/medium frequency otherwise it has low frequency30. In order to fore-
cast high and medium frequency IMFs, the AdaBoost-BiLSTM model is utilized due to its ability to predict 
complex non-linear patterns. BiLSTM can handle complex sequential data and detect long-term relationships 
between inputs and outputs, and AdaBoost can improve prediction accuracy by combining several BiLSTMs. 
LSTM models are employed for the low-frequency IMFs and residual that display reasonably simple and 
smooth patterns. In the end, the final prediction is obtained by summing the predicted outcomes of all the 
IMFs and residual.

Implementation details
The implemented model is developed using Python version 3.7. The CEEMDAN method is used with the help 
of EMD-signal 1.2.2 package. While implementing CEEMDAN method, the parameter settings include 100 
trials and a scale of 0.05 for added noise. The number of lags needed as input to the forecasting algorithms is 
determined based on ACF and PACF. Supplementary Table S2 presents the identified significant time lags for 
the decomposed components of the time series data across ten stations. Each dataset may produce different 
number of IMFs on decomposition. Here, ’NA’ as the table entry represents the absence of IMF for the particular 
station. Optimal hyperparameters are selected while building the models (details in Supplementary Informa-
tion). The Supplementary Table S3 lists the search space explored for identifying the optimal hyperparameters. 

(18)xn =
x − xmin

xmax − xmin

Figure 2.   Flowchart of the proposed approach.
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The zero-crossing rate of the IMFs for all the station datasets considered are given in Supplementary Table S4. 
The deep learning models were implemented using TensorFlow 2.0.0 and Keras 2.3.1 packages. The number of 
hidden layers range from 3 to 5 and the number of neurons in the hidden layers is varied in the range of 8 to 64. 
To improve the gradient descent technique, the Adam optimizer was utilized. The ReLU activation function is 
used in all the hidden layers of the models. The model is trained using the learning rate of 0.001. The batch size 
used for training is set to 64, and a variable number of epochs ranging from 10 to 100 are employed for each 
IMF. Early stopping is used to prevent overfitting of the model during training.

Performance evaluation metrics
The criteria to assess the model’s performance are Mean Absolute Error (MAE), Mean Absolute Percentage Error 
(MAPE), Root Mean Square Error (RMSE) and Coefficient of Determination ( R2 ) (details in Supplementary 
Information), mathematically, expressed as follows:

where, n is the total count of the samples, y is the mean value, yt is the true value and ŷt is the predicted value 
at time t.

Results
Figure 3 shows the IMFs and residual that were generated using CEEMDAN approach for the DO time series 
data of Bithoor station. The time series is decomposed into 12 IMFs and a residual subseries. It can be seen that 
the frequency of first IMF is the highest, and as we progress toward the subsequent IMFs, the frequency gradu-
ally decreases. Based on zero-crossing rate, high and medium frequency IMFs are from IMF1 to IMF7, whereas 
IMF8 to IMF12 and residual are low frequency components.

We have used six single models without decomposition: Linear Regression (LR), SVR, Random Forest (RF), 
ANN, LSTM and BiLSTM. The models utilizing decomposition are: CEEMDAN-ANN, CEEMDAN-LSTM, 
CEEMDAN-BiLSTM, CEEMDAN-AdaBoost-BiLSTM and CEEMDAN-AdaBoost-BiLSTM-LSTM. The observed 
and forecasted DO values for all stations for the test data are presented in Fig. 4. The actual values are shown in 
black color, and blue, red, and green lines represent the predicted values for one, two and three-hour ahead fore-
cast, respectively. Similarly, Fig. 5 illustrates the scatter plots showcasing the relationship between the observed 
and predicted DO values on test data. This corresponds to higher correlation between the measured and the 
predicted values. Tables 1 and 2 illustrates the comprehensive comparison of the individual models and hybrid 
models utilizing decomposition, respectively, highlighting their performance based on RMSE and MAE values. 
Figure 6 displays spider plots that compare the coefficient of determination values and help to visualize the 
significant improvement in the performance of CEEMDAN-AdaBoost-BiLSTM-LSTM over individual models 

(19)RMSE =

√

∑n
t=1(ŷt − yt)2

n

(20)MAE =
1

n

n
∑

t=1

|ŷt − yt |

(21)MAPE =
1

n

n
∑

t=1

|yt − ŷt |

|yt |
× 100

(22)R2 =1−

∑n
t=1(yt − ŷt)

2)
∑n

t=1(y − yt)2)

Figure 3.   IMFs and residual generated after performing CEEMDAN decomposition of the time series data at 
Bithoor station.
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for various stations. Figure 7 illustrates the MAPE values comparing all methods with the proposed approach 
for all horizons for every station. It can be seen that the MAPE value for the proposed approach is lower than all 
other models. This demonstrates that the proposed approach has the potential to serve as an efficient means of 
generating dependable and accurate forecasting.

Discussion
Among the individual models, it can be observed that the LR model gives satisfactory performance in several 
cases. However, it is important to note that, LR is more capable to capture linear relationships within the data. 
On the other hand, SVR and RF are capable of handling the non-linear and complex relationships. The ANN 
and deep learning models like LSTM and BiLSTM are proficient in capturing non-linear and long-term tem-
poral dependencies in DO time series data. In terms of all evaluation metrics, the BiLSTM model consistently 
demonstrates superior forecasting accuracy across all forecasting horizons.

By utilizing the CEEMDAN technique to decompose the water quality data into various frequency seg-
ments and subsequently applying the deep learning models to capture the temporal dependencies within each 
frequency segments, a substantial improvement in forecasting accuracy has been observed as compared to the 
models only utilizing standalone deep learning model. The effectiveness of the CEEMDAN decomposition 

Figure 4.   A visual representation of actual and predicted DO values over the test data at different stations.

Figure 5.   Scatter plot illustrating the alignment between observed and predicted DO values on test data.
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method in improving the precision of water quality forecasts is evident on comparing the RMSE and MAE val-
ues. When compared to standalone ANN, the CEEMDAN-ANN demonstrates better performance by achieving 
lower RMSE values. The reductions vary from 8.849% to 55.656%, 10.954% to 51.213%, and 7.374% to 48.359% 
across all stations for one, two, and three-hour ahead forecasting horizons, respectively. In terms of MAE, the 
reductions vary from 2.109% to 60.811%, 0.414% to 52.290%, and 10.782% to 51.440% for one-hour, two-hour, 
and three-hour ahead forecasts. Likewise, for CEEMDAN-LSTM model, the reductions in RMSE range from 
25.556% to 54.229%, 13.610% to 50%, and 7.043% to 49.315%, for one-hour, two-hour, and three-hour ahead 
forecasts respectively, compared to the simple LSTM model. In terms of MAE, the reductions range from 5.063% 
to 45.544% for the one-hour ahead forecasts, 7.143% to 58.871% for the two-hour ahead forecasts, and 4.640% to 
49.514% for the three-hour ahead forecasts. The CEEMDAN-BiLSTM exhibits superior performance by giving 
lower RMSE values compared to the simple BiLSTM, with reductions ranging from 22.661% to 54.271%, 7.335% 
to 52.877% and 3.895% to 48.732% for one, two, and three-hour ahead predictions across stations. Likewise, for 
MAE, reductions in the range of 1.357% to 47.535%, 3.488% to 49.484%, and 3.325% to 48.979% are observed 
for one-hour, two-hour, and three-hour forecasts, respectively. These results indicate that the approaches using 
decomposition as a data preprocessing step has a substantial influence on the efficacy of models.

The CEEMDAN-AdaBoost-BiLSTM model demonstrates up to 15.517%, 12.290% and 11.111% reductions 
over CEEMDAN-BiLSTM for one, two, and three-hour ahead predictions respectively for RMSE, across all 
stations. Similarly, for MAE reductions of up to 21.519%, 13.803%, and 18.182% across all stations is noticed 
for one, two, and three-hour ahead predictions respectively. This suggests that using AdaBoost can enhance the 
performance when compared with using only an individual BiLSTM model. Training multiple BiLSTM models in 
conjunction with the Adaboost algorithm involves a dynamic adjustment of model weights based on prediction 
errors. This collaborative approach serves to enhance forecasting outcome and robustness.

However, using the same approach to model all the components might not be optimal. The different IMF 
components are likely to exhibit distinct characteristics. High and medium-frequency IMFs, marked by swift 
fluctuations and intricate patterns, can be accurately predicted with AdaBoost-BiLSTM. These IMFs signify 
short-term variations and exhibit high randomness. Conversely, low-frequency IMFs and residual components, 

Table 1.   Prediction results on test data for single models without decomposition.

Station Hour

LR SVR RF ANN LSTM BiLSTM

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Barrage
at Narora

1 0.202 0.099 0.201 0.098 0.207 0.101 0.221 0.148 0.201 0.101 0.199 0.098

2 0.284 0.154 0.282 0.148 0.291 0.156 0.286 0.162 0.284 0.153 0.278 0.148

3 0.365 0.207 0.36 0.196 0.37 0.21 0.372 0.243 0.365 0.206 0.355 0.196

Kachla Ghat,
Badaun

1 1.055 0.281 1.113 0.293 1.008 0.281 1.056 0.339 1.042 0.295 0.962 0.28

2 1.086 0.327 0.997 0.362 1.086 0.357 1.059 0.369 1.058 0.364 0.968 0.344

3 1.094 0.375 1.046 0.436 1.129 0.422 1.112 0.473 1.079 0.431 1.027 0.421

Ghatiya ghat,
Farrukhabad

1 0.173 0.064 0.169 0.064 0.179 0.065 0.188 0.098 0.174 0.071 0.169 0.064

2 0.221 0.102 0.229 0.097 0.218 0.103 0.257 0.138 0.231 0.124 0.218 0.097

3 0.281 0.146 0.298 0.137 0.27 0.144 0.296 0.156 0.29 0.164 0.267 0.128

Bridge
at Bithoor

1 0.233 0.111 0.239 0.116 0.238 0.108 0.24 0.12 0.239 0.116 0.232 0.11

2 0.386 0.205 0.394 0.2 0.389 0.195 0.416 0.262 0.379 0.195 0.374 0.194

3 0.547 0.312 0.549 0.288 0.555 0.294 0.553 0.331 0.552 0.317 0.529 0.284

Ganga
Barrage,
Kanpur

1 0.452 0.245 0.456 0.23 0.49 0.254 0.452 0.237 0.45 0.237 0.444 0.228

2 0.677 0.402 0.667 0.366 0.737 0.41 0.676 0.39 0.669 0.37 0.666 0.361

3 0.869 0.543 0.854 0.488 0.946 0.552 0.883 0.56 0.861 0.526 0.846 0.488

Bathing
Ghat,
Kanpur

1 0.738 0.227 1.45 0.438 0.931 0.286 0.764 0.365 0.756 0.24 0.738 0.217

2 1.104 0.409 1.682 0.536 1.422 0.489 1.124 0.483 1.143 0.422 1.103 0.407

3 1.399 0.576 1.887 0.654 1.639 0.63 1.408 0.619 1.466 0.608 1.388 0.536

Shuklaganj
Bridge
Kanpur

1 0.265 0.134 0.246 0.103 0.255 0.111 0.272 0.147 0.265 0.136 0.241 0.101

2 0.413 0.238 0.361 0.184 0.363 0.196 0.412 0.243 0.396 0.217 0.34 0.181

3 0.575 0.349 0.494 0.273 0.489 0.291 0.583 0.372 0.531 0.308 0.458 0.26

Bridge
at Ansi,
Fatehpur

1 0.528 0.244 0.522 0.237 0.515 0.233 0.541 0.262 0.536 0.254 0.514 0.232

2 0.875 0.459 0.851 0.422 0.831 0.415 0.907 0.49 0.844 0.431 0.821 0.405

3 1.247 0.691 1.215 0.618 1.165 0.612 1.269 0.697 1.219 0.656 1.158 0.61

River Gomti
in Varanasi

1 0.71 0.243 1.455 0.411 0.931 0.31 0.768 0.356 0.701 0.248 0.694 0.231

2 1.07 0.444 1.668 0.579 1.408 0.53 1.076 0.475 1.02 0.45 0.968 0.418

3 1.422 0.669 1.874 0.757 1.711 0.732 1.403 0.785 1.346 0.65 1.219 0.605

Rajwari

1 0.532 0.299 0.537 0.288 0.553 0.306 0.539 0.32 0.524 0.292 0.513 0.284

2 0.726 0.444 0.692 0.402 0.736 0.436 0.732 0.446 0.711 0.42 0.692 0.401

3 0.909 0.579 0.91 0.551 0.914 0.569 0.914 0.593 0.901 0.563 0.872 0.538
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Table 2.   Prediction results on test data for decomposition based hybrid models.

Station Hour

CEEMDAN-
ANN

CEEMDAN-
LSTM

CEEMDAN-
BiLSTM

CEEMDAN-
AdaBoost-
BiLSTM

CEEMDAN-
AdaBoost-
BiLSTM-LSTM

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Barrage at 
Narora

1 0.098 0.058 0.092 0.055 0.091 0.055 0.09 0.05 0.09 0.047

2 0.151 0.09 0.144 0.077 0.131 0.076 0.128 0.076 0.122 0.062

3 0.195 0.118 0.185 0.104 0.182 0.1 0.164 0.092 0.157 0.085

Kachla Ghat, 
Badaun

1 0.804 0.298 0.771 0.272 0.744 0.26 0.695 0.248 0.669 0.233

2 0.943 0.366 0.914 0.338 0.897 0.332 0.896 0.33 0.854 0.328

3 1.03 0.422 1.003 0.411 0.987 0.407 0.966 0.378 0.939 0.363

Ghatiya ghat, 
Farrukhabad

1 0.118 0.065 0.117 0.046 0.108 0.042 0.100 0.041 0.099 0.035

2 0.131 0.066 0.121 0.051 0.121 0.049 0.12 0.049 0.119 0.047

3 0.175 0.085 0.164 0.082 0.16 0.077 0.150 0.063 0.149 0.062

Bridge at 
Bithoor

1 0.189 0.116 0.132 0.089 0.126 0.079 0.115 0.062 0.097 0.049

2 0.225 0.125 0.214 0.124 0.209 0.118 0.189 0.104 0.145 0.079

3 0.311 0.182 0.288 0.161 0.272 0.158 0.253 0.142 0.243 0.139

Ganga Barrage, 
Kanpur

1 0.412 0.232 0.335 0.225 0.293 0.219 0.291 0.196 0.211 0.135

2 0.487 0.364 0.457 0.327 0.407 0.295 0.373 0.271 0.297 0.178

3 0.525 0.414 0.513 0.362 0.439 0.325 0.406 0.272 0.361 0.214

Bathing Ghat, 
Kanpur

1 0.52 0.243 0.501 0.241 0.454 0.218 0.453 0.215 0.425 0.213

2 0.871 0.481 0.751 0.37 0.716 0.355 0.628 0.306 0.602 0.299

3 0.78 0.405 0.772 0.407 0.771 0.405 0.76 0.377 0.707 0.356

Shuklaganj 
Bridge, Kanpur

1 0.157 0.084 0.138 0.081 0.138 0.074 0.138 0.062 0.127 0.054

2 0.201 0.124 0.198 0.114 0.19 0.107 0.186 0.094 0.176 0.088

3 0.315 0.209 0.283 0.206 0.282 0.158 0.268 0.149 0.237 0.127

Bridge at Ansi, 
Fatehpur

1 0.334 0.175 0.299 0.163 0.298 0.161 0.279 0.143 0.279 0.137

2 0.6 0.38 0.554 0.288 0.508 0.288 0.492 0.284 0.473 0.253

3 0.822 0.52 0.803 0.483 0.801 0.485 0.712 0.426 0.686 0.388

River Gomti in 
Varanasi

1 0.449 0.213 0.407 0.155 0.406 0.154 0.343 0.148 0.337 0.132

2 0.668 0.339 0.621 0.281 0.598 0.258 0.571 0.255 0.544 0.253

3 0.844 0.5 0.826 0.451 0.807 0.417 0.787 0.407 0.727 0.358

Rajwari

1 0.274 0.166 0.274 0.161 0.26 0.149 0.258 0.138 0.256 0.131

2 0.41 0.285 0.377 0.219 0.367 0.218 0.361 0.205 0.354 0.202

3 0.472 0.306 0.463 0.31 0.46 0.306 0.441 0.27 0.427 0.248

Figure 6.   Comparison of coefficient of determination values for different models over test data across all 
stations.
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primarily representing gradual trends or periodic elements, are more effectively predicted using standalone 
LSTM. The proposed CEEMDAN-AdaBoost-BiLSTM-LSTM model outperforms CEEMDAN-AdaBoost-BiL-
STM with reductions of up to 27.491%, 20.375%, and 11.567% for one, two, and three-hour ahead predictions 
respectively for RMSE, across all stations. For MAE, the reductions up to 31.122%, 34.317%, and 21.323% are 
seen across one, two, and three-hour ahead predictions respectively. This approach acknowledges the variability 
among components and emphasizes the importance of adapting prediction techniques to the individual charac-
teristics of each component in order to produce more accurate results. The proposed approach has consistently 
provided the best forecast across all forecast horizons and all stations, thus demonstrating its superiority. It can be 
observed that, as the prediction time step increases, the predictive performance of all models gradually declines, 
demonstrating an increasing accumulation of errors in multi-step forecasting. This phenomena correctly depicts 
that predicting further into the future gets more difficult as the time step lengthens. However, improved outcomes 
are still obtained for our proposed CEEMDAN-AdaBoost-BiLSTM-LSTM model.

Although decomposing the original data is an additional computational step in the modeling process, it 
significantly enhances prediction accuracy. The simple and less complex decomposition-based models apply the 
same technique to forecast all the IMFs without considering their characteristics. While this approach may seem 
straightforward, it comes at the expense of predictive accuracy. The proposed CEEMDAN-AdaBoost-BiLSTM-
LSTM model introduces an additional step of computing the zero-crossing rate for each IMF, aiding in selecting 
the appropriate forecasting model (AdaBoost-BiLSTM or LSTM) for each IMF, thereby improving accuracy. 
This computation incurs only a minimal increase in computation overhead and execution time, taking approxi-
mately 0.0114 seconds (example of Bithoor dataset). The application of AdaBoost-BiLSTM to the complex high 
and medium frequency IMFs further enhances predictive performance through ensemble learning techniques, 
making it a useful approach in critical real-world applications like water quality monitoring and forecasting.

Diebold-Mariano (DM) test31 and t-test are commonly used statistical tests used to compare the performance 
of models relative to each other32–35. DM test with the squared error as the loss function is used to compare the 
proposed forecasting model with ten alternative models. The DM statistics obtained are compiled in Supplemen-
tary Table S5. First, the magnitude of the DM value shows that the proposed model has a significant advantage 
over the other models in terms of forecasting accuracy. Furthermore, the computed p-values play a critical role 
in determining the statistical significance of the observed differences. Notably, each p-value was found below 
the 0.05 significance level. This suggests that the forecast accuracy of the proposed model differs statistically 
by a significant amount from that of the alternative models. Additionally, we conducted two-sided t-tests using 
results from seven different executions using different random seeding to evaluate the significance of performance 
variations among different datasets, as outlined in Supplementary Table S6. Notably, the p-values consistently 
remained below the 0.05 significance level, indicating that the proposed model’s RMSE scores significantly 
outperformed those of the benchmark models across all datasets.

Considering the dataset for the Bithoor station, the average runtimes for the individual models are as fol-
lows: 7.35 seconds for LR, 15.33 seconds for SVR, 10.32 seconds for RF, 90.20 seconds for ANN, 117.23 seconds 
for LSTM and 126.11 seconds for BiLSTM. The models with decomposition as a pre-processing step have the 
following average runtimes: 910.02 seconds for CEEMDAN-ANN, 1233.71 seconds for CEEMDAN-LSTM, 
1254.75 seconds for CEEMDAN-BiLSTM, 3143.23 seconds for CEEMDAN-AdaBoost-BiLSTM and 1656.70 
seconds for CEEMDAN-AdaBoost-BiLSTM-LSTM. The data decomposition pre-processing step increases the 
runtime of the hybrid models. Out of all the models, CEEMDAN-AdaBoost-BiLSTM takes the longest to run. 
It is worth noting that while the CEEMDAN-AdaBoost-BiLSTM model may show comparable accuracy levels 
to our proposed CEEMDAN-AdaBoost-BiLSTM-LSTM model in a few isolated cases, it does so at the cost 
of increased execution time. This is because the former model applies AdaBoost-BiLSTM to all decomposed 
components, whereas our proposed model applies AdaBoost-BiLSTM only to the high and medium frequency 
IMFs. By applying AdaBoost only to specific components, our model significantly reduces the execution time. 

Figure 7.   Comparison of MAPE values for different models over test data across all stations.
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While simpler models may exhibit close accuracy in a few isolated instances, our proposed model consistently 
demonstrates superior forecasting accuracy across all cases.

Conclusion
This study examines the use of a novel approach combining the CEEMDAN approach in conjunction with 
AdaBoost and deep-learning for short-term and multi-step forecasting of the DO levels in river Ganga. The 
experiments demonstrate that: 

1.	 A more precise and superior prediction result is achieved by taking into account the unique qualities of 
each IMF component and using a variety of prediction techniques catered to these components. Here, the 
AdaBoost-BiLSTM model is used to predict the high and medium frequency IMFs with complex non-linear 
patterns and standalone LSTM model is used for the low-frequency IMFs and residual that display reason-
ably simple and smooth patterns. The proposed approach outperforms all the models that used the same 
technique to forecast each component.

2.	 The proposed CEEMDAN-AdaBoost-BiLSTM-LSTM model outperforms the CEEMDAN-AdaBoost-BiL-
STM with reductions in RMSE by up to 27.491%, 23.280%, and 11.567% and the reductions in MAE by 
up to 31.122%, 34.317%, and 21.323% for 1, 2, and 3-hour ahead predictions respectively. Compared with 
CEEMDAN-BiLSTM, the proposed model demonstrates up to 27.986%, 30.622% and 17.767% reductions for 
RMSE, and up to 38.356%, 39.661%, and 34.154% reductions in MAE for 1, 2, and 3-hour ahead predictions 
respectively. Results of Diebold-Mariano and t-test suggests statistically significant difference in forecasts 
between our proposed and the models used in comparison.

3.	 The proposed CEEMDAN-AdaBoost-BiLSTM-LSTM model is comparatively more computationally efficient 
than CEEMDAN-AdaBoost-BiLSTM model. The proposed model applies AdaBoost-BiLSTM only to the high 
frequency and medium frequency IMFs and employs a standalone LSTM model to the low frequency IMFs 
and residual. This takes lesser time to execute than CEEMDAN-AdaBoost-BiLSTM which applies AdaBoost-
BiLSTM to all the IMFs and residual. However, the proposed model requires slightly longer processing 
time compared to the other simpler models. The future research will focus on integrating parallelization 
techniques for decreasing the computational time of the model making it more practically applicable while 
optimizing the performance.

Data availability
Data and materials are available from the corresponding author upon request.
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