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Dynamics around small irregularly 
shaped objects modeled as a mass 
dipole
Ahmed A. Abozaid 1*, M. Radwan 2, A. H. Ibrahim 1 & A. Bakry 1

In this work, we investigate the dynamics of a spacecraft near two primary bodies. The massive body is 
considered to have a spherical shape, while the less massive one is elongated and modeled as a dipole. 
The dipole consists of two connected masses, one is spherical and the other is an oblate spheroid. The 
gravitational potential of the elongated body is determined by four independent parameters. To study 
the dynamics, we construct the equations of motion of a spacecraft with negligible mass under the 
effect of the current force model. The existence and locations of the equilibrium points are analyzed 
for various values of the system parameters. We found that the existence and locations of the points 
are affected by the system parameters. Also, we studied the linear stability of the equilibrium points. 
We found some stable collinear points when the oblateness parameter is negative, otherwise the 
points are not stable. We used the curves of zero velocity to identify the regions of allowed motion. 
Furthermore, we discussed the 2001 SN263 asteroid system and found some stable collinear points 
when the oblateness parameter is negative. In addition, the triangular points of the system are stable 
in a linear sense.

Great efforts are being made to discover small bodies within the solar system, such as asteroids and comets. The 
interest in studying these minor bodies has returned once again to the focus of international institutions after the 
successful launch of the Rosetta space mission. This scientific mission aimed to explore the materials, physical 
properties, and environments of these small celestial bodies. This efforts motivate and encourage the develop-
ment of space explorations and expand our knowledge about the origin of our solar  system1.

Currently, some space missions continue to work to study minor bodies like the Lucy mission launched in 
2021, and others are planned to start in a few years. Therefore, understanding and studying the orbital dynam-
ics around these bodies is essential. However, studying the dynamics around these bodies is complex due to 
their peculiar rotations and non-spherical  shapes2 . Since these minor celestial bodies typically have irregular 
shapes, thus considering their attraction potentials as a small perturbation of the central gravitational field is 
often unsuitable. It is essential to construct a simple approximation for their gravitational fields while keeping 
the characteristics of motion in close proximity to these  bodies3. There are several mathematical models have 
been constructed in order to represent the gravitational field of minor bodies with irregular shapes. Due to the 
shapes of these bodies, we can not apply the common spherical harmonic model of the gravitational field because 
of the slow convergence or even divergence of functions near the surface of these  bodies4. Among the common 
mathematical models, the ellipsoidal harmonic model suggested by  Hobson5 and then modified by Pick et al.6, 
the spherical harmonic one was adopted to describe the gravitational field of the asteroid  Vesta7. Some alterna-
tive methods are also presented to investigate the dynamics around the elongated asteroids or comets. Among 
them, the rotating mass  dipole8, the massive straight  segment9 , the double segment  model10 , or the simple 
dumbbell-shaped body  model11. Furthermore, Zeng et al.12 proposed a simplified dipole segment model. This 
model consists of a massive straight segment and two point masses at the extremities of the segment. Using the 
simple potential function associated with the proposed model, they identified five topological cases with different 
sets of system parameters. In addition, the authors investigated the positions, stabilities, and variation trends of 
the system equilibrium points in a parametric way.

Lagrange equilibrium points are positions in space in which the spacecraft has zero acceleration and zero 
velocity. These points are located in regions where the gravitational perturbations are minimal, so we can reduce 
the fuel needed for maneuvers and station-keeping13. The equilibrium points of irregularly shaped minor bodies 
play an important role in investigating the dynamic behaviors of spacecraft around these  bodies14.
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Different techniques have been used to address dynamic systems. Usually, quantitative methods, either numer-
ical or analytical, give deep insight into the dynamic behavior of the systems. However, in most cases, dynamical 
systems described by differential equations are very complex. Thus, an analytical solution to the differential 
equations is not tractable. Also, numerical solutions are not valid for a very long interval of time. Here, to address 
the current problem more efficiently, we combine an analytical perturbed solution with a qualitative method. 
This method studies the geometric structure of the phase space portrait and deals with questions of stability etc.

Many researchers have been interested in studying the orbital dynamics of spacecraft that move around irregu-
lar minor celestial bodies. Mondelo et al.15 presented the four equilibrium solutions around the asteroid 4 Vesta 
asteroid and discussed their stability. Wang et al.16 used the polyhedral method to investigate the location and 
stability of the equilibrium points of 23 minor objects. They found four equilibrium points outside the elongated 
bodies. Yong et al.17 presented a simplified dynamical model for non-axisymmetric elongated asteroids. This 
model consists of three particles and two massless rigid rods. The authors applied the model to some realistic 
asteroids. They demonstrated that the topological cases of the Lagrange equilibrium points are not changed by 
the use of the proposed model.

Recently, Santos et al.18 investigated the qualitative orbital dynamics in close proximity to an asteroid with 
an arched shape using a tripole model. The authors applied their results to some real systems, such as 33 Eros. 
They found that, due to the arched shape of the asteroid, the curves around the rotating mass tripole have sig-
nificant changes. Liu et al.19 studied the orbital dynamics with the gravitational potential of 93 Minerva utilizing 
an irregularly shaped model. The authors found five equilibrium points around the asteroid 93 Minerva, one 
of which is internal and four are external. Also, they studied the changes in position, number, and topological 
case of the Lagrangian points when changing the density and the spin speed. Furthermore, they demonstrated 
the existence of stable orbits around the asteroid 93 Minerva. Zeng and  Liu20 proposed a new method to obtain 
natural periodic orbits near irregularly shaped asteroids. The method is based on the optimal control framework 
with respect to a general form of the irregular gravitational field. The authors identified three types of periodic 
orbits. These orbits are the Lyapunov orbit around the collinear point, the equatorial retrograde orbit, and the 
inclined orbit. Also, Zhang et al.21 introduced the dipole segment model and its equilibrium points. The authors 
examined numerically the stability of the two triangular equilibrium points of the system. They illustrated new 
types of periodic orbits, including their orbital shapes, periods, and the Jacobi integral.

Most recently, Li et al.22 investigated the geophysical and orbital environments of the asteroid 2016 HO3 to 
facilitate a potential mission design. They examined the geometric and geopotential topographies of 2016 HO3 
using different shape models. Then, the authors studied the periodic orbits around 2016 HO3 in the asteroid-
fixed frame and the Sun-asteroid frame taking into account the solar radiation pressure. This work can serve 
as a reference for the exploration of other small-sized fast-rotating objects similar to 2016 HO3. Furthermore, 
Vincent et al.23 studied numerically a version of the synchronous restricted three-body problem. The authors 
considered the massive primary as an oblate spheroid, while the secondary one is an elongated asteroid. They 
investigated the existence, and linear stability of the libration points for different combinations of the system 
parameters. They observed that the perturbing forces have significant effects on the positions and stability of the 
libration points as well as the allowed regions of motion.

Critical scientific questions about small objects, such as structure, and formation can only be addressed by 
satellite missions that approach these  objects24. Thus, understanding the behavior of the orbital dynamics of 
artificial satellites close to these objects is crucial to space missions. Also, using new realistic dynamical models 
contributes to obtaining highly accurate results. The above facts are the motivations of the current work. The 
focus of the current work is the study of the dynamics around small elongated celestial bodies. We used a new 
model to approximate irregularly shaped bodies. The paper extends the work performed by Idrisi et al.25. In their 
research, they assumed that the rotating dipole mass is formed by two equal point masses. However, in the present 
work, we assumed the rotating dipole to have a complex shape to obtain highly accurate results. Furthermore, 
we generalized the problem and investigated the existence and stability taking into account the parameters of 
the dipole model. The present work’s derived results can be a theoretical reference for future missions. The con-
tents of the current paper are organized as follows: The next section introduces the dynamical equations of the 
system. After that, the existence and locations of the equilibrium points and their linear stability are analyzed for 
various values of the system parameters. Then, the curves of zero velocity are illustrated to show the topological 
structure around the two primaries along with the libration points. Finally, we studied the 2001 SN263 asteroid 
system by computing the locations of the equilibria and their stability besides the allowed regions of motion.

Dynamical equations of motion
In the current work, we assume that the motion of the infinitesimal body is governed by the gravitational field of 
two primary bodies of masses M1 and M2 . The two massive primaries rotate with an angular velocity ω about their 
common center of mass. The infinitesimal body does not influence the dynamics of the two massive primaries. 
M1 is assumed spherical, while M2 is of irregular shape, M1 > M2 . The primary M2 is modeled as a mass dipole 
composed of two masses m21 and m22 , with total mass M2 = m21 +m22 . The mass m21 is spherical, while m22 is 
an oblate spheroid. The two masses are connected with a massless rod (Fig. 1).

To describe the dynamical behavior of the infinitesimal body, we use a body-fixed synodic frame oxyz. The 
origin of this reference frame is located at the barycenter of the system. r1 , r21 , r22 , and r represent the position 
vectors of the infinitesimal body from the masses m1 , m21 , m22 , and the barycenter, respectively. The equatorial 
plane of the dipole coincides with the plane oxy, whereas the axis ox is collinear with the two primary bodies. 
The coordinates of the negligible mass with respect to the rotating coordinate system are given by (x, y), while 
the coordinates of the two massive primaries are (−x1, 0) , (x21, 0) and (x22, 0) , respectively. Because the mass 
of the more massive primary is greater than that of the less massive one, thus we can define the mass ratio of 
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the system as µ* = m21

m1+m21+m22
= µ

2
 . µ represents the known mass ratio of the classical restricted three-body 

problem. Therefore, the coordinates of the massive primaries are given by x1 = 2µ∗ , x21 = 1− 2µ∗ − l and 
x22 = 1− 2µ∗ + l . 2l represents the distance between the two masses m21 and m22 . Here, to facilitate the calcula-
tions and discussions we use dimensionless canonical units to describe the problem. The unit of mass is chosen 
such that the sum of the masses is equal to unity, m1 +m21 +m22 = 1 . Also, we define the unit of time such 
that the period of rotation of the mass dipole is equal to 2π . Furthermore, we choose the distance between M1 
and the center of mass of M2 as the unit of distance.

Now, in the adopted rotating coordinate dimensionless system, the differential equations of motion of the 
small negligible mass m, in the (x, y) plane, under the effect of the gravitational potential of the primary bodies 
M1 and M2 are given by

where

where �x and �y represent the partial derivatives of the potential � with respect to x and y, respectively. The 
force ratio parameter k = GM

ω2d3
 plays an important role in the dynamics of the problem since it represents the 

ratio between the gravitational and the centrifugal forces, with d the distance between the two primaries. When 
the ratio k = 1 , the problem is identical to the classical circular restricted problem. If k < 1 , the centrifugal force 
is larger than the gravitational one and the primary massive bodies tend to move away from each other. Vice 
versa, in the case k > 1 , the primary bodies tend to approach each  other26. r1 , r12 and r22 are the distances from 
the small mass m to the masses m1 , m12 and m22 , respectively, and can be expressed as

where the perturbed angular velocity presented in Eq. (2) is no longer equal to unity and is given by

where A represents the oblateness coefficients of m22
27

(1)
ẋ − 2ωẏ = �x ,

ÿ + 2ωẋ = �y

(2)� = 1
2
ω2
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Figure 1.  The geometry of the problem.
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where the parameter P is the spheroid primary radius. The superscript e represents the equatorial radius, and p 
is the polar radius.

The gradients of the effective potential in the plane (x, y), can be written as

by using Eqs. (1), (2), then the Jacobian integral is

where the integration constant C is an integral of the equation of motion and is called Jacobi’s constant.

Equilibrium points of the dipole system
The libration points are locations of gravitational balance between the massive primary bodies. In other words, 
the equilibria of the dipole system can be found, in the rotating frame of reference, with zero values of both 
velocity and acceleration components in Eq. (8). In the classical restricted three-body problem, there exist five 
equilibrium points, out of which three collinear points are located on the x-axis, while the other two are located 
in the xy−plane and are known as triangular points. In the current section, we study the existence of equilibrium 
points in the equatorial plane of the dipole system in terms of their positions.

The equations of motion of the system, Eq. (1), can be written as

The libration equilibrium points of the system can be obtained in the equatorial plane by equating the velocity 
and acceleration components to zero, �x = 0 and �y = 0 , i.e. the right-hand side of Eq. (8), is set to zero

Solving Eq. (9), we obtain two different types of solutions for the positions of the libration points. In the first 
case, when x  = 0 and y = 0 , the solutions of this equation are called collinear solutions. In the second case, when 
x  = 0 and y  = 0 , the solutions are non-collinear.

Here, we investigate, for the current system, the distribution of equilibrium points and the structure of the 
zero-velocity surfaces using numerical simulations. The curves of zero velocity determine the boundary regions 
in which the motion of the small body is permitted. We investigate the distribution of the points in the presence 
of the perturbing parameters, the oblateness coefficient A, the force ratio parameter k, and the distance l. To 
better study the problem and to show the significance of these parameters, different values of them are taken into 
consideration. In the solar system, the majority of planets are oblate spheroids and rotate in relatively stable states 
about their minor axes. As a consequence, the value of the oblateness coefficient A is positive for the primary 
bodies. However, in some cases without spinning, the fixed massive primaries can be prolate spheroids corre-
sponding to a stable system. Therefore, the value of the oblateness coefficient can take values less than  zero28,29. 
In the subsequent simulations, we used the values A ∈ {−0.05, 0, 0.05}.

Figure 2a, depicts the simplified case corresponding to A = 0 , k = 1 , l = 0 , and µ∗ = 0.149 . It is observed 
that the figure is similar to that of the restricted three-body problem. Figure 2b,c, illustrate the distribution of 
equilibrium points along with the zero-velocity curves with different A. In Fig. 2b, the oblateness coefficient of 
the dipole is A = 0.05 , k = 0.5, l = 0.09 and µ∗ = 0.149 . We can notice from the figure that, five equilibrium 
points are obtained, Li(i = 1, 2, . . . , 5) . Three collinear points (i = 1, 2, 3) and two triangular points (i = 4, 5) . 
The distribution of the libration points is slightly different from Fig. 2a. As clear from Fig. 2b, the transfer of 
the small body between some of the points is possible. Furthermore, the curves of zero velocity distinguish the 
regions where the motion of the small particle is permissible from the regions where the motion is not permit-
ted. For instance, the motion around the two triangular points is not permissible. In Fig. (2c), when A = −0.05 , 
we can see that the distribution of the equilibrium points and the structure of the curves of zero velocity are 
completely different. We notice from the figure that new distinct points appear. Also, the transfer between some 
of the points is still possible.

Figure 2d,e depict the effect of varying the force ratio parameter k on the distribution of equilibrium points 
and the shape of the contours. Two values for k are considered (k = 1.5; k = 1) and the rest of the parameters 
are A = −0.05,µ∗ = 0.149 , and l = 0.09 . In the case k = 1.5 , we observe from Fig. 2d that several distinct 
equilibrium points exist. Also, we notice from the contours that the transfer of the small body between some of 
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the points is allowed. In the second case when k = 1 , several new points appear near to the less massive primary. 
The number of points is sensitive to the values of the force ratio. Furthermore, we can observe a slight change in 
the curves of zero velocity between the two cases.

In Fig. 2e,f, we illustrate the effect of the distance parameter l on the distribution of the libration points and 
the surfaces of zero velocity. We consider two values for this parameter (l = 0.09; l = 0.01) , while A = −0.05 , 
k = 1 , and µ∗ = 0.149 . In both cases, we notice the appearance of several equilibrium points and the contour 

Figure 2.  Equilibrium points and the zero-velocity curves around the dipole model with different parameters of 
(k, A, l).
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shapes are slightly different. The motion of the small body is forbidden around the points L4 and L5 and the 
points appear close to the dipole.

The location of non‑collinear equilibria
It is known that the velocity and acceleration components of the infinitesimal body are equal to zero at the 
equilibrium  points30. These non-collinear equilibria are the solution of the equations �x = 0 , and �y = 0 , when 
(x, y)  = (0, 0) , then

In the absence of the disturbing forces, i.e. l = 0 , and A = 0 , the solution of Eq. (10) is given by 
r1 = r12 = r22 = r2 = k2/3 . Thus, the coordinates of the triangular equilibria can be obtained as x = 1

2
(1− 4µ∗) 

and y = ± 1
2
(4k

2
3 − 1) . If the perturbing forces influence the locations of these points, i.e. l  = 0 and A  = 0 , the 

solutions of Eq. (10) are slightly changed by a very small quantity ε . Then the perturbed locations are given by 
x = 1

2
(1− 4µ∗)+ ε1 and y = ± 1

2
(4k

2
3 − 1)+ ε2 , (ε1 , ε2 ≪ 1) . Substituting these values into Eq. (10), retaining 

only the first order terms in ε1 and ε2 , and neglecting the higher orders, we have

Solving simultaneously the two linear Eq. (11) give the values of ε1 and ε2 . The quantities A1,A2,A3,B1,B2 , B3 , ε1 
and ε2 are functions of the involved parameters and are given in Appendix I. The coordinates of the non-collinear 
equilibrium points L4,5(x,±y) , are given as

It is clear from the above equations that the coordinates of the non-collinear equilibria are affected by the 
parameters l, µ∗ , A, and k.

Tables 1, 2 represent the locations of the triangular equilibrium points for different combinations of 
the perturbing parameters. The selected values of the parameters are µ∗ = 0.149 , A ∈ {−0.05, 0, 0.05} , 
l ∈ {0, 0.01, 0.05, 0.09} , and k ∈ {0.15, 0.5, 1, 1.5, 1.85} . These parameters determine the potential distribution 
of the current dynamical system. We notice from the tables that the locations of the points vary with the values 
of the parameters. Changing the values of the parameters leads to a change in the gravitational field of the two 
massive primaries, consequently changing the coordinates of the points. The locations of the equilibrium points 
sometimes become close to one of the primaries, and sometimes move away from it according to the magnitude 
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Table 1.  The locations of the triangular points for some selected values of l and k, when A = 0 , µ∗ = 0.149.

A l k x ±y

0 0 0.15 0.202 0.179752

0 0 0.5 0.202 0.616409

0 0 1 0.202 0.866025

0 0 1.5 0.201999 1.029743

0 0 1.85 0.202 1.121162

0 0.01 0.15 0.201899 0.180148

0 0.01 0.5 0.202022 0.616425

0 0.01 1 0.202058 0.866015

0 0.01 1.5 0.202073 1.029727

0 0.01 1.85 0.202079 1.121145

0 0.05 0.5 0.202561 0.616814

0 0.05 1 0.203474 0.865785

0 0.05 1.5 0.203842 1.029361

0 0.09 0.15 0.194784 0.206706

0 0.09 0.05 0.203897 0.617659

0 0.09 1 0.206823 0.865214

0 0.09 1.5 0.208000 1.0284789

0 0.09 1.85 0.208492 1.119776
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of the gravitational field. It is observed that, as k increases, x varies a little while y is displaced upward. Hence the 
libration point L4 moves upward away from the x-axis in the xy-plane. For instance, in the Table 1, the shift (in 
the y-coordinate) between the location of point L4 in the unperturbed case and its location when A = 0 , k = 1.5 , 
and l = 0.01 , is approximately 19 percent. When k = 0.5 , the variation in the y-coordinates is 28.8 percent, and 
the point L4 shifted downward.

Location of collinear libration points
In the case of collinear equilibrium points, (Li , i = 1, 2, 3) , x  = 0 and y = 0 . Therefore, �x(x, 0) = 0 , and the 
collinear equilibria lie on the line joining the two primary bodies, ( x−axis). These points are the solution of the 
Eq. (9), so that

Equation (13) represents a nonlinear equation of x in a polynomial form. The highest degree of this nonlinear 
equation is eleven, and its solution is obtained using numerical methods. To guarantee the accuracy of the solu-
tion, we use Mathematica software to solve the equation with a high  tolerance31. In the case of collinear point 
L1 , Eq. (13), reduces to

while in the case of the points L2 and L3 Eq. (13) become, respectively,

and

Tables 3, 4, and 5 evaluate the effects due to the force ratio, the oblateness, and the distance parameters on 
the collinear equilibrium points. In these tables, we choose arbitrary values of the perturbing parameters k and 
l, with fixed values for µ∗ and A.

In Table 3 when k = 0.5 , A = 0 , l = 0 , and µ∗ = 0.149 the point L1 approaches the bigger primary, and the 
change in its location is 17 percent. Also, the point L2 tends toward the origin and approaches the bigger pri-
mary, and the change in its location is 5 percent. The point L3 approaches the smaller one, and the change in its 
location is 12 percent. However, the situation reverses in the case of k = 1.5 . In this case, the variations in the 
points L1, L2 , and L3 are 12, 2, and 9 percent, respectively. The variations are measured relative to the case with 
k = 1 , A = 0 , l = 0 , and µ∗ = 0.149 . When l ∈ {0.01, 0.05, 0.09} with fixed k = 1.2 , A = 0 , and µ∗ = 0.149 , we 
notice that the values of the points L1 , L2 , and L3 are changed. This demonstrates the importance of the influence 
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(x+2µ∗)2
+ µ∗

(x+2µ∗+l−1)2
+ µ∗

(x+2µ∗−1−l)2
+ 3µ∗A

2(x+2µ∗−1−l)4

)

, 1− 2µ∗ − l < x.

Table 2.  The locations of the triangular points for some selected values of A, l, k, and µ∗ = 0.149.

A l k x ±y

0.05 0 0.15 0.190655 0.208632

0.05 0 0.5 0.190068 0.625899

0.05 0 1 0.189869 0.872916

0.05 0 1.5 0.189785 1.035584

0.05 0 1.85 0.189749 1.126545

0.05 0.05 0.15 0.191711 0.207662

0.05 0.05 0.5 0.191983 0.624878

0.05 0.05 1 0.191942 0.872088

0.05 0.05 1.5 0.191903 1.034862

0.05 0.05 1.85 0.191884 1.125874

− 0.05 0 0.15 0.216273 0.133543

− 0.05 0 0.5 0.215185 0.605476

− 0.05 0 1 0.214915 0.858439

− 0.05 0 1.5 0.214812 1.023422

− 0.05 0 1.85 0.21477 1.115381

− 0.05 0.05 0.15 0.208357 0.165807

− 0.05 0.05 0.5 0.214049 0.607765

− 0.05 0.05 1 0.215714 0.858893

− 0.05 0.05 1.5 0.216366 1.023421

− 0.05 0.05 1.85 0.216636 1.115232
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of the perturbing parameters on the locations of the points. Similarly, we can describe Tables 4 and 5 in the two 
cases A = ±0.05 . The significance of the oblateness coefficient is clear from the values of the collinear points 
in the two tables.

Tables 6, 7, and 8 are devoted to showing the effect of the mass ratio µ∗ on the points. For arbitrarily chosen 
values of the mass parameters µ∗ , the locations of the collinear points are presented in Tables 6, 7 and 8 with 
different values of the parameters k. In Table 6, we compute the locations of the collinear points when k = 1 , 
l = 0.05 , and A = ±0.05 . When A = 0.05 and increasing µ∗ from 0.05 to 0.24, the point L1 moves away from the 
bigger primary, and the change in its location is approximately 12 percent. The point L2 moves toward the bigger 
primary, and its location changes by approximately 97 percent. The point L3 approaches the smaller primary, and 
the variation of its location is 5.8 percent. In the case of A = −0.05 , the variations will not differ significantly. 
These variations are close to the results obtained by Idrisi et al.25. Similarly, we can discuss Tables 7 and 8 for the 
two values k = (1.5, 0.5).

Stability of motion around equilibrium points
Examining the stability of the equilibrium points is essential for dynamical systems because they represent 
suitable positions for constructing periodic orbits. Consequently, gives valuable insights into the dynamics of 
celestial objects. Not all equilibrium points are stable due to the influence of various disturbance forces. So, it is 
necessary to study the stability of these  points32.

To investigate the linear stability of the equilibria, it is necessary to transfer the origin of the coordinate system 
to the position of the obtained libration points. After that, we linearize the equations of the dynamical system 
around these equilibrium points. To do that, let us denote the coordinates of the equilibrium point to be (x0, y0) , 
then we give the point a small displacement (X, Y), we have

Table 3.  Locations of the collinear points for different combinations of the system parameters when A = 0 
and µ∗ = 0.149.

l k L1 L2 L3

0 0.15 − 0.69409 0.213996 0.929966

0 0.5 − 0.931225 0.272291 1.103415

0 1 − 1.12241 0.289075 1.257159

0 1.5 − 1.25826 0.295040 1.372302

0.01 1 − 1.12241 0.288887 1.257352

0.05 1 − 1.12246 0.284466 1.261948

0.09 1 − 1.12259 0.274656 1.272305

0.01 1.2 − 1.18108 0.291841 1.306526

0.05 1.2 − 1.18114 0.287272 1.310638

0.09 1.2 − 1.18127 0.277160 1.319966

0.05 1.5 − 1.25833 0.290116 1.376032

0.05 0.5 − 0.93126 0.268498 1.110579

Table 4.  Locations of the collinear points for different combinations of the system parameters when A = 0.05 
and µ∗ = 0.149.

l k L1 L2 L3

0 0.5 − 0.931431 0.255729 1.133377

0 1 − 1.12269 0.269382 1.27884

0 1.2 − 1.18138 0.271759 1.326051

0 1.5 − 1.25859 0.274164 1.389722

0.01 1 − 1.12268 0.270733 1.280398

0.05 1 − 1.12271 0.271977 1.290481

0.09 1 − 1.12282 0.266612 1.306051

0.05 0.15 − 0.69420 0.206659 1.004532

0.05 0.35 − 0.85009 0.246656 1.097846

0.05 0.65 − 0.99832 0.264213 1.198195

0.05 0.9 − 1.09050 0.270348 1.265939

0.05 1.2 − 1.18141 0.274449 1.336239

0.05 1.5 − 1.25862 0.276952 1.398315

0.05 1.8 − 1.32641 0.278637 1.454374

0.05 2 − 1.36763 0.279485 1.489094
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Table 5.  Locations of the collinear points for different combinations of the system parameters when 
A = −0.05 and µ∗ = 0.149.

l k L1 L2 L3

0 0.5 − 0.93102 0.296075 1.048122

0 1 − 1.12213 0.320057 1.229039

0 1.2 − 1.18078 0.324525 1.281992

0 1.5 − 1.25794 0.3291507 1.351725

0.01 1 − 1.12213 0.315723 1.226615

0.05 1 − 1.12221 0.299931 1.218435

0.09 1 − 1.12236 0.283654 1.210615

0.05 0.15 − 0.69402 0.218330 0.674635

0.05 0.35 − 0.84979 0.266971 0.674698

0.05 0.65 − 0.99791 0.289644 0.674719

0.05 0.9 − 1.09001 0.297758 1.18590

0.05 1.2 − 1.18087 0.303236 1.275141

0.05 1.5 − 1.25803 0.306598 1.347598

0.05 1.8 − 1.32579 0.308871 1.410524

0.05 2 − 1.36699 0.310015 1.448712

0.09 0.65  −0.99802 0.275113 0.671187

0.01 0.65  −0.99784 0.303098 1.109130

Table 6.  Locations of the collinear points for different mass parameter when A = ±0.05 , k = 1 and l = 0.05.

A µ
∗ L1 L2 L3

0.05 0.05 − 1.04170 0.587097 1.308373

0.05 0.1 − 1.08303 0.419027 1.309973

0.05 0.15 − 1.12351 0.269067 1.289964

0.05 0.2 − 1.16248 0.126146 1.260064

0.05 0.24 − 1.19195 0.013889 1.232025

− 0.05 0.05 − 1.04155 0.622145 0.872732

− 0.05 0.1 − 1.08271 0.450024 1.114779

− 0.05 0.15 − 1.12301 0.296964 0.992380

− 0.05 0.2 − 1.16176 0.151490 0.885905

− 0.05 0.24 − 1.19103 0.037414 0.803177

Table 7.  Locations of the collinear points for different mass parameter when A = ±0.05 , k = 1.5 and l = 0.05.

A µ
∗ L1 L2 L3

0.05 0.05 − 1.18392 0.598776 1.392177

0.05 0.1 − 1.22231 0.426924 1.408065

0.05 0.15 − 1.25934 0.273986 1.397971

0.05 0.2 − 1.29434 0.128420 1.375820

0.05 0.24 − 1.32017 0.014139 1.352974

− 0.05 0.05 − 1.18374 0.637763 1.204076

− 0.05 0.1 − 1.22193 0.460521 1.084806

− 0.05 0.15 − 1.25875 0.303561 0.980949

− 0.05 0.2 − 1.29348 0.154761 0.879245

− 0.05 0.24 − 1.31908 0.038214 0.79843
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Substituting Eq. (14) into Eq. (1) and using Taylor series, we get

retaining only terms up to order one of X and Y, then the linear variational equations of motion become

where �0
xx , �0

yy , and �0
xy represent the partial derivatives evaluated at one of the equilibrium points (x0, y0) . The 

characteristic equation corresponding to Eq. (16) can be written in the form

where

and

where

A libration point will be linearly stable if Eq. (17), evaluated at the point, has complex roots with negative real 
parts or four purely imaginary roots. The libration point is classified as unstable if one or more of the eigenvalues 
have a positive real  part33–35.

Stability of collinear points
For the collinear libration points y = 0 , so r1 = |x + 2µ∗| , r21 = |x + 2µ∗ − 1+ l| , and r22 = |x + 2µ∗ − 1− l| . 
Also, the necessary and sufficient conditions for these points to be stable are that the following conditions are 
satisfied simultaneously

(14)
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Table 8.  Locations of the collinear points for different mass parameter when A = ±0.05 , k = 0.5 and l = 0.05.

A µ
∗ L1 L2 L3

0.05 0.05 − 0.83953 0.551021 1.212205

0.05 0.1 − 0.88591 0.396026 1.188618

0.05 0.15 − 0.93237 0.255083 1.150711

0.05 0.2 − 0.97838 0.119754 1.106693

0.05 0.24 − 1.01433 0.013189 1.069166

− 0.05 0.05 − 0.83942 0.574858 0.872669

− 0.05 0.1 − 0.88567 0.420097 0.772701

− 0.05 0.15 − 0.93201 0.278543 0.672712

− 0.05 0.2 − 0.97787 0.142432 0.572717

− 0.05 0.24 − 1.01371 0.035205 0.492720
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2
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− 4�0
yy�

0
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xx�
0
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If any one of the mentioned conditions is not satisfied, this will necessarily lead to unbounded motion around 
the points. Since �0

xy = �0
yx = 0 , so that the characteristic equation of the linearized system for the collinear 

points reduces to

where

Let � = �
2 , so Eq. (18) can be written in the form

then the solutions of Eq. (20), can be written as

where

and

The general solution of the system of linear differential Eq. (16) with constant coefficients can be written  as33

where the constants αi (i = 1, 2, 3, 4) , are functions of the four arbitrary constants βi (i = 1, 2, 3, 4) . The relation-
ship between αi and βi can be derived from Eq. (16). For more details see Appendix II.

As mentioned above, the nature of the roots given by the characteristic equation, �1,2 and �3,4 determine the 
dynamic behavior of the system. In other words, determine whether the collinear points are stable or not. Table 9 
contains some numerical locations of the collinear points L2,3 in case of different combinations of the involved 
system parameters. The locations are calculated for the values k ∈ {0.5, 1, 1.5} , l ∈ {0, 0.01, 0.05, 0.09} with fixed 
µ∗ = 0.149 , and A = −0.05.

In the case of the positive oblateness parameter, the values of the roots of the characteristic equation are not 
purely imaginary and thus the stability conditions are not satisfied. Similarly, when A = 0 the conditions are not 
 satisfied23,36. When A = −0.05 , some stable locations for the collinear points are obtained. The characteristic 
equation has four imaginary eigenvalues �1,2 = ±i

√
�1 and �3,4 = ±i
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�2 , where �1 and �2 are real numbers. 
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Table 9.  Numerical locations of some stable collinear points with µ∗ = 0.149 , A = −0.05 , 
l ∈ {0, 0.01, 0.05, 0.09} , and k ∈ {0.5, 1, 1.5}.

L2 �1,2 �3,4 L3 �1,2 �3,4 Stability

0.499805 ± 7.489406 i ± 1.701609 i 0.901205 ± 8.010691 i ± 1.135279 i Stable

0.496685 ± 8.584259 i ± 2.438210 i 0.921496 ± 4.176862 i ± 1.274633 i Stable

0.524428 ± 8.858407 i ± 2.365751 i 0.896976 ± 10.49689 i ± 0.623891 i Stable

0.534155 ± 10.67172 i ± 1.262657 i 1.062499 ± 3.748642 i ± 0.694272 i Stable

0.671754 ± 17.97117 i ± 13.65656 i 0.922021 ± 7.132201 i ± 0.559539 i Stable

0.671257 ± 18.53528 i ± 11.19270 i 0.994578 ± 5.025379 i ± 0.360998 i Stable

0.498288 ± 7.946184 i ± 2.027790 i 0.899003 ± 9.088204 i ± 0.972129 i Stable

0.671874 ± 14.49949 i ± 11.31217 i 0.999777 ± 4.468936 i ± 0.626283 i Stable

0.671377 ± 14.89128 i ± 9.488392 i 0.934239 ± 4.816854 i ± 1.067109 i Stable

0.671187 ± 15.06449 i ± 8.646110 i Stable

0.527727 ± 7.674159 i ± 1.596446 i Stable

0.531779 ± 8.281013 i ± 1.213610 i Stable
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Numerical calculations are performed for different combinations of the system parameters to investigate the 
stability of the points, see Table 9.

Figure 3 illustrates the solution for the perturbed motion X(t) and Y(t) for the obtained stable locations. We 
observe from the figures that the solutions are regular without any exponential growth, but we can see a shift 
between the solutions and different amplitudes. This is due to the difference in the perturbing parameters taken 
into account. Figure 4 illustrates the trajectories around the collinear point L3 when A = −0.05 . The figures show 
how changing system parameters affect the shape of the trajectories. These trajectories correspond to the stable 
collinear equilibrium points that we obtained.

3

2

3

2

2

2

20 20

Y Y

0.09

0.09

I I I

I I I

Figure 3.  Solutions for the perturbed motion in case of different perturbations.

Figure 4.  Trajectories around stable collinear points for A = −0.05 , and different combinations of the system 
parameters.
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Stability of non‑collinear points
To examine the stability of the equilateral libration points, let us consider the libration point L4

(

x0, y0
)

 . For this 
point we have

Substituting �2 = � , then the characteristic Eq. (17) at the non-collinear point can be written as

Equation (24) represents a second-degree algebraic equation with coefficients b and c. Where

and Q represents the discriminant. The quantities �0
xx , �0

yy , �0
xy , b, c, and Q are given in Appendix III. The roots 

of Eq. (24) are given as

where �1,2 = ±
√
�1 , �3,4 = ±

√
�2 . In the interval 0 < µ∗ < 1

2
 , if Q = b2 − 4c > 0 then (24) gives four distinct 

pure imaginary roots which lead to a stable motion around the triangular points. When Q < 0 , the real parts of 
two of the roots are positive, thus the triangular points are unstable. Also if Q = 0 , we have double roots and this 
leads to secular terms in the solutions, and the motion around the triangular points is unstable.

Now the discriminant Q can be written as a function of the mass parameter µ∗ in the form

where the quantities α , β , and γ are given in Appendix III. When k = 1 , then

For instance, in the case A = 0 , l = 0 , and Q = 0 , the mass ratio µ∗
c = µ∗ = 0.0192604 . For A  = 0 , and l  = 0 

the critical mass given as

Figure 5 represents the perturbed solution around the triangular point L4 with null system parameters and 
µ∗ = 0.019 . Figure 6 depict some selected perturbed solutions around the point L4 for different perturbing 
parameters and µ∗ = 0.01 . The figures show slightly different sizes and shapes due to differences in the system 
parameters. In the case µ∗ ≤ µ∗

c , the solutions show a bounded and periodic nature, while otherwise the motion 
around the points L4,5 is unstable.

Putting Q = 0 in Eq. (26) and solving, we obtain the critical mass ratio of the current dynamical system, µ∗
c  . 

Its value depends on the perturbing parameters, the mass ratio µ∗ , the oblateness coefficient A, the force ratio k, 
and the distance l. Figure 7a–d show the variation of the critical mass ratio against the parameters k ∈ [0.13, 1.9] , 
l ∈ [0.01, 0.09] , A ∈ [−0.05, 0.05] , and µ∗ ∈ [0.009, 0.019] , respectively. The figures show that all the perturbing 
parameters play a significant role in determining the value of µ∗

c .

Application to the 2001 SN263 asteroid system
Asteroids are remnant objects from the beginning of the solar system. Shapes and sizes of asteroids vary signifi-
cantly, ranging from small rocks to dwarf planets. Most of these celestial objects are located in the region between 
the orbits of Mars and Jupiter in the main asteroid belt. The 2001 SN263 asteroid system is one of the famous 
triple systems in the near-Earth  population37,38. Exploring the dynamical characteristics in the environment 
around the components of this system, such as studying the zero velocity curves and orbits around the libration 
points, is crucial for interplanetary space missions. So, we use the 2001 SN263 asteroid system as an application 
for the current mathematical model.

We first define the dynamical model to begin studying the dynamics. We assume that the more massive body 
M1 (Alpha) has a spherical shape, while the second asteroid M2 (Gamma) has an irregular shape and is mod-
eled as a rotating mass dipole. The rotation period of the body M2 around its axis is equal to the orbital period 
of the asteroids around their barycenter. In this case, we have a restricted synchronous four-body  problem36. 
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c= 0.0192604− 0.448888A− 1.71153A2 + 0.752179Al + 2.98729A2l + 0.783385l2 + 5.1411Al2 + 4.40903A2l2.
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Numerical simulations are conducted assuming that the mass parameter µ∗ = 0.005284 and the mass dipole 
has a fixed size with l = 0.0657203.

The regions of motion around the equilibrium points are plotted for different values of the oblateness param-
eter A, with the fixed values µ = 0.005284 , k = 1 , and l = 0.06572 . The location of the equilibrium points and 
associated zero-velocity curves for different values of the oblateness parameter are given in Fig. 8. At A = 0.02 , 
we observe that a circular region around the massive primary M1 appears where the motion of the small object 
is possible (Fig. 8a). However, The small object can’t reach the libration points. Decreasing the value of the 
oblateness parameter A = 0.01 , the situation remains the same except for a relative increase in the size of the 
forbidden zone around the equilibrium points L1, L2 , and L3 (Fig. 8b). When A = 0 , the picture is slightly differ-
ent. A contact occurs between the two regions around the two primaries. However, the third body can’t move to 
infinity (Fig. 8c). We also note that in the cases A = 0, A = 0.01 , and A = 0.02 , the number of the equilibrium 
points is similar to that of the classical restricted three-body problem. In the case of negative values of the oblate-
ness parameter, the shape of the contours did not differ significantly from the case of its positive values, but the 
difference is clear in the number of equilibrium points that accumulated around the small primary (Fig. 8d–f).

The numerical locations of Li , (i = 1, 2, 3, 4, 5) of the 2001 SN263 asteroid system are presented in Table 10, 
for different values of the parameter A. The table shows that the effect of the oblateness parameter is significant 
in the two points L2 and L3 , while its effect in L1 is less significant. This is because L2 and L3 are close to the 
dipole which has an irregular shape. The collinear points are all unstable in the case of the positive oblateness 
parameter and the case A = 0 . In the case of negative values, we found some stable points L3 . These stable cases 
are plotted in Fig. 9. Table 10, also shows the locations of the triangular points L4,5 . The locations are calculated 
for different values of the parameter A. We can observe the variation in the locations with changing A. It may be 
noted that for A = 0 , our results for the locations of collinear and triangular points of the asteroid 2001 SN263 
are in complete agreement with Santos et al.13 and Idrisi et al.25. If we consider the oblateness parameter, this 
will lead to a change in the locations of the collinear point L3 . For instance, if A = −0.05 , the point approaches 
the smaller primary, and the variation of its location is 18.7 percent. Also, if A = 0.05 , the point moves away 
from the smaller primary, and the variation of its location is 5.3 percent. Where the calculations are performed 
in comparison to the case A = 0 . In the triangular points case, when A = −0.05 , the x and y coordinates of 
the point L4 vary little. The point moves downward towards the x-axis in the xy-plane, and the change of its 
y-coordinates is approximately 0.8 percent. In the case A = 0.05 , the point moves upward and the change of 
its y-coordinates is approximately 0.7 percent. For all values of A, the four roots of the characteristic equation 
are purely imaginary. Thus, the non-collinear libration points for the current asteroid system are linearly stable. 
These results entirely agree with Santos et al.13.

Figure 9, depicts the Lissajous trajectories associated with the collinear equilibrium points. The trajectories 
are plotted for different negative values of the oblateness parameter. The figure shows that, as the oblateness 
parameter changes the shape and the size of each trajectory change. Also, it affects the time the orbit takes to 
complete one period. Figure 10 depicts the motion around the point L4 for different values of the parameter A. 
The figure shows the looping nature of the trajectory of the third body in the rotating frame. It is clear from the 
figure that although the different orbits are similar in shape, the perturbing parameter A changes the size of the 
orbits and their orbital period.

Summary and conclusions
Studying the dynamics around small objects represents a major challenge for those working in the field of space 
science. This is due to the difficulty of modeling the gravitational field of these objects and the lack of information 
available about the true shape of these objects. Therefore, deepening the study to understand the dynamics and 
investigate stability around these objects is essential for future spaceflights. The current work is a contribution to 

Y

Figure 5.  The unperturbed solution around the equilibrium point L4 ( A = 0 , k = 1 , l = 0 and µ∗ = 0.019).
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understand and clarify the behavior of spaceships around these small objects. The investigations are conducted 
within the restricted four-body problem frame of work.

To achieve the mentioned goals, we formulated the dynamical equations of motion of the small body under 
the perturbations considered. The current force model comprises the influence of the gravitational field of the 
two primary bodies. The massive primary is assumed to have a spherical shape, while the small primary is mod-
eled as a rotating mass dipole. The parameters that determine the gravitational field of the mass dipole are the 
oblateness parameter, the force ratio, and the distance parameter. The present model is a generalization of the 
traditional dipole shape. To clarify the dynamics, different initial conditions are used for the system parameters 
to carry out several numerical simulations.

One of the important studies in this research is the study of surfaces of zero velocity. These surfaces provide 
us with valuable and important information about the regions of motion between the main bodies and the 

Figure 6.  The perturbed solutions around the point L4 for different combinations of the system parameters.
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equilibrium points. Also, it determines the possibility of transfer of the small body between the equilibrium points 
and the main bodies. We found that the system parameters affect the structure of the curves of zero velocity. In 
the case of the negative oblateness parameter, new equilibrium points exist near the mass dipole. Also, it is seen 
that the possibility of transfer depends on the combinations of the perturbing parameters.

In addition, we investigated the existence and stability of the equilibrium points. We have found that the 
locations of the collinear points may approach or move away from the main bodies according to the values of 
the system parameters. Similarly, the locations of the triangular points may approach or move away from the 
x-axis according to the values of the parameters. This is because any change in the parameters inevitably leads 
to a change in the gravitational field of the primary bodies. We also found that the points L2 and L3 are more 
affected than the point L1 . In the case of the negative oblateness parameter, new equilibrium points exist near 
the mass dipole. Regarding the stability of the collinear points, we found some stable points correspond to the 
negative values of the oblateness parameter. Otherwise, these points are unstable. Furthermore, the triangular 
points L4,5 are stable in the range 0 < µ∗ ≤ µ∗

c , µ∗
c = 0.019 , regardless of the values of the remaining parameters.

As an application to the current theory, we studied the effect of the perturbing forces taken into account on 
the location and stability of the equilibrium points of the 2001 SN263 asteroid system, as well as their effect on the 
curves of zero velocity. The results show that the effect of the oblateness parameter is significant in the collinear 
points L2 and L3 , while its effect in L1 is less significant. This is a result of the proximity of these two points to the 
mass dipole. Also, the locations of the triangular points change with each change in the values of the oblateness 
parameter. Furthermore, we found that the collinear points are all unstable in the case of the positive oblateness 
parameter and the case A = 0. However, we found some stable points for negative values in the case of L3 . The 
non-collinear points for the asteroid system are linearly stable.

Figure 7.  Variation of the critical mass ratio with the perturbing parameters.
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Figure 8.  Curves of zero velocity for different oblateness parameter.
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Figure 9.  Trajectories around L3 collinear point in the stable cases for the asteroid system. 

Table 10.  Locations of collinear and triangular points of the 2001 SN263 asteroid system. µ = 0.005284 , 
k = 1 , and l = 0.06572.

A L1(x,0) L2(x,0) L3(x,0) L4,5 ( x, ±y)

− 0.05 − 1.004398 0.831197 0.959645 (0.503043, ± 0.858202)

− 0.04 − 1.004400 0.829226 0.962242 (0.500565, ± 0.859631)

− 0.03 − 1.004401 0.827305 0.965754 (0.49813, ± 0.8610355)

− 0.02 − 1.004403 0.825432 0.971017 (0.495736, ± 0.862416)

− 0.01 − 1.004404 0.823608 0.980855 (0.493385,± 0.863772)

0.00 − 1.004406 0.821832 1.172872 (0.491075, ± 0.865104)

0.01 − 1.004407 0.820102 1.197908 (0.488807, ± 0.866411)

0.02 − 1.004409 0.818417 1.211191 (0.486581, ± 0.867694)

0.03 − 1.0044105 0.816775 1.220799 (0.484397, ± 0.868953)

0.04 − 1.0044119 0.815176 1.228483 (0.482255, ± 0.870188)

0.05 − 1.0044134 0.813618 1.234955 (0.480154, ± 0.871398)

Figure 10.  Trajectories around the non-collinear point L4 for the asteroids system.
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