
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10656  | https://doi.org/10.1038/s41598-024-61443-2

www.nature.com/scientificreports

Adaptive recognition of machining 
features in sheet metal parts based 
on a graph class‑incremental 
learning strategy
Liuhuan Ma  & Jiong Yang *

The integration of computer-aided design (CAD), computer-aided process planning (CAPP), and 
computer-aided manufacturing (CAM) systems is significantly enhanced by employing deep learning-
based automatic feature recognition (AFR) methods. These methods outperform traditional, rule-
based approaches, particularly in handling the complexities of intersecting features. However, 
existing deep learning-based AFR methods face two major challenges. The initial challenge stems 
from the frequent utilization of voxelized or point-cloud representations of CAD models, resulting in 
the unfortunate loss of valuable geometric and topological information inherent in original Boundary 
representation (B-Rep) models. The second challenge involves the limitation of supervised deep 
learning methods in identifying machining features that are not present in the predefined dataset. 
This constraint renders them suboptimal for the continually evolving datasets of real industrial 
scenarios. To address the first challenge, this study introduces a graph-structured language, 
Multidimensional Attributed Face-Edge Graph (maFEG), crafted to encapsulate the intricate geometric 
and topological details of CAD models. Furthermore, a graph neural network, Sheet-metalNet, is 
proposed for the efficient learning and interpretation of maFEGs. To tackle the second challenge, 
a three-component incremental learning strategy is proposed: an initial phase of pre-training and 
fine-tuning, a prototype sampling-based replay, and a stage employing knowledge distillation for 
parameter regularization. The effectiveness of Sheet-metalNet and its complementary incremental 
learning strategy is evaluated using the open-source MFCAD++ dataset and the newly created SMCAD 
dataset. Experimental results show that Sheet-metalNet surpasses state-of-the-art AFR methods 
in machining feature recognition accuracy. Moreover, Sheet-metalNet demonstrates adaptability 
to dynamic dataset changes, maintaining high performance when encountering newly introduced 
features, thanks to its innovative incremental learning strategy.
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Computer-aided process planning (CAPP) serves as a bridge between computer-aided design (CAD) and com-
puter-aided manufacturing (CAM), efficiently transforming a design into a rational manufacturing process 
sequence. It guides the manufacturing process, ultimately resulting in physical components1. In comparison 
to traditional process planning, CAPP is strategically designed to alleviate the burden on manufacturing pro-
fessionals by automating complex and time-intensive tasks. These tasks encompass blank design, selection of 
manufacturing techniques, process orchestration, process route formulation, and temporal projections2. The 
adoption of CAPP yields multifaceted benefits, chief among them substantial financial efficiencies, compression 
of production timelines, and an augmented competitive edge for manufacturing entities.

Bridging the gap between the CAD system (upstream) and with CAM system (downstream), the primary task 
of the CAPP system is to interpret the CAD model from a manufacturing perspective. However, the original CAD 
models are typically limited to fundamental geometric information (e.g., points, edges, and surfaces), lacking 
the advanced manufacturing semantics necessary for production processes. “Interpreting CAD models from a 
manufacturing perspective” requires the CAPP system to identify machining features embedded within the raw 
CAD models. These features are characterized by uniform manufacturing methods within continuous regions 
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on mechanical components, such as holes, slots, and chamfers2. For manufacturing experts, this transformation 
is straightforward and intuitive, but for computers, it poses a challenge. Automatic feature recognition (AFR) 
technology aims to solve this conversion problem.

AFR technology possesses the ability to convert low-level geometric entities from CAD models into machin-
ing features. Its primary focus lies in encoding CAD entities into a computational language, inherently compre-
hensible to digital systems. The challenge lies in enabling computers to interpret this language from a manu-
facturing perspective for the CAPP system. The current mainstream AFR technologies are divided into two 
categories: rule-based methods (e.g., syntactic pattern recognition, hint-based, and graph-based) and learning-
based methods (e.g., artificial neural networks (ANNs) and convolutional neural networks (CNNs)). Rule-based 
methods often have a narrow application range, limited to specific features of specific parts, and most of them 
cannot handle complex machining features such as intersecting features. In contrast, learning-based methods, 
especially deep learning methods, are more promising because they are not limited to the scope of parts and 
can handle complex machining features. However, learning-based methods also have the following limitations:

(i) Many deep learning methods to voxelize or convert Boundary Representation (B-Rep) models into point 
clouds, which is not only computationally intensive and time-consuming but also struggles with processing 
intersecting machining features. Furthermore, this conversion results in the loss of valuable position, geometry, 
and topology information originally present in B-Rep models, information crucial in subsequent part machining.

(ii) Deep learning methods usually learn knowledge from large-scale datasets with machining feature labels, 
which are rarely available in industrial applications. Even if such datasets exist, they are usually small-scale and 
necessitate continual supplementation with CAD models. Additionally, deep learning methods theoretically face 
limitations in recognizing machining features absent in the existing dataset. Therefore, whenever encounter-
ing new machining features, the data needs to be reorganized and the neural networks retrained from scratch, 
increasing both time and space costs.

Given the aforementioned issues, this study made the following contributions:
(i) Referring to attribute adjacency graph (AAG) in graph-based feature recognition algorithms, a Multidi-

mensional Attributed Face-Edge Graph (maFEG) was proposed as a graph-based language for B-Rep models. In 
contrast to voxel and point cloud representations, maFEG preserves completely the geometric and topological 
information of B-Rep models. Furthermore, graph neural networks (GNNs), a type of neural network designed 
for graph data, were used to learn the possible patterns of machining features in maFEG. Based on one of the 
currently most powerful GNNs, graph isomorphism network (GIN)3, a GNN specifically for machining feature 
recognition, Sheet-metalNet, was proposed. This network demonstrates exceptional accuracy in predicting the 
machining feature category for any face within a B-Rep model.

(ii) Proposing an incremental learning strategy. Assuming the existence of a real industrial parts CAD model 
dataset with a continuously expanding sample capacity, with the possibility of adding new machining feature 
samples each time. Through this incremental learning strategy, Sheet-metalNet can directly utilize the parameters 
of the original network model, a small subset of the original data, and the entirety of the new data, enabling 
recognition of both new and old machining features, thereby expanding the scope of recognition of the neural 
network model.

(iii) Additionally, existing deep learning-based feature recognition research had primarily focused on machine 
parts for metalworking, with scarce attention given to sheet metal parts, another widely used mechanical com-
ponent in the industrial sector. Therefore, a sheet metal CAD model dataset called SMCAD dataset was created 
to fill the gap in deep learning-based machining feature recognition research for sheet metal parts.

The rest of this paper is organized as follows: Section "Related work" reviews related work that motivates the 
proposed methods. Section "Methodology" describes the details of maFEG, Sheet-metalNet, and the incremental 
learning strategy. Section "Dataset creation" provides an overview and creation steps of the SMCAD dataset. 
Section "Experimental results and discussion" illustrates the effectiveness of Sheet-metalNet and the incremental 
learning strategy through experiments on MFCAD++ and SMCAD datasets, accompanied by explanations of 
the experimental results. Finally, Section "Conclusion" concludes this work and offers insights into potential 
future directions.

Related work
Rule‑based AFR methods
Early AFR methods explicitly performed operations according to various logical rules. Their general approach 
involved defining machining features based on existing experience and knowledge. They proposed certain defini-
tions to define machining features and build corresponding knowledge bases. The target part was converted into 
a specific representation by this definition and then matched with the predefined machining feature patterns in 
the knowledge base. Different rule-based AFR methods adopted different definitions. For example: in syntactic 
pattern recognition methods4–6, descriptive semantic primitives and a series of grammar rules were used to define 
parts and machining features; in graph-based methods7–9, B-Rep models of parts and machining features were 
converted into attribute adjacency graphs (AAGs) and attribute adjacency subgraphs, respectively; in hint-based 
methods10–12, machining features were summarized as hints (geometric or topological information that can 
prove the existence of this machining feature), heuristic rules were used to generate hints and infer machining 
feature types based on hints; in volume decomposition methods13–16, part models were decomposed into a series 
of variational convex bodies or unit cells with basic forms according to their volumes. The decomposed volumes 
were recombined according to predefined rules to construct the machining features of the parts.

Numerous mature rule-based AFR methods have been applied to CAPP systems. However, these methods 
are not always fast, accurate, or robust due to the following drawbacks:
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	 (i) 	 Many rule-based AFR methods use computationally intensive algorithms, such as graph-based methods 
and volume decomposition methods, resulting in inefficient machining feature recognition.

	 (ii)	  The frequent intersection and penetration of machining features often disrupt the topological structure of 
original features. This limitation results in poor performance of rule-based AFR methods in recognizing 
intersecting features, which is also considered one of the most significant challenges in AFR technology.

	 (iii)	  Predefining reliable rules for various machining feature structures is laborious and tedious. Additionally, 
a single rule system has limited capability in recognizing diverse machining feature categories, making 
rule-based AFR methods lack flexibility and versatility.

Many studies have combined several types of rule-based AFR methods to absorb the advantages of each 
method. Examples include the hybrid method of graphs and hints17 or combined volumetric decomposition 
methods and graph-based methods18. While these methods have indeed improved the performance of the origi-
nal methods, they have not fundamentally addressed the problems existing in rule-based methods.

Learning‑based AFR methods
Learning-based AFR methods originated from the rise of ANNs in the 1980s and 1990s19 proposed one of the 
earliest ANN-based AFR methods. This approach encoded the B-Rep solid model into an adjacency matrix of 
faces including face descriptions and face-face relations, and input it into a five-layer perceptron for machin-
ing feature recognition. Hwang’s method20 extracted an 8D score vector from the B-Rep model as input to a 
single-layer perceptron. Based on20,21 not only increased the dimension of the score vector to 9D but also used 
an Adaptive Resonance Theory (ART2) neural network to learn machining feature recognition. Similarly22, also 
used a 9D score vector as input, but his learning framework was a Backpropagation Network (BPN) different 
from21. Additionally23, also proposed an ANN-based machining feature recognition method, where the input to 
the neural network was a 12D score vector that could represent the topological structure and geometric infor-
mation of machining features. The ANN-based methods laid the foundation for later deep learning methods 
(mainly deep neural networks). However, due to the immaturity of neural network technology at the time, these 
methods did not outperform rule-based methods.

FeatureNet24 was one of the earliest works in AFR that paid attention to deep learning methods. Reference24 
proposed a 3D CNN called FeatureNet to learn how to identify machining features from voxelized 3D models. 
However, FeatureNet could only recognize components with a single feature. For multi-feature components, 
especially those with intersecting features, it had to rely on watershed segmentation algorithms to divide multiple 
machining features. This algorithm could only deal with intersecting features with small overlapping areas and 
had difficulty recognizing highly intersecting features25 also proposed a similar segmentation-then-classification 
approach using 3D CNNs on voxelized models. The difference was that in the segmentation stage, they first used 
AAG to identify convex and concave machining features of the part, and then used the bounding box method to 
segment the machining features before voxelization. All these voxel-based methods faced a common trade-off 
between classification accuracy and computational cost: to improve classification accuracy, the voxel resolution 
had to be increased, but higher resolution meant computational cost would increase exponentially.

Point clouds have also been applied to AFR, representing a real-world three-dimensional digital description. 
Reference26 learned from the Point Cloud version of CAD models using a modified PointNet. Similarly, for 
multi-feature components26, also adopted24’s segmentation-then-classification strategy. However, Ref.27 believed 
that this two-step strategy was complex and time-consuming, because segmentation and classification were per-
formed independently, and the segmented machining features had to go through the neural network multiple 
times. To address this, they proposed a novel multi-task network, called associatively segmenting and identifying 
network(ASIN), for machining feature recognition. This network could complete three tasks: clustering similar 
faces from the part into machining features with unidentified types; predicting the semantic category of each 
face to determine the type of each machining feature; and identifying the bottom face of the machining features. 
Experiments showed that ASIN could recognize intersecting features well. It is worth noting that point cloud 
methods also face the trade-off between classification accuracy and computational cost, which depends on the 
point cloud density.

Many works approached AFR from a 2D perspective, such as multiple sectional view network (MsvNet) 
and single shot multibox detector network (SsdNet) proposed by Refs.28,29, which used 2D CNNs to learn 2D 
views of the 3D part models from different angles. However, 2D-view based methods lost the geometric and 
topological information of 3D part models and even had difficulty accurately locating the machined surfaces. 
These approaches, MsvNet and SsdNet, were also essentially two-step strategies.

Recently, researchers have refocused attention on graph-based AFR methods but abandoned subgraph match-
ing algorithms in favor of GNNs for processing graph data. References30,31proposed a hierarchical B-Rep shape 
representation that could encode both surface geometry and face topology of the B-Rep, and designed a GNN 
called Hierarchical CADNet to learn this new shape representation. This network could achieve very high recog-
nition rates even for intersecting features. Reference30 represented a true one-step recognition method because 
Hierarchical CADNet did not require various segmentation operations on the 3D model. Instead, it predicts the 
feature type for each B-Rep face, a feat not achieved by previous deep learning methods. However, it also had 
many problems, such as i) The hierarchical graph representation not only occupied a large memory but also 
slowed down the training of the neural network; ii) Hierarchical CADNet did not consider edge attributes; iii) 
Whenever a new feature appeared, the neural network had to be retrained from scratch, a common shortcoming 
not mentioned in previous deep learning methods.
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Graph neural network
Graph Neural Networks (GNNs) have emerged as a powerful tool for pattern recognition and information min-
ing within graph data structures. Since their inception in 200432, GNNs have found applications across a variety 
of domains, including social networks, recommender systems, traffic forecasting, and biomedicine. The evolu-
tion of GNNs has led to the development of advanced variants such as graph convolutional networks33, graph 
attention networks34, and GraphSAGE35, each enhancing neighborhood aggregation and thereby, the quality of 
embedding vectors.

The foundational principle guiding the advancement of GNNs draws inspiration from the Weisfeiler-Lehman 
graph isomorphism test (WL test)36, a method pivotal for assessing topological identity between graphs. This 
analogy with the WL test, which iteratively updates node attribute vectors through neighbor aggregation, has 
propelled a deeper understanding of how aggregation methods influence GNN performance. In light of these 
insights, Ref.3 introduced the Graph Isomorphism Network (GIN), a model recognized for its exceptional expres-
siveness in learning graph data.

Despite these advancements, GNNs encounter significant challenges in scaling to greater depths, primarily 
due to vanishing gradients and excessive smoothing issues. These challenges limit the embedding representations’ 
diversity as the network deepens, with most cutting-edge GNN models peaking at around four layers before 
experiencing a marked decline in performance. Addressing these limitations, Ref.37 explored solutions from the 
convolutional neural network (CNN) domain, specifically Residual Connections (Res)38, Dense Connections 
(Dense)39, and Dilated Convolution40. Through comparative experimentation, it was determined that residual 
connections offer a promising avenue to surmount depth-related challenges in GNNs.

Building on these developments, this study unveils an efficient and memory-saving Boundary Representa-
tion (B-Rep) graph model and introduces Sheet-metalNet, a new Graph Neural Network tailored for machin-
ing feature identification. An innovative incremental learning strategy empowers Sheet-metalNet to flexibly 
recognize new machining features. Additionally, a specialized dataset for sheet metal parts has been developed, 
broadening the scope of deep learning in Automatic Feature Recognition (AFR). This approach demonstrates 
the ongoing evolution and potential of Graph Neural Networks in enhancing computational intelligence in 
manufacturing and beyond.

Methodology
B‑Rep in graph form
The topological relationships of B-Rep models can be described using graph structures, and graph-based methods 
are considered one of the most successful methods in rule-based AFR approaches. It converts the B-Rep model 
into an AAG composed of nodes and arcs. In AAG, nodes correspond to the faces of the model, arcs correspond 
to the edges of the model and represent connections between faces. Attributes are attached to arcs: if the attribute 
value is 0, there is a concave connection between two adjacent faces; if the attribute value is 1, there is a convex 
connection. The method predefines subgraphs of AAG for features and then searches the overall AAG to match 
the subgraphs. If the corresponding subgraph is found, it is identified as that feature. However, there are two 
problems with this method: first, subgraph matching is a non-deterministic polynomial-hard (NP-hard) problem, 
resulting in the high computational complexity of the method; second, the method faces difficulties in dealing 
with intersecting features. Although graph-based methods have limitations, it does not imply that the graph 
structure of B-Rep models lacks research value.

Inspired by traditional graph-based automatic feature recognition methods and incorporating recent advance-
ments in graph neural network technologies, a Sheet-metalNet is proposed, which can accurately predict the 
machining feature class to each B-Rep face of a CAD model belongs to. Furthermore, a Multidimensional 
Attributed Face-Edge Graph (maFEG), G = (ν, ǫ,χ , γ ) , is established as the mapping of CAD model within the 
graph domain, drawing on AAG (Fig. 1), and input into Sheet-metalNet for learning, where ν and ǫ represent 
the sets of nodes and edges respectively and χ and γ represent vector spaces constituted by node attributes and 
edge attributes, respectively. Moreover, ν and ǫ are integrated into the adjacency matrix A ∈ R

n×n , where n is 
both the number of nodes and the number of B-Rep faces within the CAD model. Any element in A can be 
expressed as follows:

Based on Eq. (1), G = (A,χ , γ ).
For a single node νi , its attribute vector χi has 7 dimensions, which are: 

1.	 The surface area of B-Rep face.
2.	 X coordinate of the surface normal vector.
3.	 Y coordinate of the surface normal vector.
4.	 Z coordinate of the surface normal vector.
5.	 The average Gaussian curvature of several sampling points on the surface.
6.	 The average mean curvature of several sampling points on the surface.
7.	 The surface type (e.g., plane, cylindrical surface, and conical surface), as shown in Table 1.

For a single edge ǫij , its attribute vector γij has 3 dimensions, which are: 

(1)Aij =

{

1 if edge between i and j,
0 otherwise.
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1.	 The convexity (In instances where the angle between the two neighboring faces of an edge exceeds 180◦ , it is 
categorized as a convex edge, denoted by a dimension value of 1. Conversely, when the angle between the two 
neighboring faces falls below 180◦ , it is characterized as a concave edge, and the corresponding dimension is 
assigned a value of 2. When the angle between the two adjacent faces measures exactly 180◦ , it is classified 
as a flat edge, represented by a dimension value of 3.).

2.	 The curve length of B-Rep edge.
3.	 The curve type(e.g., line, circle, ellipse), as depicted in Table 1.

To minimize scale discrepancies across different types of data for easier comparison and process-
ing, linear normalization (min-max normalization) was applied to the numerical values of node and 
edge attribute vectors before they were fed into the Sheet-metalNet. The formula is expressed as: 
Normalized Value = (Actual Value −Minimum Value)/(Maximum Value −Minimum Value)

In contrast to traditional AAG, which focuses only on the topological structure of B-Rep models, maFEG pays 
attention to both the topological structure and geometric attributes of B-Rep models. This incorporation of both 
aspects enriches maFEG with a greater amount of information compared to AAG. Additionally, compared to the 
hierarchical B-Rep graph mentioned in Ref.30, maFEG abandons the mesh facet graph level and adds geometric 
attributes of edges in the B-Rep face adjacency graph level. Overall, the amount of data in maFEG is much less 
than that of the hierarchical B-Rep graph.

Representational power of sheet‑metalNet
GNNs utilize the adjacency matrix A and attribute vectors χ of nodes in a graph to extract final representation 
vectors (embeddings) of nodes and graphs. Modern GNNs widely follow a recursive neighbor aggregation strat-
egy, also known as the message passing mechanism, where the process is: each node in a graph iteratively updates 
its attribute vector by aggregating the attribute vectors of its neighbor nodes. After k iterations of aggregation, 
the node’s attribute vector will capture information about its arbitrary m-order ( m ≤ k ) neighbor nodes within 
its k-hop network range. The above iterative process can be summarized formally as follows:

where h(k)ν  represents the attribute vector of node ν after the k-th iteration, the initialization h(k)ν  , i.e. h(0)ν = χν ; 
COMBINE(k) and AGGREGATE(k) are both aggregation functions; N(ν) represents the set of all neighbor nodes 
of node ν.

Xu et al.3 posits that the Weisfeiler-Lehman (WL) test sets the upper limit for the representational capabilities 
of Graph Neural Networks (GNNs) through its injective aggregation update. This injective aggregation allows the 
WL test to effectively distinguish between different graph structures by mapping distinct node neighborhoods to 
unique embeddings in the representation space. In the realm of GNNs, if a model incorporates injective aggre-
gation functions similar to those used in the WL test, it has the potential to match the WL test’s discriminative 
power. In line with this, Sheet-metalNet adopts the Graph Isomorphism Network (GIN), which aligns closely 
with the principles of the WL test. Its iterative process can be represented by the following formula:

(2)h(k)ν = COMBINE(k)
(

h(k−1)
ν ,AGGREGATE(k)

({

h(k−1)
µ : µ ∈ N(ν)

})

)

Figure 1.   Schematic diagram of a part and its maFEG: (a) 3D shape of the part; (b) Schematic representation of 
maFEG diagram for the part; and (c) Attribute vectors of each node in (b).
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where MLP(k) is a multilayer perceptron, which can approximate the injective aggregation function that is desired 
with arbitrary precision during the network training process, according to the universal approximation theorem; 
the summation operation in the formula has been proven to be injective; α(k) is a learnable parameter used to 
adjust the weight of node ν ’s attribute vector in the summation.

However, Eq. (3) only aggregates node attribute vectors. Considering that maFEG includes not only node 
attributes but also edge attributes, the complete node attribute iteration update process for Sheet-metalNet 
involves aggregating the attribute vectors of edges between a given node and its neighboring nodes into the 
attribute vector of the given node. This results in the following iterative update process for Sheet-metalNet:

where, ReLU is an activation function used for nonlinearization, ReLU(x) = σ(x) = max(0, x) ; ǫµ,ν represents 
the attribute vector of the edge connecting µ and ν.

Development of deep sheet‑metalNet
Convolutional Neural Networks (CNNs) have enjoyed remarkable success across various domains, primarily 
due to the advantages offered by training deep neural networks, which tend to produce more reliable outcomes. 
Despite their successes, Graph Neural Networks (GNNs) face challenges in achieving similar levels of depth 
because of vanishing gradients and over-smoothing issues. In response to these challenges, Sheet-metalNet 
incorporates residual connections to facilitate deeper network architectures.

The so-called residual connection learns an underlying mapping H by fitting a residual mapping F. The input 
Gl from the previous layer (layer l) of the network is transformed by F to become the residual Gres

l+1 , which is then 
added to the unchanged Gl to finally obtain the output Gl+1 of this layer (layer l + 1).

where Wl is the learnable weight parameters of layer l.
Combining the node attribute update method in Section "Representational power of Sheet-metalNet" and 

regularization techniques like Dropout and Normalization, using a pre-activation version, the operation sequence 
of a residual block is expressed as follows:

Connecting several residual blocks forms the backbone network of Sheet-metalNet. After the backbone network 
finishes iterating, Sheet-metalNet maps the embedding representations of all nodes into logit vectors ξ through 
a fully connected layer (i.e., performing a linear transformation), where the dimension of ξ is equal to the 
number of machining feature categories C and each component of ξ represents the score of a machining feature 
category. Finally, the softmax function is used to process the logit vector ξ to obtain the output vector ŷ , where 
each component of ŷ represents the probability that a node (i.e., a B-Rep face) belongs to a certain machining 
feature category. For machining feature category c, the formula for computing its probability using the softmax 
function is shown as follows:

(3)h(k)ν = MLP(k)
(

(

1+ α(k)
)

h(k−1)
ν +

∑

µ∈N(ν)

h(k−1)
µ

)

(4)h(k)ν = MLP(k)
(

(

1+ α(k)
)

h(k−1)
ν +

∑

µ∈N(ν)

ReLU
(

h(k−1)
µ + ǫµ,ν

)

)

(5)Gl+1 = H(Gl ,Wl) = F(Gl ,Wl)+ Gl = Gres
l+1 + Gl

(6)Normalization −→ ReLU −→ Dropout −→ Update_nodes −→ Res

(7)ŷc =
eξc

∑C
κ=1 e

ξκ

Table 1.   Surface and curve types in attribute vectors with their assignments.

Surface types Value Curve types Value

Planar 1 Line 1

Cylindrical 2 Circle 2

Toroidal 3 Offset 3

Spherical 4 Hyperbola 4

Conical 5 Ellipse 5

Bezier 6 Parabola 6

B-Spline 7 Bezier 7

Surface of revolution 8 B-Spline 8

Offset 9 Other 9

Surface of extrusion 10

Other 11
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Figure 2 shows the overall architecture of Sheet-metalNet.

Incremental learning
Pretraining and fine‑tuning
In practical applications, new components with newly added machining features and different feature intersec-
tion patterns continually emerge to adapt to the evolving capabilities of machines and manufacturing processes. 
Although modern GNNs have very strong generalization capabilities, this generalization ability is premised on 
the training data and test data being independently and identically distributed. Otherwise, GNNs struggle to 
provide reasonable responses. It can be affirmed that the emergence of new machining features and new feature 
intersection forms makes the new data follow a different distribution from the old data. Consequently, these new 
data instances fall outside the realm of what GNNs can generalize to and, as a result, cannot be recognized by 
GNNs. Recent research, such as the work by Ref.41, also addresses the issue of dynamic adaptability in machine 
learning, but they focus more on selecting the optimal model rather than optimizing the adaptability of a fixed 
model.

A straightforward approach would be to mix the new and old data and retrain the neural network from 
scratch. However, this method will lead to two potential problems: (i) on the one hand, mixing new and old 
data and retraining requires huge time and space costs; (ii) on the other hand, compared with CAD models of 
old parts, CAD models of new parts are much smaller in number, leading to class-imbalance problem. In other 
words, GNNs tend to identify old machining feature categories, causing several new classes to be predicted as 
old classes. Because of the above problems, incremental learning was introduced. This is a learning paradigm 
that can continuously and incrementally acquire available information from continuous non-stationary data 
streams, retaining, integrating, and optimizing old knowledge while absorbing new knowledge. When dealing 
with the problem of adding new categories in a classification task, it is referred to as class incremental learning.

Class incremental learning usually adopts the pretraining and fine-tuning mechanism in transfer learning42 
to obtain the optimal initialization parameters. Specifically, the Sheet-metalNet is trained using the pretraining 
dataset, the trained backbone network is saved as an encoder gθ , and the fully connected layer is saved as a clas-
sifier sθ . Class incremental training first builds a similar GNN framework as pretraining (i.e., only the number of 

1 1 1

,1v v u u vu N v
h MLP ReLU

2 2 2 1 1

,1v v u u vu N v
h MLP h ReLU h

1 1

,1
k k k k k

v v u u vu N v
h MLP h ReLU h

Normalization ReLU Dropout

Normalization ReLU Dropout

Normalization ReLU Dropout

A
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Logtis
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Output

GAAG

Figure 2.   Overall architecture of Sheet-metalNet.
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categories in the fully connected layer classification head is different), and then directly calls the parameters of gθ 
and sθ . To significantly prevent parameters from drifting, a lower learning rate is used during class incremental 
training to fine-tune gθ and sθ , as well as to obtain g ′θ and s′θ which can adapt to the incremental training dataset.

Prototype sampling‑based replay
The primary challenges of class incremental learning are concentrated in the so-called stability-plasticity 
dilemma43. This dilemma represents a balance between the ability to overcome catastrophic forgetting (i.e., retain-
ing previously learned knowledge) and acquiring new knowledge. Inspired by the storage and recall mechanisms 
in human memory, Ref.44 proposed a replay-based incremental learning method called iCaRL. This method 
involves sampling a portion of data from previous tasks as exemplars and maintaining a fixed storage area to 
store these exemplars. Subsequently, the training data of the new classes together with the exemplars are used 
to update the parameters of the neural network model through the “iCaRL incremental training” algorithm.

The proposed incremental learning strategy references the replay idea of iCaRL and is oriented to graph data. 
First, given a maFEG, G = (A,χ , γ ) , the encoder gθ can be used to obtain the embedded representations of all 
nodes as follows:

For all nodes belonging to a certain category in this graph, the average value of their embedded representations 
can be achieved as follows:

where Sc is the set of all nodes belonging to category c, |Sc| indicates the number of nodes in the set, zδ ∈ Z . ϕc 
is used as the prototypical embedding representation of category c nodes, named as prototype representation45. 
In statistics, samples often have a higher probability of appearing near their mean. From this perspective, it can 
be inferred that the embedded representations of the nodes of one category tend to gather around the prototype 
representation of that category under a given metric space.

Traverse the pretraining dataset and obtain prototype representations of all pre-trained categories using Eq. 
(9). Then, using the Euclidean distance equation to calculate the distance between the embedded representation 
of any node ν in graph G and its prototype representation, the average value of this distance for all nodes can be 
determined as follows:

where n is the number of nodes in graph G, zν and ϕν are the embedded representation and prototype represen-
tation of the node ν , respectively; and · represents the dot product of two vectors. The mean distance ρ charac-
terizes the representativeness of graph G in the pretraining dataset. The smaller the ρ value, the more suitable 
the graph is as an exemplar for class incremental training. Figure 3 depicts the calculation process of prototype 
representation ϕc and mean distance ρ.

To mitigate the influence of the class-imbalance problem, the principle should also be followed that the num-
ber of nodes in the exemplar is roughly equal to the number of nodes in the new dataset. Finally, the graphs from 
the new dataset and the examples are pairwise concatenated into new graphs and fed into the class-incremental 
training of Sheet-metalNet for learning.

Parameter regularisation based on knowledge distillation
Another potentially effective method to overcome the stability-plasticity dilemma is regularization based on 
knowledge distillation. Initially46, proposed knowledge distillation to transfer information between neural net-
work models of different scales. Subsequently47, applied it under the name of Learning without Forgetting (LwF) 
for class incremental learning to maintain the generalization ability of the old categories in the new and old 
models of the same neural network.

Knowledge distillation is a type of regularization acting on the loss function: Sheet-metalNet uses the follow-
ing multi-class cross-entropy loss function to encourage the output vector ŷ to be consistent with the ground 
truth y:

where y is the one-hot encoded vector of the ground truth labels; while knowledge distillation uses the following 
KL divergence loss function to constrain the output of the new network model from deviating too far from the 
output of the old network model, shown as follows:

where p is the corrected output vector of the old network model; q is the corrected output vector of the new 
network model; and the components corresponding to the machining feature category c of the two vectors are 
expressed as follows:

(8)Z = gθ (A,χ , γ )

(9)ϕc =
1

|Sc|

∑

δ∈Sc

zδ

(10)ρ =
1

n

∑

ν∈G

√

(zν − ϕν) · (zν − ϕν)

(11)Lhard
(

y, ŷ
)

= −y · log ŷ

(12)Lsoft
(

p, q
)

= −p · log
p

q
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where ω and ζ are the logit vectors of the old and new network models respectively, and T is the distillation 
temperature, which is a hyperparameter.

Adding Eqs. (11) and (12), this study introduces the hyperparameter � to balance their effects, finally obtain-
ing the total loss function for class incremental training as follows:

The three methods discussed in Sect. "Incremental learning" from the incremental learning strategy of Sheet-
metalNet, which is designed to continuously learn the identification process of the machining features from an 
expanding dataset of real industrial part CAD models. Figure 4 summarizes the overall framework.

Dataset creation
Overview of the SMCAD dataset
Deep learning is data-driven, and almost all successful deep learning methods rely heavily on supervision. 
Therefore, deep learning-based AFR methods often require large-scale three-dimensional CAD model datasets 
with labeled machining features to train neural networks. Currently, there are large CAD model datasets avail-
able, such as ABC dataset48 and MCB dataset49, but they do not contain the labels required for machining feature 
recognition tasks. Customized 3D CAD model datasets are accessible24,27,30, but they only considered machined 
parts. This is because the features on machined parts are mostly machined by milling (i.e. material removal 
manufacturing), so creating manually synthesizing datasets only involves cutting away the shapes of machin-
ing features from stock cubic steel blanks to obtain CAD models. In contrast, sheet metal parts, which involve 
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non-milling processes such as bending, stamping, and riveting, have the characteristics of uniform thickness 
everywhere and complex and varied spatial structures. This makes the synthesis of CAD models for sheet metal 
parts challenging, and as a result, there are few 3D CAD model datasets for sheet metal parts.

To fill this gap, a 3D CAD model dataset of sheet metal parts represented in B-Rep form, called the SMCAD 
dataset, was generated using parametric modeling techniques and a random sampling strategy through 
PythonOCC50. The dataset consists of two parts: the pretraining dataset and the incremental training dataset. 
The pretraining dataset was used to train the neural network to recognize 12 types of sheet metal machining 
features and primary planes. As usual, the pretraining dataset was divided into three subsets: training set (con-
taining 49,000 CAD models), validation set (containing 10,500 CAD models) and test set (containing 10,500 
CAD models). These three subsets were created independently and have no intersection. The incremental training 
dataset was used to verify the feasibility of the incremental learning strategy. Similarly, it was also divided into 
three subsets: incremental training set (containing 7,000 CAD models), incremental validation set (containing 
3,000 CAD models) and incremental test set (containing 3,000 CAD models). CAD models in the incremental 
training set only contain 11 new types of machining features, a small number of old machining features and 
primary planes, while the incremental validation set and test set included all 23 types of machining features and 
primary planes. Figure 5 shows the old machining features in the pretraining dataset and the new machining 
features in the incremental training dataset, and Table 2 lists the names of all machining features and their cor-
responding labels.

SMCAD dataset generation algorithm
In this study, the SMCAD dataset was created using the following algorithm (Fig. 6): 

1.	 Generate the base models of sheet metal parts, named sheet metal substrates. A sheet metal substrate consists 
of primary planes, bends, and rolls. SMCAD generates various sheet metal substrates with different shapes. 
The sheet metal substrates used in the training set cannot be included in the test set or validation set.

2.	 Create parameterized models for all machining features. Each parameterized model is defined as a Class, 
and the 23 models are divided into three groups: (i) Deform features (including Extrusion hole, Extrusion 
blind hole, stopcrack channel, stiffener, bridge, striated bulge, dimple, louvre). These features are relatively 
complex. When combined with the sheet metal substrate, a Boolean cut operation is initially performed to 
cut out the shape of the Deform feature on the sheet metal substrate, and then a Boolean union operation 
is performed to merge the remaining part of the Deform feature into the combined shape. (ii) Cut features 
(including rectangular notch, circular hole, slot, annular hole, rectangular hole, round, chamfer, hexagonal 
hole, semi-circular notch, open slot). These features only require Boolean cut operations when combined 
with the sheet metal substrate. (iii) Additive features (bend, roll, ear plate, curved edge bend, hinge). These 
features only require Boolean union operations when combined with the sheet metal substrate.

3.	 Input geometric and positional parameters to all parameterized models to generate a machining feature 
library. To avoid interference between features or duplicate combined shapes, and to facilitate attaching 
feature labels to the combined shapes afterward, the geometric parameters and positional parameters are 
planned when generating individual shapes. Each feature is defined with several shapes of different sizes 
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and positions, and then all shapes are placed within the same spatial context. Subsequently, their sizes and 
positions are adjusted to refine their boundaries, to avoid any overlap among features.

4.	 Randomly sample several machining features from the feature library and randomly select one shape of each 
machining feature to combine with the sheet metal substrate. Additionally, traverse each B-Rep face of the 
machining feature to generate the set of centroids of B-Rep faces for this feature.

5.	 Determine the group each machining feature belongs to. If it is a deform feature, the combination order 
is to perform the Boolean cut operation first and then the Boolean union operation. If it is a cut feature, 
it directly performs the Boolean cut operation; if it is an additive feature, it directly performs the Boolean 
union operation.

6.	 Assign labels corresponding to the machining feature for each B-Rep face of the combined shape. Due to 
the setting in Step (3), there is no overlap in the spatial positions of different types of features. By traversing 

Figure 5.   Machining features of sheet metal parts in SMCAD dataset. (The first two rows represent the old 
machining features in the pretraining dataset, and the last two rows represent the new machining features in the 
incremental training dataset).

Table 2.   Machining features of sheet metal in SMCAD dataset and their corresponding labels.

Old machining feature Label New machining feature Label

Extrusion hole 0 Bridge 13

Extrusion blind hole 1 Striated bulge 14

Stopcrack channel 2 Dimple 15

Stiffener 3 Louvre 16

Rectangular notch 4 Round 17

Circular hole 5 Chamfer 18

Slot 6 Hexagonal hole 19

Annular hole 7 Semi-circular notch 20

Rectangular hole 8 Open slot 21

Bend 9 Curved edge bend 22

Roll 10 Hinge 23

Ear plate 11

Principal plane 12
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each B-Rep face of the combined shape and matching its centroid coordinates with the centroid coordinate 
collection of each feature from Step (4), the category of each B-Rep face is determined, and the correspond-
ing label is assigned.

7.	 After all operations are completed, change the sheet metal substrate and repeat Steps 1) to 6). All generated 
sheet metal CAD models are finally stored in the SMCAD dataset as .step files. Figure 7 shows examples of 
the sheet metal CAD models in the SMCAD dataset.

Experimental results and discussion
Experimental settings and feature recognition results
Sheet-metalNet was developed using PyTorch Geometric library51, which is a deep learning framework for 
non-Euclidean data. The backbone network of Sheet-metalNet consists of 13 residual blocks stacked together. 
Each residual block employed the aggregation Eq. (4), which uses a two-layer MLP with 256 neurons in both 
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the hidden and output layers. The dropout rate between residual blocks was 0.2. ADAM optimizer was used 
to optimize the learnable parameters of the encoder (backbone network) and classifier (fully connected layer). 
The initial learning rate was set to 0.0005 and the weight decay was set to 0.0005. It should be emphasized 
that Sheet-metalNet was a general mechanical part feature recognition network. Therefore, the performance of 
Sheet-metalNet was validated using both the SMCAD dataset and the publicly available MFCAD++ dataset30 as 
benchmark datasets. These graph data were batched and fed into Sheet-metalNet, where each batch contained 
different numbers of maFEGs, and the total number of nodes of all maFEGs did not exceed 10,000. Additionally, 
all experiment codes were run on an NVIDIA GeForce RTX 2080Ti GPU.

MFCAD++ dataset consisted of 59,655 CAD models, which were split into training, validation, and test sets 
with a ratio of 70:15:15. Each CAD model contained 3 to 10 machining features, with rich intersecting features 
arising from their interactions. All machining feature categories are shown in Fig. 8. Colligan et al.30 provided two 
state-of-the-art machining feature recognition networks Hierarchical CADNet (Adj) and Hierarchical CADNet 
(Edge). Together with Sheet-metalNet, they were each trained on the MFCAD++ dataset for a fixed number of 
100 epochs, with each epoch involving a pass of the entire training set through the network. Additionally, the 
recognition accuracy on the validation set, defined as the ratio of correctly classified B-Rep faces to the total 
number, was calculated for each epoch as the metric to select the optimal network model.

The network model with the highest validation accuracy was used to predict machining feature categories 
of all CAD model B-Rep faces in the test set. The accuracy, macro F1 score, and average time per epoch during 
training were recorded as evaluation metrics. The results are shown in Table 3. The results indicated that Sheet-
metalNet not only achieved higher accuracy and F1 score on the MFCAD++ test set compared to Hierarchical 
CADNet (Adj) and Hierarchical CADNet (Edge), but it also trained significantly faster than the two versions of 
Hierarchical CADNet. The notable improvement in training speed could be attributed, in part, to the dataset size 
difference. The hierarchical B-Rep graph also contains refined mesh information, making its data volume much 
larger than maFEG. Additionally, the choice of the learning framework might play a role; Hierarchical CADNet 
used TensorFlow 2, which was not a specialized framework for handling graph data. To provide further insight 

Figure 7.   Samples from the SMCAD dataset.
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into the training progress, Fig. 9 shows the validation accuracy curves over epochs of the networks. It displays that 
after 40 epochs, the validation accuracy curves of all networks tended to be stable, indicating that they reached 
the convergence interval, and Sheet-metalNet’s convergence interval was higher than the other two networks. 
Additionally, to explore the performance limit of Sheet-metalNet on the MFCAD++ dataset, the total number 
of epochs was increased to 1000, and the test accuracy and F1 score of the best model were recorded every 100 
epochs (Fig. 10). When the number of epochs reached 480, the test accuracy and F1 score no longer improved 
significantly, indicating Sheet-metalNet reached its performance limit. At this point, the test accuracy and F1 
score were 98.86% and 98.20%, respectively.

While maintaining the hyperparameters for each network, the study repeated the “train-validate-test” experi-
ments using the SMCAD pretraining dataset. Since the training speed of Hierarchical CADNet was too slow, the 
number of epochs for all networks was set to 50. Table 4 gives the experimental results. In terms of performance, 
the accuracy and F1 score of recognizing machining features by Sheet-metalNet and Hierarchical CADNet (Edge) 
exceeded 99%, much higher than Hierarchical CADNet (Adj). In terms of training efficiency, Sheet-metalNet 
was undoubtedly superior to the two versions of Hierarchical CADNet. Similar to previous experiments, the 
validation accuracy curve in Fig. 11 was plotted. However, this curve gave an unfavorable conclusion that the 
convergence speed of Hierarchical CADNet (Edge) on the validation set was significantly faster than Sheet-
metalNet. To explain this phenomenon, the confusion matrix of Hierarchical CADNet (Adj) experimental results 
is shown in Fig. 12. Hierarchical CADNet (Adj) struggled to recognize 3 maching features: stopcrack channel, 
rectangular notch, and rectangular hole, as their topological structure and geometric information, were signifi-
cantly similar. Compared with Hierarchical CADNet (Adj), Hierarchical CADNet (Edge) split the adjacency 
matrix into convex edge adjacency matrix, concave edge adjacency matrix, and flat edge adjacency matrix, 
which means that the above three machining features were artificially distinguished at the beginning of training. 
However, maFEG implicitly incorporated the convexity and concavity of edges into the attribute vector, which 
caused Sheet-metalNet to require several epochs to learn the information of convexity and concavity of edges.

Figure 8.   Machining features of the MFCAD++ dataset30.

Table 3.   Experimental results on MFCAD++ dataset.

Network Accuracy (%) F1 score (%) Average time to iterate an epoch(s)

Hierarchical CADNet (Adj) 97.27 96.34 432.44

Hierarchical CADNet (Edge) 97.62 96.86 483.22

Sheet-metalNet 98.43 97.44 10.14
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Figure 9.   Evolution of recognition accuracy on MFCAD++ validation set over epochs. (The convergence 
interval is defined as the accuracy range corresponding to the flat area of the curve).

Figure 10.   Exploring the performance limit of Sheet-metalNet on MFCAD++ dataset.
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Why Sheet‑metalNet works
Sheet-metalNet relies on the most primitive GNN architecture and introduces 3 measures: maFEG, GIN aggre-
gating edge attributes, and residual connections to improve the performance of the original GNN. The purpose 
of this section was to explore the impact of maFEG attribute vectors χ and γ , aggregation functions, and residual 
connections on the overall performance of Sheet-metalNet. This exploration aimed to provide insights into why 
Sheet-metalNet was effective. Since the training speed of Sheet-metalNet on the MFCAD++ dataset was much 
faster than on the SMCAD pretraining dataset (Tables 3 and 4), the study chose to experiment on the MFCAD++ 
dataset. Additionally, all unrelated variables of Sheet-metalNet (e.g., learning rate and dropout rate) remained 
consistent with Sect. "Experimental settings and feature recognition results". The number of iterations was fixed 
at 100 epochs, and the accuracy and F1 score on the test set were still used as evaluation metrics for the overall 
performance of the network.

First, for maFEG attribute vectors χ and γ , a series of ablation experiments were conducted, removing one 
node attribute (the three coordinates of the surface normal vector were considered one attribute) or one edge 
attribute each time. The experimental results were plotted as the horizontal bar chart shown in Fig. 13, where the 
horizontal axis is the change in accuracy and F1 score after removing an attribute from maFEG. It can be seen 
that when the surface normal vector was removed from vector χ , the accuracy and F1 score decreased signifi-
cantly; when the convexity and concavity was removed from vector γ , the accuracy and F1 score also decreased 
to a certain extent. This shows that the above two attributes had the greatest impact on the overall performance 
of Sheet-metalNet, or in other words, these two attributes were the most important in maFEG. Although the 
remaining 6 attributes had little individual impact on Sheet-metalNet performance, when all 6 attributes were 
removed, the accuracy and F1 score also decreased significantly. This suggests that Sheet-metalNet was not 
very sensitive to a single attribute of maFEG. It might learn the combination patterns and correlation patterns 
between attributes. Therefore, it could not be concluded that these 6 attributes are unimportant or negligible.

Secondly, for the aggregation function, another 4 mainstream GNN aggregation functions were selected 
for comparison with GIN aggregating edge attributes, including GCN, GAT, GraphSAGE, and GIN without 
aggregating edge attributes. The experimental results (Fig. 14) reveal that Sheet-metalNet using GAT and GCN 

Table 4.   Experimental results on SMCAD pretraining dataset.

Network Accuracy (%) F1 score (%) Average time to iterate an epoch(s)

Hierarchical CADNet (Adj) 97.62 96.74 4397.87

Hierarchical CADNet (Edge) 99.99 99.98 4709.31

Sheet-metalNet 99.99 99.99 81.33

Figure 11.   Evolution of recognition accuracy on SMCAD pretraining validation set over epochs. (All networks 
enter the convergence interval after 20 epochs).
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performs poorly because these two aggregation functions lacked distinction for maFEG encoding. In contrast, 
GraphSAGE and GIN without edge attribute aggregation exhibited better performance, although they still fell 
short of the excellent results achieved by GIN with edge attribute aggregation, highlighting the importance of 
edge attribute information in maFEG. Notably, GraphSAGE in the experiment did not aggregate edge attributes. 
Theoretically, the original GIN aggregation function in Sheet-metalNet could be replaced with GraphSAGE, pro-
vided that GraphSAGE was redesigned to incorporate edge attribute aggregation for maFEG, although specific 
design details are not discussed here.

Figure 12.   Confusion matrix of Hierarchical CADnet (adj) predictions on SMCAD pretraining test set.

Figure 13.   Histogram of attribute vector ablation experiment results.



18

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10656  | https://doi.org/10.1038/s41598-024-61443-2

www.nature.com/scientificreports/

Finally, for the residual connection mechanism, Sheet-metalNet without using residual connections was 
developed. The original Sheet-metalNet and Sheet-metalNet without residual connections with layer numbers 
from 1 to 20 were trained respectively, and the accuracy and F1 score on the test set of networks with different 
numbers of layers were recorded and plotted as Fig. 15. As the number of layers increased, the performance of 
the original Sheet-metalNet gradually improved. The optimal performance was achieved when the network had 
17 layers, resulting in accuracy and F1 score of 98.49% and 97.56%, respectively. In contrast, Sheet-metalNet 
without residual connections experienced a gradual decline in performance after surpassing 4 layers. At 4 layers, 
the highest accuracy and F1 score of Sheet-metalNet without residual connections were only 97.90% and 96.59%. 
The experimental results show that: (i) residual connections can indeed solve the problems of gradient vanishing 
and over-smoothing, improving the depth of Sheet-metalNet; (ii) the deeper Sheet-metalNet performs better, 
but after about 9 layers, the improvement of Sheet-metalNet performance with depth is no longer significant.

Figure 14.   Histogram of aggregation function comparison experiment results.

Figure 15.   Accuracy and F1 score curves of Sheet-metalNet with different numbers of layers.
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Necessity and feasibility of incremental learning
In this section, the most naive approach termed the “direct mixing strategy,” where new and old data are com-
bined, and the neural network is retrained from scratch. This strategy serves as the baseline. In contrast, 3 
incremental learning methods proposed in Sect. "Incremental learning" constitute the proposed incremental 
learning strategies. Incremental training sub-datasets are also created in the SMCAD dataset to verify the neces-
sity and feasibility of the proposed incremental learning strategies. The size of the incremental training datasets 
is much smaller than the size of the pre-training datasets, reflecting the scarcity of samples for new machining 
features in real industrial scenarios. Additionally, the 3 incremental learning methods are combined in different 
ways to form another 6 different strategies for comparison with the direct mixing strategy and the incremental 
learning strategies. The experimental results are shown in Fig. 16. The details of each strategy corresponding to 
the designators in Fig. 16 are provided in Table 5.

In Fig. 16, the accuracy and F1 score of Strategy4 are the highest, reaching 98.43% and 96.60%, respectively. 
The accuracy and F1 score of Strategy7 are the second highest, reaching 98.28% and 96.18% respectively. The 
only difference between the two is that Strategy7 has an additional knowledge distillation step compared to 
Strategy4. At the same time, strategies with knowledge distillation steps like Strategy3, Strategy5, and Strategy6, 
did not achieve the expected results. Furthermore, the recognition accuracy of new and old machining features 
were aggregated for all strategies, as shown in Fig. 17. Strategy1, Strategy3, and Strategy5 exhibited significantly 
lower accuracy in recognizing old machining features compared to new ones, indicating varying degrees of 
catastrophic forgetting. Among them, Strategy3 with only knowledge distillation experienced the most severe 
impact. In comparison, Strategy2, Strategy4, and Strategy7,s effectively avoided catastrophic forgetting and 

Figure 16.   Histogram of comparison results for incremental learning strategies.

Table 5.   Designators and details of different strategies.

Designator Strategy details

Strategy0 Direct Mixing

Strategy1 Pre-training and fine-tuning

Strategy2 Replay-based

Strategy3 Knowledge distillation

Strategy4 Pre-training and fine-tuning + Replay-based

Strategy5 Pre-training and fine-tuning + knowledge distillation

Strategy6 Replay-based + knowledge distillation

Strategy7(ours) Pre-training and fine-tuning + Replay-based + knowledge distillation
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demonstrated decent learning capabilities on new machining features. This analysis underscores that, among the 
3 components of the Sheet-metalNet incremental learning strategy, the replay component yields the best results. 
The pretraining-fine-tuning step also contributes positively, while the knowledge distillation component is nota-
bly less impactful. Its primary limitation is its inability to effectively address the issue of catastrophic forgetting.

For the baseline Strategy0, it exhibited the longest time per epoch, exceeding 90 s. Its accuracy and F1 score are 
also lower than Strategy4 and Strategy7. As shown in Fig. 17, the accuracy and F1 score differences between them 
are mainly on recognizing new machining features. Figure 18 shows the confusion matrices on the incremental 

Figure 17.   Histogram of new and old machining feature recognition accuracy for different strategies.

(a) (b)

Figure 18.   Confusion matrices for: (a) Strategy0’s predictions on the incremental test set; (b) Strategy4’s 
predictions on the incremental test set.
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test set for Strategy0 and Strategy4. Compared to Strategy4, Strategy0 incorrectly classified numerous new 
machining features as old ones. This is attributed to the class-imbalance problem mentioned in Sect. "Incremental 
learning". In Strategy0, the substantial difference in the quantity of new and old feature samples led to network 
inertia in predicting old feature B-Rep faces. Fundamentally, Strategy4 can be regarded as a variant of direct 
mixing, but its data sampling approach based on prototype representations not only reduces training time and 
costs but also mitigates class imbalance issues and enhances the accuracy of new machining feature recognition.

Conclusion
This study proposes a graph structure language maFEG to describe the topological structure and geometric 
information of mechanical part CAD models. It also introduces a GNN called Sheet-metalNet to learn potential 
patterns of machining features in maFEG. Sheet-metalNet can effectively encode maFEG and accurately clas-
sify nodes (i.e. B-Rep faces). Through a series of experiments, Sheet-metalNet was compared with Hierarchical 
CADNet in terms of recognition accuracy, F1 score, and training speed on MFCAD++ and SMCAD datasets. 
The experimental results show that the proposed method has better performance and higher efficiency.

Furthermore, to address the limitation of deep learning algorithms in dynamically recognizing new machin-
ing features, an incremental learning strategy was introduced. Assuming the existence of a dynamically expanding 
real industrial part CAD model dataset, this strategy can help Sheet-metalNet retain recognition capabilities 
on old machining features while improving recognition of new machining features, even as the dataset slowly 
grows in size. Relevant experiments indicated that the strategy performance and efficiency surpassed the simplest 
direct mixing strategy.

However, Sheet-metalNet and the incremental learning strategy proposed in this paper still have certain 
limitations:

	 (i)	 Although Sheet-metalNet outperforms hierarchical CADNet on the MFCAD++ dataset, achieving rec-
ognition accuracy of less than 99% suggests there is room for improvement, especially in the recognition 
accuracy of intersecting features. Future work will focus on addressing this shortcoming.

	 (ii)	  This research proposes using deep learning for implicit decisions in Automatic Feature Recognition 
(AFR). Future work aims to integrate fuzzy logic-based decision-making, given its robustness and capac-
ity of dealing with uncertainty52, to potentially enhance AFR system performance.

	 (iii)	 The incremental learning strategy was intended for real industrial part datasets. However, this paper 
only verified its necessity and feasibility using synthetic datasets. In future work, collaborations with 
manufacturing companies will be made to build real industrial part datasets, improve related incremental 
learning experiments, and refine the incremental learning strategy for better performance.

	 (iv)	  There is still untapped potential in maFEG and GNNs. Future work will focus on exploring their applica-
tions in CAD model automatic generation and intelligent CAD model retrieval.

Data availability
The open-source dataset MFCAD++ dataset cited in this study is available from53. The SMCAD pretraining 
dataset created by this study, is available at https://​doi.​org/​10.​5281/​zenodo.​10976​313. The SMCAD incremental 
dataset created by this study, is available at https://​doi.​org/​10.​5281/​zenodo.​10976​392.

Code availability
The code and specific details of all the experiments in this study are available at https://​github.​com/​MaFan​gchang/​
deep-​learn​ing-​based-​MFR. The synthesis code for the SMCAD dataset is available at https://​github.​com/​MaFan​
gchang/​SMCAD-​datas​et.
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