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Reliable smart models 
for estimating frictional pressure 
drop in two‑phase condensation 
through smooth channels 
of varying sizes
M. A. Moradkhani 1, S. H. Hosseini 1*, Mengjie Song 2,3* & A. Abbaszadeh 4

Reliable and comprehensive predictive tools for the frictional pressure drop (FPD) are of particular 
importance for systems involving two-phase flow condensation. However, the available models are 
only applicable to specific operating conditions and channel sizes. Thus, this study aims at developing 
universal models to estimate the FPD during condensation inside smooth mini/micro and conventional 
(macro) channels. An extensive databank, comprising 8037 experimental samples and 23 working 
fluids from 50 reliable sources, was prepared to achieve this target. A comprehensive investigation 
on the literature models reflected the fact that all of them are associated with high deviations, and 
their average absolute relative errors (AAREs) exceed 26%. Hence, after identifying the most effective 
input variables through the Spearman’s correlation analysis, three soft-computing paradigms, i.e., 
multilayer perceptron (MLP), gaussian process regression (GPR) and radial basis function (RBF) 
were employed to establish intelligent and dimensionless predictive tools for the FPD based on the 
separated model suggested by Lockhart and Martinelli. Among them, the most accurate results were 
presented by the GPR approach with AARE and R2 values of 4.10%, 99.23% respectively, in the testing 
step. The truthfulness and applicability of the models were explored through an array of statistical and 
visual analyses, and the results affirmed the obvious superiority of the newly proposed approaches 
over the literature correlations. Furthermore, the novel predictive tools excellently described the 
physical variations of the condensation FPD versus the operating parameters. Ultimately, the order of 
importance of factors in controlling the condensation FPD was clarified by a sensitivity analysis.

Keywords  Frictional pressure drop, Condensation, Machine learning algorithms, Modeling, Mini/micro and 
conventional channels

List of symbols
Bo	� Bond number, Bo = gD2(ρl − ρv)/σ

C	� Chisholm parameter
D	� Channel hydraulic diameter (m)
Frv	� Vapor Froude number, Frv = G2/ρ2

v gD
f 	� Friction factor, defined by Eq. (7)
G	� Total mass flux (kg/m2 s)
g	� Acceleration due to gravity (m/s2)
k	� Thermal conductivity (W/m k)

La	� Laplace number
Pc	� Critical pressure (Pa)
Ps	� Saturated pressure (Pa)
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Pred	� Reduced pressure, Pred = Ps/Pc
R	� Phases’ density ratio, R = (ρl − ρv)/ρl
Rel	� Liquid Reynolds number, Rel = G(1− x)D/µl

Relo	� Liquid only Reynolds number, Relo = GD/µl

Rev	� Vapor Reynolds number, Rev = GxD/µv

Revo	� Vapor only Reynolds number, Revo = GD/µv (−)
Suvo	� Vapor only Suratman number, Suvo = ρσD/µ2

T	� Temperature (°C)
V 	� Velocity (m/s)
Wevo	� Vapor only Weber number, We = G2Dh/ρvσ

X	� Lockhart–Martinelli parameter, defined by Eq. (9)
x	� Vapor quality

Greek
µ	� Dynamic viscosity (Pa s)
ρ	� Density (kg/m3)∑

	� Mathematical symbol for summation
σ	� Surface tension (N/m)
φ	� Two-phase multiplier
υ	� Kinematic viscosity (m2/s)

Subscripts
A	� Acceleration
F	� Frictional
G	� Gravitation
l 	� Liquid
lo	� Liquid only
red	� Reduced
s	� Saturated
v	� Vapor
vo	� Vapor only
tp	� Two-phase

Heat exchangers involving two-phase flow condensation are widely utilized in numerous industries, such as 
nuclear, food processing, refrigeration, air conditioning, etc1–6. During the last years, compact heat exchangers 
(mini/micro channels) have attracted special attention, since they provide much higher energy efficiency, require 
lower amounts of refrigerant, and take up less space compared to conventional ones7–9. However, the enhanced 
flow area per mass velocity in these channels leads to higher pressure drop, which is followed by several nega-
tive impacts on the system10. Increasing the energy consumption in pumps and obstructing the two-phase flow 
system are well-known examples regarding the destructive influences of high pressure drop inside channels11–13. 
Consequently, the optimal design of heat exchangers necessitates comprehensive predictive tools for pressure 
drop in channels of various sizes.

The total pressure drop during two-phase flow inside channels is defined as the sum of three different terms, 
including frictional, gravitational and accelerational pressure drops,

The gravitational and acceleration terms are given by,

where the void fraction, α is calculated by Eq. (4) proposed by Zivi14.

According to earlier experimental investigations, the frictional pressure drop (FPD) envelopes more than 
90% of total pressure drop15–18. Thereupon, it is vital to derive precise and reliable approaches for estimating the 
two-phase FPD during condensation, covering both mini/micro and macro channels.
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Several theoretical and empirical correlations can be found in the literature for predicting the FPD during 
condensation inside channels19–29. Most of these correlations have been established by inspiring the homogeneous 
and separated models. The homogenous approach supposes the flow as a pseudo single-phase flow, in which both 
phases have the same velocity. However, the earlier studies have implied that this method is not reliable for low 
pressures and mass fluxes30,31. In the separated model presented by Lockhart and Martinelli32, FPD is determined 
by modification of the single-phase pressure drop by applying a two-phase multiplier,

where the pressure drop of various phases are defined as follows,

where the friction factor, f  for a given phase (k) can be calculated by,

According to Chisholm33 theory, the two-phase multiplier is defined as function of Lockhart and Martinelli 
parameter, i.e., X,

According to this methodology, the Chisholm parameter, C may experience alternations from 5 to 20, depend-
ing on the flow regime. Sun and Mishima34 developed a correlation for FPD in mini/micro channels based on 
Chisholm method, in which Rel and Rev = 2000 were defined as the transition point for Chisholm parameter. 
An AARE value of 30.6% for all analyzed data was yielded by this model. Hossain et al35. utilized their own 
experimental data for correlating the Chisholm parameter with Froud and Bond Numbers. The reasonable 
consistencies between measured data and those predicted by the correlation were testified with AARE of 9.51%. 
Jige et al36. estimated the two-phase multiplier using their experimental data for condensation of four different 
refrigerants in multiport mini-channels, and obtained a reasonable accuracy with AARE of 9.6%.

Various FPD models have also been proposed based on extensive sets of experimental data. However, most 
of these models are applicable for specific channel sizes. The Friedel37 model was developed by employing 25,000 
data for macro channels with diameters higher than 4 mm and working fluids of air-oil, R12, and air–water. 
Another comprehensive model was suggested by Muller-Steinhagen an Heck38 utilizing around 9300 data points 
for channel diameters exceeding 4 mm. Although the database encompassed various types of working fluids, the 
number of data corresponding to air–water was remarkably larger than the rests. Kim and Mudawar39 proposed 
an universal predictive tool for condensation FPD in mini/micro channels with diameters up to 6.25 mm. In 
order to attain more accurate predictions, the analyzed data were allocated to four subdomains, depending on 
the vapor and liquid Reynolds numbers. A total number of 7115 data points analyzed for the condensation FPD 
were predicted with an AARE of 23.3% by this model. There is just one correlation in the literature applicable for 
both mini/micro and conventional channels, which has been presented by Moradkhani et al40. This correlation 
was derived by implementing the genetic programming approach over a widespread databank, containing 7328 
FPD samples, and exhibited satisfactory outcomes for different sizes of channels.
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Recently, intelligent techniques, such as machine learning algorithms have been broadly employed to solve 
the engineering problems 41–48. There some limited studies on the application of the foregoing approaches to 
model the two-phase pressure drop in heat exchangers of various configuration. Zendehboudi and Li49 studied 
the application of four intelligent methods in estimating the condensation FPD in inclined tubes based on 312 
data from just one source. All established models provided reliable estimations with R2 values exceeding 95% for 
the test data. López-belchí et al50. employed the group method of data handling (GMDH) approach to estimate 
the condensation FPD inside micro-channels based on their own measured data, and yielded a total AARE of 
10.59%. Longo et al51. developed a predictive method for two-phase pressure drop in plate heat exchangers 
through the gradient boosting machines (GBM). The modeling phase was performed by utilizing 925 data for 
flow condensation and 1624 data for flow boiling. It was demonstrated that the intelligent approaches perform 
much better than the empirical correlations. In another relevant work, Qiu et al13. suggested several intelligent 
models for boiling FPD in mini/micro channels using 2787 data from 21 studies. Among them, the MLP based 
model, which included 12 hidden layers and 23 dimensionless groups as inputs provided the superior outcomes. 
Moradkhani et al52. assessed some neural network-based approaches for estimating the two-phase FPD inside 
helically coiled tubes. Their analyzed dataset included 1267 experimental samples adopted from 12 studies. The 
most precise outcomes were obtained by the radial basis function (RBF) method with AARE of 4.73% during 
the testing phase. More recently, Montañez-barrera et al53. studied the application of correlated-informed neural 
networks (CoINN) for modeling the FPD of zeotropic mixtures during two-phase flow in micro-channels. The 
model overcame the available correlations with a total AARE of 6% from the actual data.

This study addresses critical limitations in two-phase FPD estimation during condensation. Existing cor-
relations are often limited to specific channel sizes, and the predictive tools applicable to both mini/micro and 
conventional channels are rare. On the other hand, the machine learning approaches haven’t been explored for 
developing generalizable models for condensation FPD inside smooth channels of various sizes. Furthermore, 
identifying the key factors influencing FPD is crucial for engineers. To address these gaps, this study analyzes 
a comprehensive dataset of 8037 samples encompassing mini/micro and conventional channels from 50 pub-
lished studies. For the first time, three important soft computing approaches, namely, MLP, GPR and RBF are 
implemented to establish novel models for FPD estimation. The correctness and validity of the proposed mod-
els are statistically assessed for estimating the FPD in various channel sizes, flow patterns, and flow regimes. 
Furthermore, the outputs of the models are utilized to examine the changes in condensation FPD with respect 
to different operational factors. A sensitivity analysis is then used to identify the most effective factors on FPD.

Materials and methods
Machine learning algorithms
To address the need for robust predictive tools in two-phase FPD estimation during condensation in channels, 
this study employed three widely recognized machine learning algorithms: MLP, GPR, and RBF. These approaches 
were chosen due to their success in describing complex two-phase flow behavior, as demonstrated in previous 
studies52,54–56.

MLP
The capable machine learning approach of MLP follows a process similar to that observed in the nervous system 
of humans, and it is mainly implemented to solve the complicated mathematical problems, including approxi-
mation, classification and pattern recognition57. This is done through a parallel algorithm, in which a set of data 
is utilized to train the network, and the artificial neurons are responsible for transferring the information58. 
Figure 1 shows the structure of an artificial neuron included in the MLP network. Mathematically, this neuron 
is explained as follow,

Figure 1.   Description of an artificial neuron.
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where ra , xi , Wai , ba and stand for linear combiner, ith input factor, synaptic weight, neuron bias and activation 
function, respectively.

MLP is recognized as feed-forward network, meaning it processes the information only in one direction. The 
graphical description regarding the MLP network designed to model the condensation FPD has been illustrated 
in Fig. 2. It is clear that it entails three linked layers, including some artificial neurons. The input, hidden and 
output layers are responsible for introducing the information to the network, specify network parameters and 
display the outcomes, respectively. It should be emphasized that the architecture of hidden layer depends on 
the complexity of problems, and may include some independent layers with different numbers of neurons in 
each of them. While, the number of neurons in the first and last layers equal to the number of input and output 
variables, respectively. The MLP network detects the system nonlinearity via the activation functions included 
in the hidden layer’s neurons.

This study identified a four-hidden layer MLP network with (40, 30, 20, 10) neurons per layer as the optimal 
architecture for modeling condensation FPD. The number of neurons in input and output layers are 8 and 1, 
respectively. Moreover, the neurons benefited from the tan-sigmoid function as activation function59.

A vital stage in designing the MLP network is optimizing its weights and biases, as these parameters signifi-
cantly influence the network’s performance. For this purpose, the back propagation (BP) algorithm specifies the 
weights and biases to minimize a deviation function60,

After applying each training data, the value of deviation function is spread in the network, followed by re-
adjusting the parameters. Herein, the Bayesian regularization approach was used to train the BP algorithm.

GPR
Recently, due to robustness and capabilities of non-parametric machine learning approaches, trends toward them 
in engineering application have been increased. Among the foregoing approaches, GPR is a widely used machine 
learning algorithm, by which a gaussian joint probability distribution is provided61,62. The main preponderances 
of GPR are high accuracy and strength to modulate the hyper-parameters. This method is also capable to catch 
the uncertainty of analyzed samples.

The GPR-based learning process is accomplished through a probabilistic framework, in which a training 
dataset is provided. It should be noted that and stand for the input variables vector and target function, respec-
tively. Thus, the predictive model provides the output function distribution in any point through the following 
approximation54,

(10)ra =

n∑

i=1

xiWai + ba

(11)ya = f (ra)

(12)D =

(
ypre − yexp

)2

Figure 2.   The MLP network designed to estimate the condensation FPD.
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where L(xi) is the latent function corresponding to the input variables ( xi ), and its values constitutes a random 
variable. Furthermore, εi represents the gaussian noise, which its mean and variance are 0 and σ 2

n , respectively63,

Consequently, the target function can be easily approximated by defining a mean function m(x) and a covari-
ance function cov

(
x, x′

)
 . The predictive probability distribution for the input variables, x∗ can be defined as,

where k
∗
 may be defined as [k∗]i = cov(xi , x

∗) , K  stands for a covariance matrix, which its elements are 
[K]i,j = cov

(
xi , xj

)
 , and I shows the identity matrix.

As the predictive probability distribution is specified by the hyperparameters, an optimization process should 
be performed in order to determine these factors64,65. In the GPR approach, the log-likelihood function is maxi-
mized during the training step in order to calculate the hyperparameters,

where n represents the number of training data points.

RBF
Resolving the drawbacks of MLP networks, such as their empirical structure and under or over-fitting possi-
bility is the motivation behind the development of RBF networks. The high potency for interpolation, prompt 
convergence, simple structure and sublime reliability are the main advantages of these networks66. The structure 
of this network is similar to that of a single-layer MLP network, which includes a number of neurons equal to 
the number of data points used for training. It should be noted that, the activation functions employed in these 
networks are radial basis functions, among which the most well-known function is gaussian,

where and denote the center and radius of the gaussian function, respectively.
After receiving the information from the input layer, the hidden layer exert the nonlinear functions and sends 

the results to the final layer, which is responsible to combine the weights and the activation functions, linearly67,68,

The gradient descent method is employed in the RBF network to optimize the network center and synaptic 
weights, minimizing the mean squared error (MSE),

The RBF network used in this study has an 8-6430-1 architecture, signifying 8 neurons in the input layer, 
6430 neurons in the hidden layer, and 1 neuron in the output layer. Additionally, the hidden layer employs a 
Gaussian function as its activation function.

Experimental data gathering
Since the availability of credible data plays a major role in designing the data-driven models, the collection of 
as much data as possible regarding the condensation FPD inside channels built the primary cornerstone of the 
present communication. Hence, a comprehensive dataset, encompassing 8037 FPD samples was adopted from 
50 published studies. The foregoing data envelop the FPD of 23 fluids, such as chemicals, halocarbons, natural 
refrigerants, water, hydrocarbons, cryogens, etc., condensing inside both mini/micro and conventional channels. 
A detailed description of the operating conditions of the analyzed sources has been provided in Table 1. It should 
be expressed that the REFPROP v.9.1 software69 (https://​www.​nist.​gov/​progr​ams-​proje​cts/​refer​ence-​fluid-​therm​
odyna​mic-​and-​trans​port-​prope​rties-​datab​ase-​refpr​op) has been employed to determine the thermophysical 
characteristics of the fluids under saturation condition.

Error analysis
In this study, the correctness of various models for estimating the condensation FPD was assayed based on three 
statistical metrics, including average absolute relative error (AARE), standard deviation (SD), and coefficient 
of determination,
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https://www.nist.gov/programs-projects/reference-fluid-thermodynamic-and-transport-properties-database-refprop
https://www.nist.gov/programs-projects/reference-fluid-thermodynamic-and-transport-properties-database-refprop
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where Ei is relative error that can be defined as the following equation,

(21)AARE(%) =
1

N

∑∣
∣
∣
∣
FPDexp − FPDpre

FPDexp

∣
∣
∣
∣× 100

(22)SD(%) =

√
∑(

Ei − Ei
)2

N − 1
× 100

(23)R2(%) =

(

1−

∑(
FPDexp − FPDpre

)2

∑(
FPDexp − FPDexp

)2

)

× 100

(24)Ei =
FPDexp − FPDpre

FPDexp

Table 1.   Geometrical and operating conditions of analyzed sources for condensation FPD.

Sources Fluid Channel geometry Hydraulic diameter (mm) Reduced pressure (−) Mass flux(k) Number of points
70 R717, R744, R245fa Circular 1.02 0.07–0.69 100–440 238
71 R410A Circular 0.76–3.05 0.8–0.9 200–800 291
72 R134a Circular 8.1 0.25–0.32 300–500 40
73,74 R32, R245fa Circular 0.96 0.07–0.43 200–1000 63
75,76 R134a, R1234yf Circular 2.14 0.14–0.23 50–200 61
77 R134a, R1234yf Square 1.16 0.25–0.49 470–710 81
78 R32, R410A Square 1.16 0.33–0.63 350–800 250
79 R290 Square 1.16 0.25–0.40 175–350 109

80 R125, R22, R32, R134a, R236ea, 
R410A Circular 8 0.1–0.56 100–750 151

81,82 R245fa Circular 3 0.13–0.53 100–1000 174

83,84 R134a Circular, Rectangular, Triangular, 
Square, Barrel 0.424–1.524 0.30 150–750 561

85 R1234yf, R134a Circular 0.96–2 0.17–0.32 200–800 286
86 R290, R600a Circular 1 0.10–0.22 240–480 147
87 R744 Rectangular 0.1–0.16 0.69–0.87 400–800 175
88 R1234yf Circular 3.2–8 0.17–0.23 200–400 162
89,90 R744 Circular 1.5 0.41–0.54 400–1000 95
36 R32, R1234ze(E), R134a, R410A Circular 0.85–1.1 0.35–0.78 100–500 284
91 R744 Circular 5.15 0.36–0.54 600–1000 52
92 R404A Circular 0.508–3.05 0.38–0.77 200–800 392
93 R410A Circular 6.3 0.56 100–250 12
15–18 R152a, R290, R1234ze(E), R22, Circular, Square 0.952–1.152 0.2–0.4 200–800 293

94–96 R290, R1270, R404A, R32, R410A, 
R1234yf, R1234ze(E), R134a, R152a, Circular 4 0.15–0.49 75–800 707

97,98 R290 Circular 7.75–14.45 0.25–0.95 150–450 276
99,100 R601, R245fa Circular 7.75–14.45 0.03–0.17 100–600 274
101,102 R410A Circular 6.2–9.4 0.80–0.90 200–800 450
103 R718 Circular 19 0.18–0.45 400–1000 113
104 R134a, R410A Circular 1.02–1.54 0.10–0.30 50–300 407
105 R22, R290, R32, R410A Rectangular 0.83 0.37–0.60 50–500 112
106 R728 Circular 1–2 0.31 32.7–262 58
107 R134a Circular 3.8297–8.91 0.22–0.29 450–650 113
108,109 R14, R170 Circular 4 0.27–0.8 200–650 155
110 R1234yf, R1234ze(E), R134a, R600a Square, Circular, Triangular 0.835–1.1 0.11–0.31 100–1400 746
111 R1234ze(E), R134a Circular 1.88 0.17–0.22 450–900 281
112 R290 Circular 1.22 0.09–0.14 40–90 30
113,114 R50, R170 Circular 4 0.21–0.65 99–251 398

Total 0.1–19 0.03–0.95 32.7–1400 8037
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Results and discussion
Accuracy of literature models
As discussed earlier, several predictive tools can be found in the open literature concerning the estimation of 
condensation FPD inside channels. A statistical investigation on the accuracy of eleven well-known FPD models 
based on the collected databank has been presented in Table 2. It is clear that the highest precision among these 
models belongs to the correlation suggested by Moradkhani et al40. with AARE, SD and R2 values of 26.23%, 
40.23% and 89.05%, respectively from the experimental data. Since the foregoing model has been established 
based on a widespread FPD dataset enveloping a broad range of conditions in both conventional and mini/
micro channels, it is reasonable to provide the highest level of precision. The models presented by Muller-
Steinhagen and Heck38, Jige et al36., Kim and Mudawar39, and Sun and Mishima34 present almost same results 
with AAREs of 30.10%, 31.75%, 31.85% and 32.31%, respectively. Such deviations stem from the fact that the 
mentioned correlations have been recommended for limited geometrical or operating conditions. Nevertheless, 
their estimation capabilities are superior to those of Friedel37, Gu et al115., Hossain et al35., Zhang et al116. and 
Koyama et al117. models, which show AARE values between 34.85 and 61.74%. The weakest performance in 
predicting the condensation FPD can be attributed to correlation presented by Chisholm33 with AARE and SD 
values of 95.28% and 114.65%, respectively. Overall, the current analysis testifies the requirement for designing 
comprehensive and precise models to estimate the two-phase FPD during flow condensation in mini/micro and 
conventional channels.

The novel predictive tools for condensation FPD
Optimization of the input variables defined in the models
This study introduces novel predictive approaches for estimating condensation FPD based on the separated 
model proposed by Lockhart and Martinelli32 and the dimensionless form suggested by Chisholm33. These intel-
ligent approaches are utilized to estimate the Chisholm parameter in Eq. (8). However, before developing the 
new models, it is crucial to identify the most important input factors. To meet this requirement, the relevancies 
between Chisholm parameter and 16 common dimensionless groups were measured through the Spearman’s 
correlation coefficients118, and the corresponding results have been plotted in the heatmap of Fig. 3. As it is clear, 
the vapor and liquid-only Reynolds number, i.e., Revo and Relo have remarkable impacts on Chisholm parameter. 
However, there is no obvious correlation between liquid-phase Reynolds number, Rel and C. While the vapor-
phase Reynolds number, Rev exhibits relatively high influence of Chisholm parameter, its correlations with Revo 
and Relo are extremely great. A similar argument can be made for the liquid and vapor-phases friction factors, fl 
and fv , which have significant correlations with Revo and Relo . Almost all foregone experimental investigations 
have demonstrated that the vapor quality, x , and reduced pressure, Pred , play substantial roles in controlling the 
condensation FPD. This fact is also affirmed by the Spearman’s correlation coefficient. Therefore, these factors 
should be considered as the models’ inputs. Since the collected data include the FPD during condensation inside 
both mini/micro and conventional channels, the surface tension can noticeably affect the FPD. This is why the 
Bond number, Bo shows a fairly high correlation with Chisholm parameter. The Suratman number, Suvo , Webber 
number, Wevo and Lockhart and Martinelli parameter, X also can be included among the input factors, as they 
make unique and evident influences on C. In contrast, the impact of liquid-phase Prandtl number on Chisholm 
parameter is negligible. Furthermore, since the phases relative density, R , and the Prandtl number of the vapor 
phase show strong correlations with reduced pressure, they should not be incorporated as inputs to the models.

According to the above discussions, the following eight dimensionless groups were taken into account as the 
optimized input parameters in order to model the condensation FPD in mini/micro and conventional channels,

The newly proposed models are applicable within a wide range of conditions, as shown by the minimum and 
maximum values of dimensionless groups in Table 3. This broad applicability reflects the extensive data bank 

(25)C = f (Relo,Revo, x, Pred ,Bo,Wevo,X, Suvo)

Table 2.   Assessment of the literature FPD models based on the collected experimental databank.

Models AARE, (%) SD, (%) R2,(%)

Chisholm33 95.28 114.65 84.62

Hossain et al35. 51.18 26.49 31.36

Sun and Mishima34 32.31 35.19 67.11

Zhang et al116. 60.88 91.15 42.36

Koyama et al117. 61.74 91.17 52.17

Muller-Steinhagen and Heck38 30.10 38.48 59.42

Jige et al36. 31.75 43.68 59.33

Friedel37 34.85 50.42 58.10

Kim and Mudawar39 31.85 41.42 52.17

Gu et al115. 38.15 44.19 43.28

Moradkhani et al40. 26.23 40.23 89.05
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used in this study. Since machine learning models are often sensitive to input conditions, these models offer 
reliable predictions for condensation FPD within the ranges summarized in Table 3.

Development of the novel models
After determining the input variables, the soft computing approaches of GPR, MLP and RBF were enforced to 
derive the novel dimensionless models for predicting the condensation FPD based on the Chisholm method. 
This study utilized the Model-Based Calibration 5.2.1 toolbox within MATLAB to achieve this objective. This 
toolbox provided the necessary functionalities for designing the predictive models. Notably, the predictive tools 
were first trained on 80% (6,430 samples) of the randomly chosen data bank. The remaining 20% (1,607 samples) 
were then used to rigorously evaluate the models’ reliability. The precisions of the proposed smart models dur-
ing the training and testing stages have been competitively assessed in Table 4. As can be seen, the GPR-based 
model presents much exact estimations with AAREs of 3.77% and 4.10%, R2 values of 99.01% and 99.23%, and 
SD values of 7.25% and 6.04% for train and test data, respectively. Such excellent outcomes corroborate the 
strength and truthfulness of this approach to describe the condensation FPD in mini/micro and conventional 
channels. Furthermore, it can be concluded that the optimized input variables introduced in Eq. (25) have been 
appropriately chosen and satisfy the influences of various factors on the condensation FPD. The MLP model 
also provide satisfactory outcomes, and ranks second in terms of accuracy with AARE and R2 values of 12.46% 
and 97.56%, respectively in the testing phase. In addition, its predictions capabilities are adequately better those 

Figure 3.   The Spearman’s correlation coefficient between different dimensionless groups and Chisholm 
parameter.

Table 3.   Analyzed ranges of dimensionless groups included in the novel models.

Dimensionless factor Minimum value Maximum value

Relo 327.84 232,506.9

Revo 1984.42 1,089,325

x 0.01 0.994

Pred 0.033 0.952

Bo 0.03 2732.708

Wevo 5.09 175,880.70

X 0.01 19.84

Suvo 33,022.37 34,485,016
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that of the literature correlations. Despite giving the best precision in the training step, the RBF model exhibits 
fairly great deviations for the test data points with an AARE of 21.04%. Consequently, this model cannot be 
assumed as a capable predictive tool. Overall, although all newly proposed models perform much better than 
the literature correlations in describing the condensation FPD, the one designed based on the GPR method is 
the best choice for this purpose. This can be justified by the fact that the GPR approach is widely recognized as 
a non-parametric regression tool. Unlike methods that require a pre-defined form for the data, GPR builds the 
model’s form based on information extracted from the training samples. This flexibility allows the GPR approach 
to adapt to the unique characteristics and complexities of the data, resulting in improved predictive accuracy. 
The performance of the novel models has been compared with the top earlier correlations in Fig. 4, by plotting 
the estimated values of FPD versus the experimental data. The figure reflects the fact that the outcomes of the 
intelligent approaches, especially GPR, are impressively closer to the diagonal (best fit) line, affirming the obvious 
superiority of this model over the literature correlations. Among the literature correlation, the results obtained by 
the correlation proposed by Moradkhani et al40. have the best consistencies with experimental values of FPD. The 
rest of the correlations have almost same predictions capabilities, and this fact was also asserted by the statistical 
assessments provided in Table 2. Altogether, a great number of data estimated by the previous models lie beyond 
the satisfactory range ( ±30 error margin), and the proposed model provide considerable advances in this area.

Assessing the validity of the newly proposed models
To further authenticate the truthfulness of the models proposed in the present study for estimating the con-
densations FPD inside channels, two visual accuracy analyses are carried out in this section by employing the 
cumulative frequency and contour diagrams.

A comparison between the reliability of the predictive approaches designed in the current study and the top 
models among those presented in the previous studies from the perspective of cumulative frequency has been 
rendered in Fig. 5. It should be expressed that the cumulative frequency measures the percentage of samples, 
which have been predicted within a given extent of relative error. Thus, a sharp growth in the cumulative fre-
quency curve of a predictive tool at low levels of relative error represents its high accuracy. This observation is 
true regarding the novel intelligent models, since they show very high cumulative frequencies at the beginning 
points of its curve. Among them, the GPR approach estimates 50.78%, 78.11%, 91.45%, 96.11% and 97.92% of 
the whole data within the error bounds of 2%, 5%, 10%, 15% and 20%, respectively. This is why it can be rec-
ognized as the most trustful predictive tools for the condensation FPD inside channels. While the remaining 
intelligent models also present better results compared to literature correlations, their precisions are fairly less 
than the GPR model. The correlation suggested by Moradkhani et al40. has the best performance in terms of 
cumulative frequency among those available in the literature, and it is the only case that predicts the majority 
of samples (56.59% of all data) with relative errors less than 20%. The cumulative frequencies of the Jige et al36., 
Muller-Steinhagen and Heck38, Kim and Mudawar39 and Sun and Mishima34 models at the absolute relative error 
of 20% are 45.56%, 43.06%, 40.00% and 35.49%, respectively, which means that applying them to estimate the 
FPD is followed by relatively high deviations. As a results, the present analysis is another verification regarding 
the supremacy of the GPR model for describing the condensation FPD.

The dispersion of the relative deviations yielded by the GPR approach for describing the condensation FPD 
in diverse ranges of flow mass flux, channel diameter, vapor quality and reduced pressure has been represented 
in the contour plot of Fig. 6. The spectrum of colors differing between dark green and dark blue expresses the 
AARE values obtained by the model in a given range of condition. As it is obvious, the predominant portion of 
all diagrams have been encompassed by green colors, implying the fact that the majority of FPD data in various 
ranges of conditions have been estimated with relative errors up to 6%. On the other hand, several small blue 
regions are visible in the contour plots, which are generally corresponding to the condensation of near-critical 
fluids with mass fluxes of around 800 kg.m−2.s−1 inside small-sized channels. Some of these minor deviations 
arise not only from the performance of the model, but also from the errors occurring in the FPD experimental 
measurements under the foregoing situations. Overall, the current results reflect the fact that the GPR model 
benefits from very high confidence levels in predicting the FPD during condensation inside channels.

The prediction capabilities of the models
In order to better figure out the universality and sufficiency of the presented models, in this section, the precision 
of the new models to estimate the condensation FPD inside channels of different sizes as well as under various 
flow patterns and flow regimes is investigated, and the results are compared with the top literature correlation. 
Furthermore, the variations of condensation FPD versus the operating parameters are studied based on the 
outcomes of the model.

Table 4.   Error metrics corresponding to the novel predictive tools for the condensation FPD.

Train, (6430 data) Test, (1607 data) Total, (8037 data)

Statistical parameters GPR MLP RBF GPR MLP RBF GPR MLP RBF

AARE (%) 3.77 6.70 0.03 4.10 12.46 21.04 3.83 7.86 4.23

R2(%) 99.01 97.60 100 99.23 97.56 95.15 99.05 97.59 99.17

SD (%) 7.25 10.50 0.39 6.04 78.12 39.00 7.74 36.53 17.70
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Predicting the condensation FPD inside channels of various sizes
Several criteria have been proposed to classify the channels of heat exchangers based on their size. The most 
prevalent one is that obtained by Kandlikar119,120, in which the channels can be splitted into three main categories:

•	 Micro-channels with D ≤ 0.2 mm
•	 Mini-channels with 0.2 < D ≤ 3 mm
•	 Conventional channels with D > 3 mm

Figure 4.   Comparison between the FPD values obtained by experimental studies and those predicted by the 
novel and literature models.
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Figure 5.   The cumulative frequency of data predicted by different FPD models at various levels of relative error.

Figure 6.   Dispersion of relative deviations given by the GPR approach for estimating the condensation FPD in 
diverse ranges of conditions.
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By applying the foregoing classifications, the AAREs of the FPD models for the data corresponding to various 
sizes of channels have been illustrated in Fig. 7. The superiority of the GPR for all three cases, including micro, 
mini and conventional channels is obvious with AARE values of 9.74%, 4.09% and 3.13%, respectively. Such 
excellent results admit the applicability and reliability of this model to predict the condensation FPD in a broad 
range of channel sizes. The RBF and MLP models are ranked second and third from the standpoint of accuracy, 
since they AARE values for various channel sizes are less than 15%, and they can be used as proper alternatives 
to GPR approach. In contrast, the literature correlations exhibit fairly larger deviations for all types of channels, 
and this fact is more evident in the cases of micro and conventional channels, where all of them give AARE values 
exceeding 30%. Nevertheless, all of them provide relatively proper estimations for the condensation FPD inside 
mini-channels with AARE values of 22.56%, 24.44%, 24.69%, 24.69% and 28.35 obtained by Moradkhani et al40., 
Muller-Steinhagen and Heck38, Kim and Mudawar39, Jige et al36. and Sun and Mishima34 correlations, respectively. 
Accordingly, it can be concluded that the newly proposed models, especially GPR, are unique predictive tools 
with applicability for all sizes of channels.

Applicability for various flow patterns
Another perceptible way to make a fair judgement regarding the performance of the models is to ascertain their 
accuracy level for estimating the condensation FPD at various flow patterns. Herein, the foregoing scrutiny was 
performed by inspiring the method proposed by Kim et al121., according to which four diverse flow patterns may 
be observed during condensation within channels. These flow patterns are distinguished from each other by 
three boundary lines defined based on the values of the Lockhart and Martinelli parameter, Xtt and the modified 
Weber number, W∗ . Figure 8 depicts the dispersion of the FPD data at all four flow patterns by determining the 
relevant boundary lines. As it is evident, although the wavy-annular and transition flows embody the majority 
of data, there are adequate numbers of samples at all flow patterns to make a comprehensive assessment on the 
accuracy of the models.

Figure 9 portrays the AARE values yielded by the novel and earlier models for estimating the experimental 
data pertinent to different flow patterns. The figure clearly expresses that the highest levels of accuracy for all 
cases are belonged to the recently proposed GPR model. It should be noted that the AARE values obtained by 
this model range from 2.67% to 7.23%, which corroborates its truthfulness and potential for estimating the 
condensation FPD estimation in various flow patterns. The RBF model also exhibits good consistencies with 
the data for all flow patterns, and has AARE values below 10% for all cases. While the performance of the MLP 
model is superior to the literature models, the uncertainties of this model, especially for slug and bubbly flow, 
are higher than the other intelligent models. The predictions performed by the literature correlations are fraught 
with deviations, especially when the flow pattern is slug and bubbly or transitions. However, for the remain-
ing two cases, i.e., wavy and smooth annular flows, their outcomes have slightly better consistencies with the 
experimental data, and the corresponding AARE values are below 30%. The most accurate predictions in the 

Figure 7.   Accuracy of the novel and literature models for predicting the condensation FPD inside channels of 
various sizes.
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foregoing flow patterns have been presented by the Moradkhani et al40., correlation with AAREs of 22.59% and 
17.68%, respectively. Hence, employing the novel models, especially GPR, results in noticeable improvements 
in predicting the condensation FPD at all flow patterns.

Applicability for various flow regimes
Several benchmarks have been proposed to diagnose the flow regime during condensation in channels122–124. 
Some methods consider the values of single-phase Reynolds numbers, i.e., Rel and Rev as the basis of regime 
classification. While, in the rest of approaches, the flow regime is specified based on the liquid-film Reynolds 
number, which is defined as follow,

Figure 8.   Dispersion of the analyzed FPD data in different flow patterns.

Figure 9.   Accuracy of the novel and literature models for predicting the condensation FPD at various flow 
patterns.
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where e stands for the entrained liquid fraction that can be calculated by the empirical correlation developed by 
Cioncolini and Thome125. Based on the above definition, Cioncolini et al126. presented the following criteria for 
distinguishing between laminar, transitional and turbulent flow regimes,

•	 RelF ≤ 160 : Laminar flow
•	 160 < RelF < 2785 : Transitional flow
•	 RelF ≥ 2785 : Turbulent flow

Figure 10 demonstrates the scattering of the collected data at different flow regimes based on the aforemen-
tioned criteria. It is clear that the bulk of the FPD data points are included in the transitional and turbulent 
regimes, while the laminar regime embodies just around 3% of the entire data.

Figure 11 compares the AARE values of different model in estimating the condensation FPD at different flow 
regimes. A glance at the results brings into view the decisive superiority of the GPR model over the literature 
correlations. The AARE values achieved by this predictive tool for various flow regimes are in the range of 3.06% 
and 5.06%, which is another confirmation of its universality and wide applicability. The RBF and MLP models 
are the next reliable predictive tool in this regard with AARE values below 10% for different flow regimes. 
Accordingly, the recent models provide enough accurate estimations at all two-phase flow regimes. As opposed 
to these approaches, the values calculated by the literature correlations are associated with relatively great errors, 
particularly for the turbulent flow. Although the Moradkhani et al40. correlation provides satisfactory outcomes 
for transitional flow, its AARE values for the other cases exceed 30%. It is worthy to note that with AARE values 
below 30%, the predictions of the models proposed by Jige et al36., Muller-Steinhagen and Heck38, and Kim 
and Mudawar39 satisfactorily match the experimental data pertinent to transitional flow. The same explanation 
applies to the predictions of Jige et al36. for the transitional flow. Thereupon, the foregoing correlations can be 
regarded as substitutes for the novel model in the corresponding flow regimes. Overall, except for the recently 
proposed models, none of the existing predictive tools are capable to precisely describe the condensation FPD 
in all flow regimes.

Capturing the physical attitudes of the condensation FPD
For exploring the potency of the recently established model, i.e., GPR to capture the physical trends, in the follow-
ing, its outcomes are employed to study the variations of the condensation FPD versus the operating parameters. 
In order to further highlight the excellence this approach over the literature correlations, the predictions of the 
Moradkhani et al40. correlation are also included in the foregoing assessments.

Figure 12 delineates the variations of the condensation FPD with vapor quality and mass flux, during R1270 
flowing within a 4 mm tube, when the reduced pressure is held constant at of 0.32. Obviously, the growth of 
vapor quality and mass flux lead to notable enhancements in the condensation FPD. This trend can be justified 
by amplifying the vapor velocity and shear stress arisen from the foregoing changes. While both predictive tools 
properly capture the overall trends, the recently proposed model are in closer conformities with the real data.

(20)RelF =

GD(1− x)(1− e)

µl
= Rel(1− e)

Figure 10.   The scattering of the FPD data in various flow regimes.
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Figure 13 compares the FPD variations of R290, R32 and R410A during condensation inside a channel of 
1.16 mm inner diameter. As it is evident, R290 has the greatest condensation FPD among the evaluated working 
fluids, which is followed by R32 and R410A, respectively. Since the experiments have been carried out under 
constant mass flux and saturation temperature, the difference between the FPD values can be attributed to the 
nature of fluids. The physical characteristics of the refrigerants at the saturation temperature of 50 °C have been 
summarized in Table 5. As shown in the table, R290 has the lowest liquid and vapor densities, so it flows with 
higher liquid and vapor velocities inside the channel. On the other hand, the vapor and liquid kinematic vis-
cosities of R290 are noticeably higher the remaining fluids. These are the reasons why highest shear stress and 
FPD values are observed during R290 condensation. A similar argument can be presented to justify the higher 
condensation FPD of R32 compared to R410A. The novel model present correct physical trends, and perfectly 
matches the actual data. While, the Moradkhani et al40. correlation over-predicts the corresponding values.

The role of channel diameter in controlling the condensation FPD of R134 under fixed operating conditions 
has been demonstrated in Fig. 14. The results connote the enhancement of the condensation FPD by reducing 
the size of channel. In fact, the impression of surface tension on two-phase flow becomes more fundamental 
in small-diameter channels, and can boost the velocity gradient on the wall. Consequently, the shear rate and 
condensation FPD are increased. Although both models present appropriate results to describe the foregoing 
attitudes, the predictions of the novel one have better consistencies with the measure values.

Figure 11.   Accuracy of the novel and literature models for predicting the condensation FPD at various flow 
regimes.

Figure 12.   Examining the capability of the models to capture the variations of the condensation FPD versus 
vapor quality and mass flux.
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Figure 15 sketches the alternations of the condensation FPD with the reduced pressure during R14 flowing 
inside a channel with an inner diameter of 4 mm at the mass flux of 350kg .m−2.s−1 . A glance at the results brings 
it to view that the condensation FPD experiences a dramatical reduction by increasing the pressure. The principal 
cause of this behavior is that the phases’ velocity difference at the vapor–liquid interface is amplified due to the 
foregoing change. While the predictions provided by the Moradkhani et al40. correlation have some deviations 
from the real samples, the GPR model excellently estimates the corresponding value.

Figure 13.   Examining the capability of the models to capture the FPD during condensation of various fluids.

Table 5.   Physical characteristics of R290, R32 and R410A at the saturation temperature of 50 ◦C.

Fluids Ts(
◦C) ρl

(

kgm−3
)

ρv
(

kgm−3
)

νl
(

cm2s−1
)

νv
(

cm2s−1
)

R290 50 448.87 38.63 0.0016501 0.0024336

R32 50 839.26 98.55 0.00099156 0.0014935

R410A 50 906.80 141.14 0.00090202 0.0014406

Figure 14.   Examining the capability of the models to capture the variations of the condensation FPD versus 
channel diameter.
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Sensitivity analysis
Identifying the most effective factors on the condensation FPD is another indispensable requirement that should 
be fulfilled for the optimal design of the heat exchangers. Accordingly, the Spearman’s correlation factors between 
the values of the condensation FPD estimated by the GPR model and various operating factors were determined, 
and the corresponding results have been illustrated in Fig. 16. The figure clearly reveals that the mass flux and 
vapor quality have direct relationships with the condensation FPD, while the remaining factors, i.e., channel 
diameter, reduced pressure, and fluid vapor density inversely affect this parameter. These findings are in complete 
consistency with those presented in Section "The prediction capabilities of the models". Another result draw-
able from Fig. 13 is that the channel diameter and mass flux are the most substantial factors in controlling the 
condensation FPD. Furthermore, the reduced pressure, vapor quality and the vapor density of condensing fluid 
are ranked third to fifth from the standpoint of importance.

Figure 15.   Examining the capability of the models to capture the variations of the condensation FPD versus 
reduced pressure.

Figure 16.   Spearman’s correlation coefficient between the condensation FPD and various operating factors.
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Concluding remarks
This study aimed to develop robust and comprehensive predictive tools for predicting the two-phase frictional 
pressure drop (FPD) during condensation inside channels of various sizes. A vast dataset of 8,037 samples was 
collected from 50 well-regarded sources. These samples encompassed the FPD of 23 fluids, such as chemicals, 
halocarbons, natural refrigerants, water, hydrocarbons, cryogens, and more, over a broad range of conditions 
inside both mini/micro and conventional channels.

Evaluating the correctness of the literature correlations based on the gathered data denoted the point that 
more accurate FPD models are highly required, since all available ones gave the AARE values exceeding 26%. 
Hence, after choosing the optimized input variables ( Relo,Revo, x, Pred ,Bo,Wevo,X and Suvo ) according to Spear-
man’s correlation analysis, the experimental data were employed for training and testing the soft computing 
approaches of MLP, GPR and RBF based on the theoretical method suggested by Lockhart and Martinelli32 and 
the dimensionless form suggested by Chisholm33.

While all the novel intelligent models outperformed the literature correlations, the GPR-based model emerged 
as the superior predictive tool during the testing process. It achieved remarkable performance with an AARE of 
4.10% and an R2 value of 99.23%. Additionally, the visual representations, including the cumulative frequency 
and contour map, confirmed that the majority of the analyzed data (over 78% of all data) were predicted with 
relative deviations below 5% by the aforementioned model. The MLP and RBF models also presented satisfactory 
results with AAREs values of 12.56% and 21.04%, respectively for the test data. The proposed models have been 
recognized as reliable predictive tools with excellent accuracy for estimating the condensation frictional pressure 
drop (FPD) inside channels of various sizes, as well as in diverse flow patterns and regimes. Furthermore, these 
models effectively capture the physical variations of the condensation FPD in relation to the operating factors. In 
contrast, the literature correlations exhibited shortcomings in most of the aforementioned analyses. A sensitivity 
analysis conducted using the newly developed models demonstrated that the channel diameter and mass flux 
play fundamental roles in controlling the condensation FPD.

In contrast to conventional correlations, which often exhibit deviations exceeding 26%, the proposed machine 
learning models (MLP, GPR, RBF) offer a simple, robust, and well-verified approach for FPD prediction. These 
models serve as accurate tools for calculating two-phase FPD during condensation in channels of various sizes. 
Since FPD significantly impacts the design of heat exchangers and heat pumps, the results presented here provide 
valuable insights for relevant engineers and designers, enabling them to optimize these systems.

For future studies, these smart approaches can be implemented to develop reliable predictive models for 
other crucial design parameters of heat exchangers, such as heat transfer coefficient, condensation rate, and 
critical heat flux. Additionally, exploring the application of deep learning algorithms for modeling two-phase 
flow parameters presents a promising avenue for further research.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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