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Novel applications of Convolutional 
Neural Networks in the age 
of Transformers
Tansel Ersavas 1*, Martin A. Smith 1,2,3,4 & John S. Mattick 1*

Convolutional Neural Networks (CNNs) have been central to the Deep Learning revolution and 
played a key role in initiating the new age of Artificial Intelligence. However, in recent years newer 
architectures such as Transformers have dominated both research and practical applications. While 
CNNs still play critical roles in many of the newer developments such as Generative AI, they are far 
from being thoroughly understood and utilised to their full potential. Here we show that CNNs can 
recognise patterns in images with scattered pixels and can be used to analyse complex datasets by 
transforming them into pseudo images with minimal processing for any high dimensional dataset, 
representing a more general approach to the application of CNNs to datasets such as in molecular 
biology, text, and speech. We introduce a pipeline called DeepMapper, which allows analysis of very 
high dimensional datasets without intermediate filtering and dimension reduction, thus preserving 
the full texture of the data, enabling detection of small variations normally deemed ‘noise’. We 
demonstrate that DeepMapper can identify very small perturbations in large datasets with mostly 
random variables, and that it is superior in speed and on par in accuracy to prior work in processing 
large datasets with large numbers of features.

There are exponential increases in data1 especially from highly complex systems, whose non-linear interactions 
and relationships are not well understood, and which can display major or unexpected changes in response to 
small perturbations, known as the ‘Butterfly effect’2.

In domains characterised by high-dimensional data, traditional statistical methods and Machine Learning 
(ML) techniques make heavy use of feature engineering that incorporates extensive filtering, selection of highly 
variable parameters, and dimension reduction techniques such as Principal Component Analysis (PCA)3. Most 
current tools filter out smaller changes in data, mostly considered artefacts or `noise`, which may contain infor-
mation that is paramount to understanding the nature and behaviour of such highly complex systems4.

The emergence of Deep Learning (DL) offers a paradigm shift. DL algorithms, underpinned by adaptive 
learning mechanisms, can discern both linear and non-linear data intricacies, and open avenues to analyse data 
that is not possible or practical by conventional techniques5, particularly in complex domains such as image, 
temporal sequence analysis, molecular biology, and astronomy6. DL models, such as Convolutional Neural Net-
works (CNNs)7, Recurrent Neural Networks (RNNs)8, Generative Networks9 and Transformers10, have demon-
strated exceptional performance in various domains, such as image and speech recognition, natural language 
processing, and game playing6. CNNs and LSTMs were found to be great tools to predict behaviour of so called 
`chaotic` systems11. Modern DL systems often surpass human-level performance, and challenge humans even 
in creative endeavours.

CNNs utilise a unique architecture that comprises several layers, including convolutional layers, pooling lay-
ers, and fully connected layers, to process and transform the input data hierarchically5. CNNs have no knowledge 
of sequence, and therefore are generally not used in analysing time-series or similar data, which is traditionally 
attempted with Recurrent Neural Networks (RNNs)12 and Long Short-Term Memory networks (LSTMs)8 due to 
their ability to capture temporal patterns. Where CNNs have been employed for sequence or time-series analy-
sis, 1-dimensional (1D) CNNs have been selected because of their vector based 1D input structure13. However, 
attempts to analyse such data in 1D CNNs do not always give superior results14. In addition, GPU (Graphical 
Processing Units) systems are not always optimised for processing 1D CNNs, therefore even though 1D CNNs 
have fewer parameters than 2-dimensional (2D) CNNs, 2D CNNs can outperform 1D CNNs15.
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Transformers, introduced by Vaswani et al.10, have recently come to prominence, particularly for tasks where 
data are in the form of time series or sequences, in domains ranging from language modelling to stock market 
prediction16. Transformers leverage self-attention, a key component that allows a model to weigh and focus on 
various parts of an input sequence when producing an output, enabling the capture of long-range dependencies 
in data. Unlike CNNs, which use local receptive fields, self-attention weighs the significance of various parts of 
the input data17.

Following success with sequence-based tasks, Transformers are being extended to image processing. Vision-
Transformers in object detection18, Detection Transformers19 and lately Real-time Detection Transformers all claim 
superiority over CNNs20. However, their inference operations demand far more resources than CNNs and trail 
CNNs in flexibility. They also suffer similar augmentation problems as CNNs. More recently, Retentive-Networks 
have been offered as an alternative to Transformers21 and may soon challenge the Transformer architecture.

CNNs can recognise dispersed patterns
Even though CNNs are widely used, there are some misconceptions, notably that CNNs are largely limited to 
image data, and require established spatial relationships between pixels in images, both of which are open to 
challenge. The latter is of particular importance when considering the potential of CNNs to analyse complex 
non-image datasets, whose data structures are arbitrary.

Moreover, while CNNs are universal function approximators22, they may not always generalise23, especially 
if they are trained on data that is insufficient to cover the solution space24. It is also known that they can sponta-
neously generalise even when supplied with a small number of samples during training after overfitting, called 
‘grokking’25,26. CNNs can generalise from scattered data if given enough samples, or if they grok, and this can be 
determined by observing changes to training versus testing accuracy and loss.

Non‑image processing with CNNs
While CNNs have achieved remarkable success in computer vision applications, such as image classification and 
object detection7,27, they have also been employed in other domains to a lesser degree with impressive results, 
including: (1) natural language processing, text classification, sentiment analysis and named entity recognition, 
by treating text data as a one-dimensional image with characters represented as pixels16,28; (2) audio processing, 
such as speech recognition, speaker identification and audio event detection, by applying convolutions over time 
frequency representations of audio signals29; (3) time series analysis, such as financial market prediction, human 
activity recognition and medical signal analysis, using one-dimensional convolutions to capture local temporal 
patterns and learn features from time series data30; and (4) biopolymer (e.g., DNA) sequencing, using 2D CNNs 
to accurately classify molecular barcodes in raw signals from Oxford Nanopore sequencers using a transforma-
tion to turn a 1D signal into 2D images—improving barcode identification recovery from 38 to over 85%31.

Indeed, CNNs are not perfect tools for image processing as they do not develop semantic understanding of 
images even though they can be trained to do semantic segmentation32. They cannot easily recognise negative 
images when trained with positive images33. CNNs are also sensitive to the orientation and scale of objects and 
must rely on augmentation of image datasets, often involving hundreds of variations of the same image34. There 
are no such changes in the perspective and orientation of data converted into flat 2D images.

In the realm of complex domains that generate huge amounts of data, augmentation is usually not required 
for non-image datasets, as the datasets will be rich enough. Moreover, introducing arbitrary augmentation does 
not always improve accuracy; indeed, introducing hand-tailored augmentation may hinder analysis35. If aug-
mentation is required, it can be introduced in a data-oriented form, but even when using automated augmenta-
tion such as AutoAugment35 or FasterAutoAugment36, many of the augmentations (such as shearing, translation, 
rotation, inversion, etc.) should not be used, and the result should be tested carefully, as augmentation may 
introduce artefacts.

A frequent problem with handling non-image datasets with many variables is noise. Many algorithms have 
been developed for noise elimination, most of which are domain specific. CNNs can be trained to use the whole 
input space with minimal filtering and no dimension reduction, and can find useful information in what might 
be ascribed as ‘noise’4,37. Indeed, a key reason to retain ‘noise’ is to allow discovery of small perturbations that 
cannot be detected by other methods11.

Conversion of non‑image data to artificial images for CNN processing
Transforming sequence data to images without resorting to dimension reduction or filtering offers a potent tool-
set for discerning complex patterns in time series and sequence data, which potentiates the two major advantages 
of CNNs compared to RNNs, LSTMs and Transformers. First, CNNs do not depend on past data to recognise 
current patterns, which increases sensitivity to detect patterns that appear in the beginning of time-series or 
sequence data. Second, 2D CNNs are better optimised for GPUs and highly parallelizable, and are consequently 
faster than other current architectures, which accelerates training and inference, while reducing resource and 
energy consumption during in all phases including image transformation, training, and inference significantly.

Image data such as MNIST represented in a matrix can be classified by basic deep networks such as Multi-
level Perceptrons (MLP) by turning their matrix representation to vectors (Fig. 1a). Using this approach analysis 
of images becomes increasingly complex as the image size grows, increasing the input parameters of MLP and 
the computational cost exponentially. On the other hand, 2D CNNs can handle the original matrix much faster 
than MLP with equal or better accuracy and scale to much larger images.

Just like how a simple neural network analyses a 2D image by turning it into a vector, the reciprocal is also 
true—data in a vector can be converted to a 2D matrix (Fig. 1b). Vectors converted to such matrices form 
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arbitrary patterns that are incomprehensible to human eye. A similar technique for such mapping has also been 
proposed by Kovelarchuk et al. using another algorithm called CPC-R38.

Attribution
An important aspect of any analysis is to be able to identify those variables that are most important and the degree 
to which they contribute to a given classification. Identifying these variables is particularly challenging in CNNs 
due to their complex hierarchical architecture, and many non-linear transformations39. To address this problem 
many ‘attribution methods’ have been developed to try to quantify the contribution of each variable (e.g., pixels 
in images) to the final output for deep neural networks and CNNs40.

Saliency maps serve as an intuitive attribution and visualisation tool for CNNs, spotlighting regions in input 
data that significantly influence the model’s predictions27. By offering a heatmap representation, these maps 
illuminate key features that the model deems crucial, thus aiding in demystifying the model’s decision-making 
process. For instance, when analysing an image of a cat, the saliency map would emphasise the cat’s distinct 
features over the background. While their simplicity facilitates understanding even for those less acquainted with 
deep learning, saliency maps do face challenges, particularly their sensitivity to noise and occasional misalign-
ment with human intuition41–43. Nonetheless, they remain a pivotal tool in enhancing model transparency and 
bridging the interpretability gap between ML models and human comprehension.

Several methods have been proposed for attribution, including Guided Backpropagation44, Layer-wise Rel-
evance Propagation45, Gradient-weighted Class Activation Mapping46, Integrated Gradients47, DeepLIFT48, and 
SHAP (SHapley Additive exPlanations)49. Many of these methods were developed because it is challenging to 
identify important input features when there are different images with the same label (e.g., ‘bird’ with many 
species) presented at different scales, colours, and perspectives. In contrast, most non-image data does not have 

Figure 1.   Conversion of images to vectors and vice versa. (a) Basic operation of transformation of an image to a 
vector, forming a sequence representation of the numeric values of pixels. (b) Transforming a vector to a matrix, 
forming an image by encoding numerical values as pixels. During this operation if the vector size cannot be 
mapped to mXn because vector size is smaller than the nearest mXn, then it is padded with zeroes to the nearest 
mXn.



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:10000  | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

such variations, as each pixel corresponds to the same feature. For this reason, choosing attributions with mini-
mal processing is sufficient to identify the salient input variables that have the maximal impact on classification.

DeepMapper
Here we introduce a new analytical pipeline, DeepMapper, which applies a non-indexed or indexed mapping to 
the data representing each data point with one pixel, enabling the classification or clustering of data using 2D 
CNNs. This simple direct mapping has been tried by others but has not been tested with datasets with sufficiently 
large amounts of data in various conditions. We use raw data with minimal filtering and no dimension reduction 
to preserve small perturbations in data that are normally removed, in order to assess their impact.

The pipeline includes conversion of data, separation to training and validation, assessment of training qual-
ity, attribution, and accumulation of results in a pipeline. The pipeline is run multiple times until a consensus is 
reached. The significant variables can then be identified using attribution and exported appropriately.

The DeepMapper architecture is shown in Fig. 2. The complete algorithm of DeepMapper is detailed in the 
“Methods” section and the Python source code is supplied at GitHub50.

Methods
DeepMapper is developed to implement an approach to process high-dimensional data without resorting to exces-
sive filtering and dimension reduction techniques that eliminate smaller perturbations in data to be able to iden-
tify those differences that would otherwise be filtered out. The following algorithm is used to achieve this result:

1.	 Read and setup the running parameters.
2.	 Read the data into a tabulated form in the form of observations, features, and outcome (in the form of labels, 

or if self-supervised, the input itself).
	   If the input data includes categorical features, these features should be converted to numbers and normal-

ised before feeding to DeepMapper.
3.	 Identify features and labels.
4.	 Do only basic filtering that eliminates observations or features if all of them are 0 or empty.
5.	 Normalise features.
6.	 Transform tabulated data to 2-dimensional matrices as illustrated in Fig. 1a by applying a vector to matrix 

transformation.

Figure 2.   DeepMapper architecture. DeepMapper uses sequence or multi-variate data as input. The first step 
of DeepMapper is to merge and if required index input files to prepare them into matrix format. The data are 
normalised using log normalisation, then folded to a matrix. Folding is performed either directly with the 
natural order of the data or by using the index that is generated or supplied during the data import. After 
folding, the data are kept in temporary storage and separated to ‘train’ and ‘test’ using SciPy train test split. 
Training is done using either using CNNs that are supplied by the PyTorch libraries, or a custom CNN supplied 
(ResNet18 is used by default). Intermediary results are run through attribution algorithms supplied by the 
Captum51 and saved to run history log. The run is then repeated until convergence is achieved, or until a pre-
determined number of iterations are performed by shuffling training testing and validation data. Results are 
summarised in a report with exportable tables and graphics. Attribution is applied to true positives and true 
negatives, and these are translated back to features to be added to reports. Further details can be directly found 
in the accompanying code50.
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7.	 If the analysis is supervised, then transform class labels to output matrices.
8.	 Begin iteration:

a.	 Separate the data into training and validation groups.
b.	 Train on the dataset for required number of epochs, until reaching satisfactory testing accuracy and 

loss, or maximum a pre-determined number of iterations.
c.	 If satisfactory testing results are obtained, then:

	 i.	 Perform attributions by associating each result to contributing input pixels using Captum, 
a Python library for attributions51.

	 ii.	 Accumulate attribution results by collecting the attribution results for each class.

d.	 If training is satisfactory:

	 i.	 Tabulate attribution results by averaging accumulated attributions.
	 ii.	 Save the model.

9.	 Report results.

The results of DeepMapper analysis can be used in 2 ways:

1.	 Supervised: DeepMapper produces a list of features that played a prominent role in the differentiation of 
classes.

2.	 Self-supervised: Highlights the most important features in differentiating observations from each other in a 
non-linear fashion. The output can be used as an alternative feature selection tool for dimension reduction.

In both modes, any hidden layer can be examined as latent space. A special bottleneck layer can be introduced 
to reduce dimensions for clustering purposes.

Results
We present a simple example to demonstrate that CNNs can readily interpret data with a well dispersed pattern of 
pixels, using the MNIST dataset, which is widely used for hand-written image recognition and which humans as 
well as CNNs can easily recognise and classify based on the obvious spatial relationships between pixels (Fig. 3). 
This dataset is a more complicated problem than datasets such as the Gisette dataset52 that was developed to 
distinguish between 4 and 9. It includes all digits and uses a full randomisation of pixels, and can be regenerated 
with the script supplied50 and changing the seed will generate different patterns.

We randomly shuffled the data in Fig. 3 using the same seed50 to obtain 60,000 training images such as those 
shown on the right side of each digit, and validated the results with a separate batch of 20,000 images (Fig. 3). 
Although the resulting images are no longer recognizable by eye, a CNN has no difficulty distinguishing and 
classifying each pattern with ~ 2% testing error compared to the reference data (Fig. 4). This result demonstrates 
that CNNs can accurately recognise global patterns in images without reliance on local relationships between 
neighbouring pixels. It also confirms the finding that shuffling images only marginally increases training loss23 
and extends it to testing loss (Fig. 4).

Testing DeepMapper
Finding slight changes in very few variables in otherwise seemingly random datasets with large numbers of 
variables is like finding a needle in a haystack. Such differences in data are almost impossible to detect using 
traditional analysis tools because small variations are usually filtered out before analysis.

We devised a simple test case to determine if DeepMapper can detect one or more variables with small but dis-
tinct variations in otherwise randomly generated data. We generated a dataset with 10,000 data items with 18,225 
numeric variables as an example of a high-dimensional dataset using PyTorch’s uniform random algorithms53. 
The algorithm sets 18,223 of these variables to random numbers in the range of 0–1, and two of the variables 
into two distinct groups as seen in Table 1.

We call this type of dataset ‘Needle in a haystack’ (NIHS) dataset, where very small amounts of data with 
small variance is hidden among a set of random variables that is order(s) of magnitude greater than the mean-
ingful components. We provide a script that can generate this and similar datasets among the source supplied50.

DeepMapper was able to accurately classify the two datasets (Fig. 5). Furthermore, using attribution Deep-
Mapper was also able to determine the two datapoints that have different variances in the two classes. Note that 
DeepMapper may not always find all the changes in the first attempt as neural network initialisation of weights is 
a stochastic process. However, DeepMapper overcomes this matter via multiple iterations to establish acceptable 
training and testing accuracies as described in the Methods.

Comparison of DeepMapper with DeepInsight
DeepInsight54 is the most general approach published to date for converting non-image data into image-like 
structures, with the claim that these processed structures allow CNNs to capture complex patterns and features 
in the data. DeepInsight offers an algorithm to create images that have similar features collated into a “well 
organised image form”, or by applying one of several dimensionality reduction algorithms (e.g., t-SNE, PCA or 
KPCA)54. However, these algorithms add computational complexity, potentially eliminate valuable information, 
limit the abilities of CNNs to find small perturbations, and make it more difficult to use attribution to determine 
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most notable features impacting analysis as multiple features may overlap in the transformed image. In contrast 
DeepMapper uses a direct mapping mechanism where each feature corresponds to one pixel.

To identify important input variables, DeepInsight authors later developed DeepFeature55 using an elaborate 
mechanism to associate image areas identified by attribution methods to the input variables. DeepMapper uses 
a simpler approach as each pixel corresponds to only one variable and can use any of the attribution methods to 
link results to its input space. While both DeepMapper and DeepInsight follow the general idea that non-image 
data can be processed with 2D CNNs, DeepMapper uses a much simpler and faster algorithm, while DeepInsight 
chooses a sophisticated set of algorithms to convert non-image data to images, dramatically increasing computa-
tional cost. The DeepInsight conversion process is not designed to utilise GPUs so cannot be accelerated by better 
hardware, and the obtained images may be larger than the number of data points, also impacting performance.

One of the biggest differences between DeepFeature and DeepMapper is that DeepFeature in many cases 
selects multiple features during attribution because DeepInsight pixels represent multiple values, whereas each 
DeepMapper pixel represents one input feature, therefore it can determine differentiating features with pinpoint 
accuracy at a resolution of 1 pixel per feature.

The DeepInsight manuscript offers various examples of data to demonstrate its abilities. However, many of the 
examples use low dimensions (20–4000 features) while today’s complex datasets may regularly require tens of 
thousands to millions of features such as in genome analysis in biology and radio-telescope analysis in astronomy. 
As such, several examples provided by DeepInsight have insufficient dimensions for a sophisticated mechanism 
such as DeepMapper, which should ideally have 10,000 or more dimensions as required by modern complex 
datasets. DeepInsight examples include a speech dataset from the TIMIT corpus with 39 dimensions, Relathe 
(text) dataset, which is derived from newsgroup documents and partitioned evenly across different newsgroups. It 
contains 1427 samples and 4322 dimensions. The ringnorm-DELVE, which is an implementation of Leo Breiman’s 

Figure 3.   A sample from MNIST dataset (left side of each image) and its shuffled counterpart (right side).
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ringnorm example, is a 20 dimensional, 2 class classification with 7400 samples54. Another example, Madelon, 
introduced an artificially generated dataset 2600 samples and 500 dimensions, where only 5 principal and 20 
derived variables containing information. Instead, we used a much more complicated example than Madelon, an 
NIHS dataset50 that we used to test DeepMapper in the first place. We attempted to run DeepInsight with NIHS 
data, but we could not get it to train properly and for this reason we cannot supply a comparison.

The most complex problem published by DeepInsight was the analysis of a public RNA sequencing gene 
expression dataset from TCGA (https://​cance​rgeno​me.​nih.​gov/) containing 6216 samples of 60,483 genes or 
dimensions, of which DeepInsight used 19,319. We selected this example as the second demonstration of applica-
tion of DeepMapper to high dimensional data, as well as a benchmark for comparison with DeepInsight.

Figure 4.   Results of training MNIST dataset (a) and the shuffled dataset (b) with PyTorch model ResNet1850. 
The charts demonstrate although the training continued for 50 epochs, about 15 epochs for shuffled images 
(b) would be enough, as further training starts causing overfitting. The decrease of accuracy between normal 
and shuffled images is about 3%, and this difference cannot be improved by using more sophisticated CNNs 
with more layers, meaning shuffling images cause a measurable loss of information, yet still hold patterns 
recognisable by CNNs.

Table 1.   Generated variables and their random ranges.

Variable 20 Variable 17,998 Other variables

Class 0 range: 0.00–0.20 0.10–0.20 0.00–1.00

Class 1 range: 0.20–0.40 0.25–0.35 0.00–1.00

https://cancergenome.nih.gov/
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We generated the data using the R script offered by DeepInsight54 and ran DeepMapper as well as DeepInsight 
using the generated dataset to compare accuracy and speed. In this test DeepMapper exhibited much improved 
processing speed with near identical accuracy (Table 2, Fig. 6).

Discussion
CNNs are fundamentally sophisticated pattern matchers that can establish intricate mappings between input 
features and output representations6. They excel at transforming various inputs into outputs, including identi-
fying classes or bounding boxes, through a series of operations involving convolution, pooling, and activation 
functions7,56.

Even though CNNs are in the centre of many of today’s revolutionary AI systems from self-driving cars to 
generative AI systems such as Dall-E-2, MidJourney and Stable Diffusion, they are still not well understood nor 
efficiently utilised, and their usage beyond image analysis has been limited.

While CNNs used in image analysis are constrained historically and practically to a 224 × 224 matrix or a 
similar fixed size input, this limitation arises for pre-trained models. When CNNs have not been pre-trained, 
one can select a much wider variety of sizes as input shape depending on the CNN architecture. Some CNNs are 
more flexible in their input size that implemented with adaptive pooling layers such as ResNet18 using adaptive 
pooling57. This provides flexibility to choose optimal sizes for the task in hand for non-image applications, as 
most non-image applications will not use pre-trained CNNs.

Figure 5.   In this demonstration of analysis of high dimensional data with very small perturbations, 
DeepMapper can find these small variations in a few (in this example two) variables out of very large number 
of random variables (here 18,225). (a) DeepMapper representations of each record. (b) The result of the test 
run of the classification with unseen data (3750 elements). (c) The first and second variables in the graph are 
measurably higher than the other variables.

Table 2.   DeepInsight-DeepMapper comparison. (*Note: DeepInsight uses 224*224 image resolution, but this 
resolution is only required if a pre-trained network is utilized).

DeepInsight DeepMapper

Image conversion time I min 34 s 334 ms

Image size 224 × 224* 139 × 139

Training time 23 min 37 s 8 min 56 s

Accuracy Train: 1.00 Test: 0.976 Train: 1.00 Test: 0.975



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10000  | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

Here we have demonstrated uses of CNNs that are outside the norm. There is a need for analysis of complex 
data with many thousands of features that are not primarily images. There is also a lack of tools that offer minimal 
conversion of non-image data to image-like formats that then can easily be processed with CNNs in classification 
and clustering tasks. As a lot of this data is coming from complex systems that have a lot of features, DeepMapper 
offers a way of investigating such data in ways that may not be possible with traditional approaches.

Although DeepMapper currently uses CNN as its AI component, alternative analytic strategies can easily be 
substituted in lieu of CNN with minimal changes, such as Vision Transformers18 or RetNets21, which have great 
potential for this application. While Transformers and RetNets have input size limitations for inference in terms 
of number of tokens. Vision Transformers can handle much larger inputs by dividing images to segments that 
incorporate multiple pixels18. This type of approach would be applicable to both Transformers and RetNets, and 
future architectures. DeepMapping can leverage these newer architectures, and others, in the future57.

Data availability
DeepMapper is released as an open source tool on GitHub https://​github.​com/​tansel/​deepm​apper. Data that is 
not available from GitHub because of size constraints can be requested from the authors.
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