
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports

Novel applications of Convolutional
Neural Networks in the age
of Transformers
Tansel Ersavas 1*, Martin A. Smith 1,2,3,4 & John S. Mattick 1*

Convolutional Neural Networks (CNNs) have been central to the Deep Learning revolution and
played a key role in initiating the new age of Artificial Intelligence. However, in recent years newer
architectures such as Transformers have dominated both research and practical applications. While
CNNs still play critical roles in many of the newer developments such as Generative AI, they are far
from being thoroughly understood and utilised to their full potential. Here we show that CNNs can
recognise patterns in images with scattered pixels and can be used to analyse complex datasets by
transforming them into pseudo images with minimal processing for any high dimensional dataset,
representing a more general approach to the application of CNNs to datasets such as in molecular
biology, text, and speech. We introduce a pipeline called DeepMapper, which allows analysis of very
high dimensional datasets without intermediate filtering and dimension reduction, thus preserving
the full texture of the data, enabling detection of small variations normally deemed ‘noise’. We
demonstrate that DeepMapper can identify very small perturbations in large datasets with mostly
random variables, and that it is superior in speed and on par in accuracy to prior work in processing
large datasets with large numbers of features.

There are exponential increases in data1 especially from highly complex systems, whose non-linear interactions
and relationships are not well understood, and which can display major or unexpected changes in response to
small perturbations, known as the ‘Butterfly effect’2.

In domains characterised by high-dimensional data, traditional statistical methods and Machine Learning
(ML) techniques make heavy use of feature engineering that incorporates extensive filtering, selection of highly
variable parameters, and dimension reduction techniques such as Principal Component Analysis (PCA)3. Most
current tools filter out smaller changes in data, mostly considered artefacts or `noise`, which may contain infor-
mation that is paramount to understanding the nature and behaviour of such highly complex systems4.

The emergence of Deep Learning (DL) offers a paradigm shift. DL algorithms, underpinned by adaptive
learning mechanisms, can discern both linear and non-linear data intricacies, and open avenues to analyse data
that is not possible or practical by conventional techniques5, particularly in complex domains such as image,
temporal sequence analysis, molecular biology, and astronomy6. DL models, such as Convolutional Neural Net-
works (CNNs)7, Recurrent Neural Networks (RNNs)8, Generative Networks9 and Transformers10, have demon-
strated exceptional performance in various domains, such as image and speech recognition, natural language
processing, and game playing6. CNNs and LSTMs were found to be great tools to predict behaviour of so called
`chaotic` systems11. Modern DL systems often surpass human-level performance, and challenge humans even
in creative endeavours.

CNNs utilise a unique architecture that comprises several layers, including convolutional layers, pooling lay-
ers, and fully connected layers, to process and transform the input data hierarchically5. CNNs have no knowledge
of sequence, and therefore are generally not used in analysing time-series or similar data, which is traditionally
attempted with Recurrent Neural Networks (RNNs)12 and Long Short-Term Memory networks (LSTMs)8 due to
their ability to capture temporal patterns. Where CNNs have been employed for sequence or time-series analy-
sis, 1-dimensional (1D) CNNs have been selected because of their vector based 1D input structure13. However,
attempts to analyse such data in 1D CNNs do not always give superior results14. In addition, GPU (Graphical
Processing Units) systems are not always optimised for processing 1D CNNs, therefore even though 1D CNNs
have fewer parameters than 2-dimensional (2D) CNNs, 2D CNNs can outperform 1D CNNs15.

OPEN

1School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia. 2Department
of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3C
3J7, Canada. 3CHU Sainte-Justine Research Centre, Montreal, Canada. 4UNSW RNA Institute, UNSW Sydney,
Australia. *email: t.ersavas@unsw.edu.au; j.mattick@unsw.edu.au

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-60709-z&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

Transformers, introduced by Vaswani et al.10, have recently come to prominence, particularly for tasks where
data are in the form of time series or sequences, in domains ranging from language modelling to stock market
prediction16. Transformers leverage self-attention, a key component that allows a model to weigh and focus on
various parts of an input sequence when producing an output, enabling the capture of long-range dependencies
in data. Unlike CNNs, which use local receptive fields, self-attention weighs the significance of various parts of
the input data17.

Following success with sequence-based tasks, Transformers are being extended to image processing. Vision-
Transformers in object detection18, Detection Transformers19 and lately Real-time Detection Transformers all claim
superiority over CNNs20. However, their inference operations demand far more resources than CNNs and trail
CNNs in flexibility. They also suffer similar augmentation problems as CNNs. More recently, Retentive-Networks
have been offered as an alternative to Transformers21 and may soon challenge the Transformer architecture.

CNNs can recognise dispersed patterns
Even though CNNs are widely used, there are some misconceptions, notably that CNNs are largely limited to
image data, and require established spatial relationships between pixels in images, both of which are open to
challenge. The latter is of particular importance when considering the potential of CNNs to analyse complex
non-image datasets, whose data structures are arbitrary.

Moreover, while CNNs are universal function approximators22, they may not always generalise23, especially
if they are trained on data that is insufficient to cover the solution space24. It is also known that they can sponta-
neously generalise even when supplied with a small number of samples during training after overfitting, called
‘grokking’25,26. CNNs can generalise from scattered data if given enough samples, or if they grok, and this can be
determined by observing changes to training versus testing accuracy and loss.

Non‑image processing with CNNs
While CNNs have achieved remarkable success in computer vision applications, such as image classification and
object detection7,27, they have also been employed in other domains to a lesser degree with impressive results,
including: (1) natural language processing, text classification, sentiment analysis and named entity recognition,
by treating text data as a one-dimensional image with characters represented as pixels16,28; (2) audio processing,
such as speech recognition, speaker identification and audio event detection, by applying convolutions over time
frequency representations of audio signals29; (3) time series analysis, such as financial market prediction, human
activity recognition and medical signal analysis, using one-dimensional convolutions to capture local temporal
patterns and learn features from time series data30; and (4) biopolymer (e.g., DNA) sequencing, using 2D CNNs
to accurately classify molecular barcodes in raw signals from Oxford Nanopore sequencers using a transforma-
tion to turn a 1D signal into 2D images—improving barcode identification recovery from 38 to over 85%31.

Indeed, CNNs are not perfect tools for image processing as they do not develop semantic understanding of
images even though they can be trained to do semantic segmentation32. They cannot easily recognise negative
images when trained with positive images33. CNNs are also sensitive to the orientation and scale of objects and
must rely on augmentation of image datasets, often involving hundreds of variations of the same image34. There
are no such changes in the perspective and orientation of data converted into flat 2D images.

In the realm of complex domains that generate huge amounts of data, augmentation is usually not required
for non-image datasets, as the datasets will be rich enough. Moreover, introducing arbitrary augmentation does
not always improve accuracy; indeed, introducing hand-tailored augmentation may hinder analysis35. If aug-
mentation is required, it can be introduced in a data-oriented form, but even when using automated augmenta-
tion such as AutoAugment35 or FasterAutoAugment36, many of the augmentations (such as shearing, translation,
rotation, inversion, etc.) should not be used, and the result should be tested carefully, as augmentation may
introduce artefacts.

A frequent problem with handling non-image datasets with many variables is noise. Many algorithms have
been developed for noise elimination, most of which are domain specific. CNNs can be trained to use the whole
input space with minimal filtering and no dimension reduction, and can find useful information in what might
be ascribed as ‘noise’4,37. Indeed, a key reason to retain ‘noise’ is to allow discovery of small perturbations that
cannot be detected by other methods11.

Conversion of non‑image data to artificial images for CNN processing
Transforming sequence data to images without resorting to dimension reduction or filtering offers a potent tool-
set for discerning complex patterns in time series and sequence data, which potentiates the two major advantages
of CNNs compared to RNNs, LSTMs and Transformers. First, CNNs do not depend on past data to recognise
current patterns, which increases sensitivity to detect patterns that appear in the beginning of time-series or
sequence data. Second, 2D CNNs are better optimised for GPUs and highly parallelizable, and are consequently
faster than other current architectures, which accelerates training and inference, while reducing resource and
energy consumption during in all phases including image transformation, training, and inference significantly.

Image data such as MNIST represented in a matrix can be classified by basic deep networks such as Multi-
level Perceptrons (MLP) by turning their matrix representation to vectors (Fig. 1a). Using this approach analysis
of images becomes increasingly complex as the image size grows, increasing the input parameters of MLP and
the computational cost exponentially. On the other hand, 2D CNNs can handle the original matrix much faster
than MLP with equal or better accuracy and scale to much larger images.

Just like how a simple neural network analyses a 2D image by turning it into a vector, the reciprocal is also
true—data in a vector can be converted to a 2D matrix (Fig. 1b). Vectors converted to such matrices form

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

arbitrary patterns that are incomprehensible to human eye. A similar technique for such mapping has also been
proposed by Kovelarchuk et al. using another algorithm called CPC-R38.

Attribution
An important aspect of any analysis is to be able to identify those variables that are most important and the degree
to which they contribute to a given classification. Identifying these variables is particularly challenging in CNNs
due to their complex hierarchical architecture, and many non-linear transformations39. To address this problem
many ‘attribution methods’ have been developed to try to quantify the contribution of each variable (e.g., pixels
in images) to the final output for deep neural networks and CNNs40.

Saliency maps serve as an intuitive attribution and visualisation tool for CNNs, spotlighting regions in input
data that significantly influence the model’s predictions27. By offering a heatmap representation, these maps
illuminate key features that the model deems crucial, thus aiding in demystifying the model’s decision-making
process. For instance, when analysing an image of a cat, the saliency map would emphasise the cat’s distinct
features over the background. While their simplicity facilitates understanding even for those less acquainted with
deep learning, saliency maps do face challenges, particularly their sensitivity to noise and occasional misalign-
ment with human intuition41–43. Nonetheless, they remain a pivotal tool in enhancing model transparency and
bridging the interpretability gap between ML models and human comprehension.

Several methods have been proposed for attribution, including Guided Backpropagation44, Layer-wise Rel-
evance Propagation45, Gradient-weighted Class Activation Mapping46, Integrated Gradients47, DeepLIFT48, and
SHAP (SHapley Additive exPlanations)49. Many of these methods were developed because it is challenging to
identify important input features when there are different images with the same label (e.g., ‘bird’ with many
species) presented at different scales, colours, and perspectives. In contrast, most non-image data does not have

Figure 1.   Conversion of images to vectors and vice versa. (a) Basic operation of transformation of an image to a
vector, forming a sequence representation of the numeric values of pixels. (b) Transforming a vector to a matrix,
forming an image by encoding numerical values as pixels. During this operation if the vector size cannot be
mapped to mXn because vector size is smaller than the nearest mXn, then it is padded with zeroes to the nearest
mXn.

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

such variations, as each pixel corresponds to the same feature. For this reason, choosing attributions with mini-
mal processing is sufficient to identify the salient input variables that have the maximal impact on classification.

DeepMapper
Here we introduce a new analytical pipeline, DeepMapper, which applies a non-indexed or indexed mapping to
the data representing each data point with one pixel, enabling the classification or clustering of data using 2D
CNNs. This simple direct mapping has been tried by others but has not been tested with datasets with sufficiently
large amounts of data in various conditions. We use raw data with minimal filtering and no dimension reduction
to preserve small perturbations in data that are normally removed, in order to assess their impact.

The pipeline includes conversion of data, separation to training and validation, assessment of training qual-
ity, attribution, and accumulation of results in a pipeline. The pipeline is run multiple times until a consensus is
reached. The significant variables can then be identified using attribution and exported appropriately.

The DeepMapper architecture is shown in Fig. 2. The complete algorithm of DeepMapper is detailed in the
“Methods” section and the Python source code is supplied at GitHub50.

Methods
DeepMapper is developed to implement an approach to process high-dimensional data without resorting to exces-
sive filtering and dimension reduction techniques that eliminate smaller perturbations in data to be able to iden-
tify those differences that would otherwise be filtered out. The following algorithm is used to achieve this result:

1.	 Read and setup the running parameters.
2.	 Read the data into a tabulated form in the form of observations, features, and outcome (in the form of labels,

or if self-supervised, the input itself).
	  If the input data includes categorical features, these features should be converted to numbers and normal-

ised before feeding to DeepMapper.
3.	 Identify features and labels.
4.	 Do only basic filtering that eliminates observations or features if all of them are 0 or empty.
5.	 Normalise features.
6.	 Transform tabulated data to 2-dimensional matrices as illustrated in Fig. 1a by applying a vector to matrix

transformation.

Figure 2.   DeepMapper architecture. DeepMapper uses sequence or multi-variate data as input. The first step
of DeepMapper is to merge and if required index input files to prepare them into matrix format. The data are
normalised using log normalisation, then folded to a matrix. Folding is performed either directly with the
natural order of the data or by using the index that is generated or supplied during the data import. After
folding, the data are kept in temporary storage and separated to ‘train’ and ‘test’ using SciPy train test split.
Training is done using either using CNNs that are supplied by the PyTorch libraries, or a custom CNN supplied
(ResNet18 is used by default). Intermediary results are run through attribution algorithms supplied by the
Captum51 and saved to run history log. The run is then repeated until convergence is achieved, or until a pre-
determined number of iterations are performed by shuffling training testing and validation data. Results are
summarised in a report with exportable tables and graphics. Attribution is applied to true positives and true
negatives, and these are translated back to features to be added to reports. Further details can be directly found
in the accompanying code50.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

7.	 If the analysis is supervised, then transform class labels to output matrices.
8.	 Begin iteration:

a.	 Separate the data into training and validation groups.
b.	 Train on the dataset for required number of epochs, until reaching satisfactory testing accuracy and

loss, or maximum a pre-determined number of iterations.
c.	 If satisfactory testing results are obtained, then:

	 i.	 Perform attributions by associating each result to contributing input pixels using Captum,
a Python library for attributions51.

	 ii.	 Accumulate attribution results by collecting the attribution results for each class.

d.	 If training is satisfactory:

	 i.	 Tabulate attribution results by averaging accumulated attributions.
	 ii.	 Save the model.

9.	 Report results.

The results of DeepMapper analysis can be used in 2 ways:

1.	 Supervised: DeepMapper produces a list of features that played a prominent role in the differentiation of
classes.

2.	 Self-supervised: Highlights the most important features in differentiating observations from each other in a
non-linear fashion. The output can be used as an alternative feature selection tool for dimension reduction.

In both modes, any hidden layer can be examined as latent space. A special bottleneck layer can be introduced
to reduce dimensions for clustering purposes.

Results
We present a simple example to demonstrate that CNNs can readily interpret data with a well dispersed pattern of
pixels, using the MNIST dataset, which is widely used for hand-written image recognition and which humans as
well as CNNs can easily recognise and classify based on the obvious spatial relationships between pixels (Fig. 3).
This dataset is a more complicated problem than datasets such as the Gisette dataset52 that was developed to
distinguish between 4 and 9. It includes all digits and uses a full randomisation of pixels, and can be regenerated
with the script supplied50 and changing the seed will generate different patterns.

We randomly shuffled the data in Fig. 3 using the same seed50 to obtain 60,000 training images such as those
shown on the right side of each digit, and validated the results with a separate batch of 20,000 images (Fig. 3).
Although the resulting images are no longer recognizable by eye, a CNN has no difficulty distinguishing and
classifying each pattern with ~ 2% testing error compared to the reference data (Fig. 4). This result demonstrates
that CNNs can accurately recognise global patterns in images without reliance on local relationships between
neighbouring pixels. It also confirms the finding that shuffling images only marginally increases training loss23
and extends it to testing loss (Fig. 4).

Testing DeepMapper
Finding slight changes in very few variables in otherwise seemingly random datasets with large numbers of
variables is like finding a needle in a haystack. Such differences in data are almost impossible to detect using
traditional analysis tools because small variations are usually filtered out before analysis.

We devised a simple test case to determine if DeepMapper can detect one or more variables with small but dis-
tinct variations in otherwise randomly generated data. We generated a dataset with 10,000 data items with 18,225
numeric variables as an example of a high-dimensional dataset using PyTorch’s uniform random algorithms53.
The algorithm sets 18,223 of these variables to random numbers in the range of 0–1, and two of the variables
into two distinct groups as seen in Table 1.

We call this type of dataset ‘Needle in a haystack’ (NIHS) dataset, where very small amounts of data with
small variance is hidden among a set of random variables that is order(s) of magnitude greater than the mean-
ingful components. We provide a script that can generate this and similar datasets among the source supplied50.

DeepMapper was able to accurately classify the two datasets (Fig. 5). Furthermore, using attribution Deep-
Mapper was also able to determine the two datapoints that have different variances in the two classes. Note that
DeepMapper may not always find all the changes in the first attempt as neural network initialisation of weights is
a stochastic process. However, DeepMapper overcomes this matter via multiple iterations to establish acceptable
training and testing accuracies as described in the Methods.

Comparison of DeepMapper with DeepInsight
DeepInsight54 is the most general approach published to date for converting non-image data into image-like
structures, with the claim that these processed structures allow CNNs to capture complex patterns and features
in the data. DeepInsight offers an algorithm to create images that have similar features collated into a “well
organised image form”, or by applying one of several dimensionality reduction algorithms (e.g., t-SNE, PCA or
KPCA)54. However, these algorithms add computational complexity, potentially eliminate valuable information,
limit the abilities of CNNs to find small perturbations, and make it more difficult to use attribution to determine

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

most notable features impacting analysis as multiple features may overlap in the transformed image. In contrast
DeepMapper uses a direct mapping mechanism where each feature corresponds to one pixel.

To identify important input variables, DeepInsight authors later developed DeepFeature55 using an elaborate
mechanism to associate image areas identified by attribution methods to the input variables. DeepMapper uses
a simpler approach as each pixel corresponds to only one variable and can use any of the attribution methods to
link results to its input space. While both DeepMapper and DeepInsight follow the general idea that non-image
data can be processed with 2D CNNs, DeepMapper uses a much simpler and faster algorithm, while DeepInsight
chooses a sophisticated set of algorithms to convert non-image data to images, dramatically increasing computa-
tional cost. The DeepInsight conversion process is not designed to utilise GPUs so cannot be accelerated by better
hardware, and the obtained images may be larger than the number of data points, also impacting performance.

One of the biggest differences between DeepFeature and DeepMapper is that DeepFeature in many cases
selects multiple features during attribution because DeepInsight pixels represent multiple values, whereas each
DeepMapper pixel represents one input feature, therefore it can determine differentiating features with pinpoint
accuracy at a resolution of 1 pixel per feature.

The DeepInsight manuscript offers various examples of data to demonstrate its abilities. However, many of the
examples use low dimensions (20–4000 features) while today’s complex datasets may regularly require tens of
thousands to millions of features such as in genome analysis in biology and radio-telescope analysis in astronomy.
As such, several examples provided by DeepInsight have insufficient dimensions for a sophisticated mechanism
such as DeepMapper, which should ideally have 10,000 or more dimensions as required by modern complex
datasets. DeepInsight examples include a speech dataset from the TIMIT corpus with 39 dimensions, Relathe
(text) dataset, which is derived from newsgroup documents and partitioned evenly across different newsgroups. It
contains 1427 samples and 4322 dimensions. The ringnorm-DELVE, which is an implementation of Leo Breiman’s

Figure 3.   A sample from MNIST dataset (left side of each image) and its shuffled counterpart (right side).

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

ringnorm example, is a 20 dimensional, 2 class classification with 7400 samples54. Another example, Madelon,
introduced an artificially generated dataset 2600 samples and 500 dimensions, where only 5 principal and 20
derived variables containing information. Instead, we used a much more complicated example than Madelon, an
NIHS dataset50 that we used to test DeepMapper in the first place. We attempted to run DeepInsight with NIHS
data, but we could not get it to train properly and for this reason we cannot supply a comparison.

The most complex problem published by DeepInsight was the analysis of a public RNA sequencing gene
expression dataset from TCGA (https://​cance​rgeno​me.​nih.​gov/) containing 6216 samples of 60,483 genes or
dimensions, of which DeepInsight used 19,319. We selected this example as the second demonstration of applica-
tion of DeepMapper to high dimensional data, as well as a benchmark for comparison with DeepInsight.

Figure 4.   Results of training MNIST dataset (a) and the shuffled dataset (b) with PyTorch model ResNet1850.
The charts demonstrate although the training continued for 50 epochs, about 15 epochs for shuffled images
(b) would be enough, as further training starts causing overfitting. The decrease of accuracy between normal
and shuffled images is about 3%, and this difference cannot be improved by using more sophisticated CNNs
with more layers, meaning shuffling images cause a measurable loss of information, yet still hold patterns
recognisable by CNNs.

Table 1.   Generated variables and their random ranges.

Variable 20 Variable 17,998 Other variables

Class 0 range: 0.00–0.20 0.10–0.20 0.00–1.00

Class 1 range: 0.20–0.40 0.25–0.35 0.00–1.00

https://cancergenome.nih.gov/

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

We generated the data using the R script offered by DeepInsight54 and ran DeepMapper as well as DeepInsight
using the generated dataset to compare accuracy and speed. In this test DeepMapper exhibited much improved
processing speed with near identical accuracy (Table 2, Fig. 6).

Discussion
CNNs are fundamentally sophisticated pattern matchers that can establish intricate mappings between input
features and output representations6. They excel at transforming various inputs into outputs, including identi-
fying classes or bounding boxes, through a series of operations involving convolution, pooling, and activation
functions7,56.

Even though CNNs are in the centre of many of today’s revolutionary AI systems from self-driving cars to
generative AI systems such as Dall-E-2, MidJourney and Stable Diffusion, they are still not well understood nor
efficiently utilised, and their usage beyond image analysis has been limited.

While CNNs used in image analysis are constrained historically and practically to a 224 × 224 matrix or a
similar fixed size input, this limitation arises for pre-trained models. When CNNs have not been pre-trained,
one can select a much wider variety of sizes as input shape depending on the CNN architecture. Some CNNs are
more flexible in their input size that implemented with adaptive pooling layers such as ResNet18 using adaptive
pooling57. This provides flexibility to choose optimal sizes for the task in hand for non-image applications, as
most non-image applications will not use pre-trained CNNs.

Figure 5.   In this demonstration of analysis of high dimensional data with very small perturbations,
DeepMapper can find these small variations in a few (in this example two) variables out of very large number
of random variables (here 18,225). (a) DeepMapper representations of each record. (b) The result of the test
run of the classification with unseen data (3750 elements). (c) The first and second variables in the graph are
measurably higher than the other variables.

Table 2.   DeepInsight-DeepMapper comparison. (*Note: DeepInsight uses 224*224 image resolution, but this
resolution is only required if a pre-trained network is utilized).

DeepInsight DeepMapper

Image conversion time I min 34 s 334 ms

Image size 224 × 224* 139 × 139

Training time 23 min 37 s 8 min 56 s

Accuracy Train: 1.00 Test: 0.976 Train: 1.00 Test: 0.975

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

Here we have demonstrated uses of CNNs that are outside the norm. There is a need for analysis of complex
data with many thousands of features that are not primarily images. There is also a lack of tools that offer minimal
conversion of non-image data to image-like formats that then can easily be processed with CNNs in classification
and clustering tasks. As a lot of this data is coming from complex systems that have a lot of features, DeepMapper
offers a way of investigating such data in ways that may not be possible with traditional approaches.

Although DeepMapper currently uses CNN as its AI component, alternative analytic strategies can easily be
substituted in lieu of CNN with minimal changes, such as Vision Transformers18 or RetNets21, which have great
potential for this application. While Transformers and RetNets have input size limitations for inference in terms
of number of tokens. Vision Transformers can handle much larger inputs by dividing images to segments that
incorporate multiple pixels18. This type of approach would be applicable to both Transformers and RetNets, and
future architectures. DeepMapping can leverage these newer architectures, and others, in the future57.

Data availability
DeepMapper is released as an open source tool on GitHub https://​github.​com/​tansel/​deepm​apper. Data that is
not available from GitHub because of size constraints can be requested from the authors.

Received: 16 January 2024; Accepted: 26 April 2024

References
	 1.	 Taylor, P. Volume of data/information created, captured, copied, and consumed worldwide from 2010 to 2020, with forecasts from

2021 to 2025. https://​www.​stati​sta.​com/​stati​stics/​871513/​world​wide-​data-​creat​ed/ (2023).
	 2.	 Ghys, É. The butterfly effect. in The Proceedings of the 12th International Congress on Mathematical Education: Intellectual and

attitudinal challenges, pp. 19–39 (Springer). (2015).
	 3.	 Jolliffe, I. T. Mathematical and statistical properties of sample principal components. Principal Component Analysis, pp. 29–61

(Springer). https://​doi.​org/​10.​1007/0-​387-​22440-8_3 (2002).
	 4.	 Landauer, R. The noise is the signal. Nature 392, 658–659. https://​doi.​org/​10.​1038/​33551 (1998).
	 5.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press). http://​www.​deepl​earni​ngbook.​org (2016).
	 6.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https://​doi.​org/​10.​1038/​natur​e14539 (2015).
	 7.	 Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM

60, 84–90. https://​doi.​org/​10.​1145/​30653​86 (2017).
	 8.	 Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780. https://​doi.​org/​10.​1162/​neco.​1997.9.​

8.​1735 (1997).
	 9.	 Goodfellow, I. et al. Generative adversarial nets. Commun. ACM 63, 139–144. https://​doi.​org/​10.​1145/​34226​22 (2020).
	10.	 Vaswani, A. et al. Attention is all you need. NIPS’17: Proceedings of the 31st International Conference on Neural Information Process-

ing Systems, pp. 6000–6010. https://​doi.​org/​10.​5555/​32952​22.​32953​49 (2017).
	11.	 Barrio, R. et al. Deep learning for chaos detection. Chaos 33, 073146. https://​doi.​org/​10.​1063/5.​01438​76 (2023).
	12.	 Levin, E. A recurrent neural network: limitations and training. Neural Netw. 3, 641–650. https://​doi.​org/​10.​1016/​0893-​6080(90)​

90054-O (1990).
	13.	 LeCun, Y. & Bengio, Y. Convolutional networks for images, speech, and time series. in The handbook of brain theory and neural

networks, pp. 255–258. https://​doi.​org/​10.​5555/​303568.​303704 (MIT Press, 1998).

Figure 6.   Analysis of TCGA data by DeepInsight vs DeepMapper: The image on the top was generated by
DeepInsight using its default values and a t-SNE transformer supplied by DeepInsight. The image at the bottom
was generated by DeepMapper. Image conversion and training speeds and the analysis results can be found in
Table 2.

https://github.com/tansel/deepmapper
https://www.statista.com/statistics/871513/worldwide-data-created/
https://doi.org/10.1007/0-387-22440-8_3
https://doi.org/10.1038/33551
http://www.deeplearningbook.org
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3065386
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1145/3422622
https://doi.org/10.5555/3295222.3295349
https://doi.org/10.1063/5.0143876
https://doi.org/10.1016/0893-6080(90)90054-O
https://doi.org/10.1016/0893-6080(90)90054-O
https://doi.org/10.5555/303568.303704

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

	14.	 Wu, Y., Yang, F., Liu, Y., Zha, X. & Yuan, S. A comparison of 1-D and 2-D deep convolutional neural networks in ECG classifica-
tion. arXiv preprint arXiv:​1810.​07088. https://​doi.​org/​10.​48550/​arXiv.​1810.​07088 (2018).

	15.	 Hu, J. et al. A multichannel 2D convolutional neural network model for task-evoked fMRI data classification. Comput. Intell.
Neurosci. 2019, 5065214. https://​doi.​org/​10.​1155/​2019/​50652​14 (2019).

	16.	 Zhang, S. et al. A deep learning framework for modeling structural features of RNA-binding protein targets. Nucleic Acids Res. 44,
e32. https://​doi.​org/​10.​1093/​nar/​gkv10​25 (2016).

	17.	 Maurício, J., Domingues, I. & Bernardino, J. Comparing vision transformers and convolutional neural networks for image clas-
sification: A literature review. Appl. Sci. 13, 5521. https://​doi.​org/​10.​3390/​app13​095521 (2023).

	18.	 Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:​2010.​11929.
https://​doi.​org/​10.​48550/​arXiv.​2010.​11929 (2020).

	19.	 Carion, N. et al. End-to-end object detection with transformers. Computer Vision-ECCV 2020 (Springer), pp. 213–229. https://​
doi.​org/​10.​1007/​978-3-​030-​58452-8_​13 (2020).

	20.	 Lv, W. et al. DETRs beat YOLOs on real-time object detection. arXiv preprint arXiv:​2304.​08069. https://​doi.​org/​10.​48550/​arXiv.​
2304.​08069 (2023).

	21.	 Sun, Y. et al. Retentive network: A successor to transformer for large language models. arXiv preprint arXiv:​2307.​08621. https://​
doi.​org/​10.​48550/​arXiv.​2307.​08621 (2023).

	22.	 Zhou, D.-X. Universality of deep convolutional neural networks. Appl. Comput. Harmonic Anal. 48, 787–794. https://​doi.​org/​10.​
1016/j.​acha.​2019.​06.​004 (2020).

	23.	 Chiyuan, Z., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning (still) requires rethinking generalization.
Commun. ACM 64, 107–115. https://​doi.​org/​10.​1145/​34467​76 (2021).

	24.	 Ma, W., Papadakis, M., Tsakmalis, A., Cordy, M. & Traon, Y. L. Test selection for deep learning systems. ACM Trans. Softw. Eng.
Methodol. 30, 13. https://​doi.​org/​10.​1145/​34173​30 (2021).

	25.	 Liu, Z., Michaud, E. J. & Tegmark, M. Omnigrok: grokking beyond algorithmic data. arXiv preprint arXiv:​2210.​01117. https://​doi.​
org/​10.​48550/​arXiv.​2210.​01117 (2022).

	26.	 Power, A., Burda, Y., Edwards, H., Babuschkin, I. & Misra, V. Grokking: generalization beyond overfitting on small algorithmic
datasets. arXiv preprint arXiv:​2201.​02177. https://​doi.​org/​10.​48550/​arXiv.​2201.​02177 (2022).

	27.	 Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: Visualising image classification models and sali-
ency maps. arXiv preprint arXiv:​1312.​6034. https://​doi.​org/​10.​48550/​arXiv.​1312.​6034 (2013).

	28.	 Kim, Y. Convolutional neural networks for sentence classification. arXiv preprint arXiv:​1408.​5882. https://​doi.​org/​10.​48550/​arXiv.​
1408.​5882 (2014).

	29.	 Abdel-Hamid, O. et al. Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22,
1533–1545. https://​doi.​org/​10.​1109/​TASLP.​2014.​23397​36 (2014).

	30.	 Hatami, N., Gavet, Y. & Debayle, J. Classification of time-series images using deep convolutional neural networks. in Proceedings
Tenth International Conference on Machine Vision (ICMV 2017) 10696, 106960Y. https://​doi.​org/​10.​1117/​12.​23094​86 (2018).

	31.	 Smith, M. A. et al. Molecular barcoding of native RNAs using nanopore sequencing and deep learning. Genome Res. 30, 1345–1353.
https://​doi.​org/​10.​1101/​gr.​260836.​120 (2020).

	32.	 Emek Soylu, B. et al. Deep-Learning-based approaches for semantic segmentation of natural scene images: A review. Electronics
12, 2730. https://​doi.​org/​10.​3390/​elect​ronic​s1212​2730 (2023).

	33.	 Hosseini, H., Xiao, B., Jaiswal, M. & Poovendran, R. On the limitation of Convolutional Neural Networks in recognizing negative
images. in 16th IEEE International Conference on Machine Learning and Applications, pp. 352–358. https://​ieeex​plore.​ieee.​org/​
docum​ent/​82606​56 (2017).

	34.	 Montserrat, D. M., Lin, Q., Allebach, J. & Delp, E. J. Training object detection and recognition CNN models using data augmenta-
tion. Electron. Imaging 2017, 27–36. https://​doi.​org/​10.​2352/​ISSN.​2470-​1173.​2017.​10.​IMAWM-​163 (2017).

	35.	 Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V. & Le, Q. V. Autoaugment: learning augmentation policies from data. arXiv preprint
arXiv:​1805.​09501. https://​doi.​org/​10.​48550/​arXiv.​1805.​09501 (2018).

	36.	 Hataya, R., Zdenek, J., Yoshizoe, K. & Nakayama, H. Faster AutoAugment: Learning augmentation strategies using backpropaga-
tion, in Computer Vision–ECCV 2020: 16th European Conference, Proceedings, Part XXV, pp. 1–16 (Springer). https://​doi.​org/​10.​
1007/​978-3-​030-​58595-2_1 (2020).

	37.	 Xiao, K., Engstrom, L., Ilyas, A. & Madry, A. Noise or signal: the role of image backgrounds in object recognition. arXiv preprint
arXiv:​2006.​09994. https://​doi.​org/​10.​48550/​arXiv.​2006.​09994 (2020).

	38.	 Kovalerchuk, B., Kalla, D. C. & Agarwal, B., Deep learning image recognition for non-images, in Integrating artificial intelligence
and visualization for visual knowledge discovery (eds. Kovalerchuk, B., et al.) pp. 63–100 (Springer). https://​doi.​org/​10.​1007/​978-
3-​030-​93119-3_3 (2022).

	39.	 Samek, W., Binder, A., Montavon, G., Lapuschkin, S. & Muller, K. R. Evaluating the visualization of what a deep neural network
has learned. IEEE Trans. Neural Netw. Learn. Syst. 28, 2660–2673. https://​doi.​org/​10.​1109/​tnnls.​2016.​25998​20 (2017).

	40.	 Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digital Signal Process.
73, 1–15. https://​doi.​org/​10.​1016/j.​dsp.​2017.​10.​011 (2018).

	41.	 De Cesarei, A., Cavicchi, S., Cristadoro, G. & Lippi, M. Do humans and deep convolutional neural networks use visual information
similarly for the categorization of natural scenes?. Cognit. Sci. 45, e13009. https://​doi.​org/​10.​1111/​cogs.​13009 (2021).

	42.	 Kindermans, P.-J. et al. The (un) reliability of saliency methods, in Explainable AI: Interpreting, explaining and visualizing deep
learning. Lecture Notes in Computer Science 11700, pp. 267–280 (Springer). https://​doi.​org/​10.​1007/​978-3-​030-​28954-6_​14 (2019).

	43.	 Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks. Computer Vision—ECCV 2014, pp. 818–833
(Fleet, D., Pajdla T., Schiele, B., & Tuytelaars, T., eds) (Springer). https://​doi.​org/​10.​1007/​978-3-​319-​10590-1_​53 (2014).

	44.	 Springenberg, J. T., Dosovitskiy, A., Brox, T. & Riedmiller, M. Striving for simplicity: The all convolutional net. arXiv preprint arXiv:​
1412.​6806. https://​doi.​org/​10.​48550/​arXiv.​1412.​6806 (2014).

	45.	 Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R. & Samek, W. Layer-wise relevance propagation for neural networks with
local renormalization layers, in Artificial Neural Networks and Machine Learning–ICANN 2016: Proceedings 25th International
Conference on Artificial Neural Networks, pp. 63–71 (Springer). https://​doi.​org/​10.​1007/​978-3-​319-​44781-0_8 (2016).

	46.	 Selvaraju, R. R. et al. Grad-cam: visual explanations from deep networks via gradient-based localization. Proceedings of the 2017
IEEE international conference on computer vision, pp. 618–626. https://​ieeex​plore.​ieee.​org/​docum​ent/​82373​36 (2017).

	47.	 Sundararajan, M., Taly, A. & Yan, Q. (2017) Axiomatic attribution for deep networks. in Proceedings of the 34th International
Conference on Machine Learning 70, 3319–3328. https://​doi.​org/​10.​5555/​33058​90.​33060​24.

	48.	 Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. in Proceedings
of the 34th International Conference on Machine Learning 70, 3145–3153. https://​doi.​org/​10.​5555/​33058​90.​33060​06 (2017).

	49.	 Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. in Proceedings of the 31st International Confer-
ence on Machine Learning, pp. 4768–4777. https://​doi.​org/​10.​5555/​32952​22.​32952​30 (2017).

	50.	 Ersavas, T. Deepmapper. https://​github.​com/​tansel/​deepm​apper (2023).
	51.	 Kokhlikyan, N. et al. Captum: A unified and generic model interpretability library for pytorch. arXiv preprint arXiv:​2009.​07896.

https://​doi.​org/​10.​48550/​arXiv.​2009.​07896 (2020).
	52.	 Guyon, I. G. S. B.-H. A. & Dror, G. Gisette. UCI Machine Learning Repository. https://​archi​ve.​ics.​uci.​edu/​datas​et/​170/​giset​te (2008).
	53.	 PyTorch, torch.rand. https://​pytor​ch.​org/​docs/​stable/​gener​ated/​torch.​rand.​html (2023).

http://arxiv.org/abs/1810.07088
https://doi.org/10.48550/arXiv.1810.07088
https://doi.org/10.1155/2019/5065214
https://doi.org/10.1093/nar/gkv1025
https://doi.org/10.3390/app13095521
http://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.1007/978-3-030-58452-8_13
http://arxiv.org/abs/2304.08069
https://doi.org/10.48550/arXiv.2304.08069
https://doi.org/10.48550/arXiv.2304.08069
http://arxiv.org/abs/2307.08621
https://doi.org/10.48550/arXiv.2307.08621
https://doi.org/10.48550/arXiv.2307.08621
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1016/j.acha.2019.06.004
https://doi.org/10.1145/3446776
https://doi.org/10.1145/3417330
http://arxiv.org/abs/2210.01117
https://doi.org/10.48550/arXiv.2210.01117
https://doi.org/10.48550/arXiv.2210.01117
http://arxiv.org/abs/2201.02177
https://doi.org/10.48550/arXiv.2201.02177
http://arxiv.org/abs/1312.6034
https://doi.org/10.48550/arXiv.1312.6034
http://arxiv.org/abs/1408.5882
https://doi.org/10.48550/arXiv.1408.5882
https://doi.org/10.48550/arXiv.1408.5882
https://doi.org/10.1109/TASLP.2014.2339736
https://doi.org/10.1117/12.2309486
https://doi.org/10.1101/gr.260836.120
https://doi.org/10.3390/electronics12122730
https://ieeexplore.ieee.org/document/8260656
https://ieeexplore.ieee.org/document/8260656
https://doi.org/10.2352/ISSN.2470-1173.2017.10.IMAWM-163
http://arxiv.org/abs/1805.09501
https://doi.org/10.48550/arXiv.1805.09501
https://doi.org/10.1007/978-3-030-58595-2_1
https://doi.org/10.1007/978-3-030-58595-2_1
http://arxiv.org/abs/2006.09994
https://doi.org/10.48550/arXiv.2006.09994
https://doi.org/10.1007/978-3-030-93119-3_3
https://doi.org/10.1007/978-3-030-93119-3_3
https://doi.org/10.1109/tnnls.2016.2599820
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1111/cogs.13009
https://doi.org/10.1007/978-3-030-28954-6_14
https://doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
https://doi.org/10.48550/arXiv.1412.6806
https://doi.org/10.1007/978-3-319-44781-0_8
https://ieeexplore.ieee.org/document/8237336
https://doi.org/10.5555/3305890.3306024
https://doi.org/10.5555/3305890.3306006
https://doi.org/10.5555/3295222.3295230
https://github.com/tansel/deepmapper
http://arxiv.org/abs/2009.07896
https://doi.org/10.48550/arXiv.2009.07896
https://archive.ics.uci.edu/dataset/170/gisette
https://pytorch.org/docs/stable/generated/torch.rand.html

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:10000 | https://doi.org/10.1038/s41598-024-60709-z

www.nature.com/scientificreports/

	54.	 Sharma, A., Vans, E., Shigemizu, D., Boroevich, K. A. & Tsunoda, T. DeepInsight: A methodology to transform a non-image data
to an image for convolution neural network architecture. Sci. Rep. 9, 11399. https://​doi.​org/​10.​1038/​s41598-​019-​47765-6 (2019).

	55.	 Sharma, A., Lysenko, A., Boroevich, K. A., Vans, E. & Tsunoda, T. DeepFeature: feature selection in nonimage data using convo-
lutional neural network. Brief. Bioinform. 22, bbab297. https://​doi.​org/​10.​1093/​bib/​bbab2​97 (2021).

	56.	 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:​1409.​
1556. https://​doi.​org/​10.​48550/​arXiv.​1409.​1556 (2014).

	57.	 Pytorch2, AdaptiveAvgPool2d. https://​pytor​ch.​org/​docs/​stable/​gener​ated/​torch.​nn.​Adapt​iveAv​gPool​2d.​html (2023).

Acknowledgements
We thank Murat Karaorman, Mitchell Cummins, and Fatemeh Vafaee for helpful advice and comments on the
manuscript. This research is supported by an Australian Government Research Training Program Scholarships
RSAI8000 and RSAP1000 to T.E., a Fonds de Recherche du Quebec Santé Junior 1 Award 284217 to M.A.S., and
UNSW SHARP Grant RG193211 to J.S.M.

Author contributions
T.E. developed the methods, implemented DeepMapper and produced the first draft of the paper. J.S.M. pro-
vided advice, structured the paper, and edited it for improved readability and clarity. M.A.S. provided advice
and edited the paper.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.E. or J.S.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://doi.org/10.1038/s41598-019-47765-6
https://doi.org/10.1093/bib/bbab297
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveAvgPool2d.html
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Novel applications of Convolutional Neural Networks in the age of Transformers
	CNNs can recognise dispersed patterns
	Non-image processing with CNNs
	Conversion of non-image data to artificial images for CNN processing
	Attribution
	DeepMapper
	Methods
	Results
	Testing DeepMapper
	Comparison of DeepMapper with DeepInsight

	Discussion
	References
	Acknowledgements

