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A new method for unmanned aerial 
vehicle path planning in complex 
environments
Yong He *, Ticheng Hou  & Mingran Wang 

To solve the problems of UAV path planning, such as low search efficiency, uneven path, and inability 
to adapt to unknown environments, this paper proposes A double-layer optimization A* and dynamic 
window method for UAV path planning. Firstly, the neighboring node clip-off rule is defined to 
optimize the node expansion mode of the A* algorithm, and the obstacle coverage model is designed 
to dynamically adjust the heurizing function of the A* algorithm to improve the path search efficiency. 
Then, the Bresenham algorithm is adopted for collision detection and critical path nodes are extracted 
to significantly reduce the number of path turning points. Secondly, a new tracking index is proposed 
to optimize the evaluation function of the dynamic window method to make the local path fit the 
global path further. By detecting the dangerous distance, the dynamic adaptive method of evaluation 
function weight is designed to improve the fixed weight of the dynamic window method. Finally, the 
key turning point of optimizing the A* algorithm is taken as the temporary target point to improve 
the DWA algorithm, and the local part follows the global part, and the fusion of the two algorithms is 
realized. Simulation results show that the proposed method can significantly improve the efficiency 
and smoothness of mobile robot path planning, enhance the real-time obstacle avoidance and 
adaptive ability of unknown environments, and better meet the requirements of complex planning 
tasks.

With the development of society, quadcopter drones are widely used in agriculture, power inspection, aerial 
imaging, national defense, and other fields1–3. This imposes higher requirements on the intelligent operational 
capabilities of drones. Depending on the different application scenarios of drones, path-planning algorithms for 
drones can be divided into static global algorithms and dynamic local algorithms.

Common global algorithms include graph-based search algorithms such as Dijkstra’s algorithm4 and A* 
algorith5,6; sampling-based algorithms such as Rapidly-exploring Random Trees (RRT)7 and Probabilistic Road-
maps (PRM)8; intelligent algorithms such as reinforcement learning9, deep reinforcement learning10, etc. Static 
global path planning involves finding an optimal path for a drone in a known environment, with the A* algo-
rithm widely applied due to its advantages in speed and optimal path generation11. However, it has issues like 
high memory consumption and poor path quality. Chen12 proposed an approximately optimal bidirectional A* 
search algorithm, which rapidly completes path planning by selecting optimal node pairs. Daniel13 introduced 
the Theta* and Angle-Propagation Theta* algorithms, both capable of planning smoother paths at arbitrary 
angles on grid maps. Hu Shiqiang14 combined vector cross-product with a scale balancing factor to optimize 
the A* heuristic function. They employed a jump-point search strategy, achieving variable step-size search. 
Wang Bin15 combined an improved A* algorithm with dynamically adjustable heuristic function weights and a 
dynamic window approach based on an environment-adaptive improvement strategy. This not only solves issues 
in traditional A* and Dynamic Window Approach like redundancy, low efficiency, and path redundancy but 
also enhances path safety and real-time performance, aligning better with the motion characteristics of mobile 
robots. Zhao Xiao16 improved A* with a jump point search algorithm, reducing unnecessary memory consump-
tion. However, most A* and its improved algorithms lack obstacle avoidance capabilities, leading to planning 
failures when the environment changes. Wang Hongbin17 designed the Optimal Target-First Search method, 
which sorts multiple targets based on cost, and sequentially plans paths for each target point. Subsequently, the 
A* algorithm is employed for secondary optimization. Zhang Zhen18 incorporates environmental and parent 
node information into the A* evaluation function and designs a safe extension strategy to dynamically change 
the extension direction, thereby improving pathfinding efficiency and obstacle avoidance capability.
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Local path planning algorithms include the dynamic window approach19,20, artificial potential field method21, 
etc. Local algorithms calculate progressively using the latest sensor information during motion and can effectively 
avoid both known and unknown obstacles. Li Xinying22 used an improved multi-objective particle swarm algo-
rithm to dynamically adjust the weight coefficients of the Dynamic Window Approach. The adaptive weighting 
problem is transformed into a multi-objective optimization problem, and an improved particle swarm algorithm 
is employed for optimization, enabling the adapted DWA algorithm to dynamically adjust parameters based on 
the environment. Wang Yongxiong23 proposed a parameter-adaptive DWA algorithm that adjusts the weights 
in the objective function based on the distance between the robot and obstacles and the density of obstacles, 
resulting in more reasonable paths. Chou et al.24 improved the DWA algorithm by incorporating region analysis 
techniques. They filter incorrect commands through lookahead verification to guide the path toward optimal 
results. Chang25 defined state and action spaces, and through dynamically adaptive adjustments using rein-
forcement learning to the sub-evaluation functions of DWA, they improved the environmental adaptability and 
dynamic obstacle avoidance performance of the DWA algorithm.

The algorithms mentioned above have been improved in various aspects for A* and the Dynamic Window 
Approach, enhancing operational efficiency and environmental adaptability to some extent. However, issues 
such as path redundancy and high memory consumption persist. Therefore, this paper proposes a dual-layer 
optimization algorithm. Firstly, neighbor node pruning rules are defined, and obstacle coverage is dynamically 
adjusted to regulate the weight of the heuristic function, allowing it to adaptively adjust based on environmental 
changes, thereby improving planning efficiency. Secondly, the Bresenham algorithm is employed to extract key 
path nodes, and a deviation function is designed to enhance the followability of the DWA algorithm in local path 
planning, with simultaneous dynamic adjustments of evaluation function weights based on the environment. 
Finally, the extracted key path nodes are utilized as temporary sub-goals, endowing the A* algorithm with the 
ability to navigate around unknown obstacles. The effectiveness of the improved algorithm is verified through 
simulation and experimentation.

Introduction to A* algorithm
A* algorithm is built upon Dijkstra’s algorithm by incorporating a heuristic function to guide the search. It is 
capable of finding the shortest path from the starting point to the destination, possessing completeness and 
optimality26. By maintaining two sets, Open and Closed, the A* algorithm iteratively expands nodes with the 
minimum cost. The path planning concludes when the destination is added to the Closed set or the Open queue 
becomes empty. The calculation of the node cost is done by

where, f (n) represents the total cost from the starting point through the node to the target point; g(n) represents 
the actual cost from the starting point to the node; h(n) represents the heuristic estimated cost from the node to 
the target point. The h(n) primarily has two calculation methods: Euclidean Distance and Manhattan Distance27, 
specified as follows:

where, (mx ,my) is the current node coordinate, (nx , ny) is the target node coordinates, Due to the relatively com-
plex and computationally intensive nature of calculating Euclidean Distance, this paper adopts the Manhattan 
Distance formula.

Although the A* algorithm can find the shortest path required to complete a task in a known environment, 
it has a broad search scope, low planning efficiency, and is unable to navigate around unknown obstacles.

Dynamic window approach
The DWA algorithm possesses the advantages of efficiency, real-time capability, strong obstacle avoidance, and 
ease of implementation. It primarily performs discrete sampling within the allowed velocity space based on the 
current motion state of the drone and simulates the motion trajectories of these velocity combinations within the 
forward prediction time. Subsequently, the trajectory scores are determined by the evaluation function, leading 
to the identification of the optimal trajectory28. Subject to the constraints of motor performance and the environ-
ment, the velocity of the unmanned aerial vehicle at time t + 1, denoted must satisfy the following constraints:

(1)	 Due to the constraints imposed by the hardware performance of the unmanned aerial vehicle, the velocity 
constraints for the drone are expressed as:

where, vmax and vmin represent the maximum and minimum linear velocity constraints; ωmax、ωmin cor-
respond to the maximum and minimum angular velocity constraints.

(2)	 Subject to the constraints of the unmanned aerial vehicle’s motor performance, the drone should ensure 
velocity vector space sampling within the range that the motor torque can withstand, namely the unmanned 
aerial vehicle motor acceleration constraints29:

(1)f (n) = g(n)+ h(n)

(2)h(n) =

√

(mx − nx)
2 +

(

my − ny
)2

(3)h(n) = |mx − nx| + |my − ny|

(4)Vm =
{

vx ∈ [vmin, vmax], vy ∈ [vmin, vmax],ω ∈ [ωmin,ωmax]
}
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Here, axmin, axmax represents the maximum deceleration and acceleration in the UAV’s x-axis direction. 
aymin, aymax represents the maximum deceleration and acceleration in the UAV’s y-axis direction. aωmin, aωmax 
represents the maximum deceleration and acceleration in the UAV’s angular velocity.

The original evaluation function of the DWA algorithm is given by:

where,heading(v,ω) is the heading sub-function, used to evaluate the extent to which the trajectory aligns with 
the target. dist(v,ω) is the distance sub-function, predicting that the farther the trajectory is from obstacles, the 
higher the score for this term. vel(v,ω) is the velocity sub-function, characterizing the swiftness of the flight. 
α,β , γ is the weight coefficient for the respective terms, δ represents the normalization process.

Adjacency node clipping rule
Based on the expansion direction between the parent node and the current node, the neighbor node pruning 
rules are defined, as shown in Fig. 1. Here, gray grids represent free nodes that are unoccupied by obstacles and 
do not need to be considered. White grids represent neighboring nodes that the current node needs to consider, 
and black grids represent obstacles. The specific neighbor node pruning rules are as follows:

In the absence of obstacles, if the current node is expanded from the parent node in the horizontal or vertical 
direction, then the current node’s neighbors only need to consider one node in the same expansion direction, as 
shown in Fig. 1a. Other neighboring nodes can be reached from the parent node without passing through the 
current node at a lower cost, eliminating the need for expansion. In the case of diagonal expansion, as depicted 
in Fig. 1b, the situation is similar to straight-line expansion, with the only difference being that paths not pass-
ing through the current node must strictly dominate, facilitating subsequent recursive searches. When there 
are obstacles around the current node, and the parent node does not have a better path to reach certain nodes 
without passing through the current node, such neighboring nodes also need to be considered, as illustrated in 
Fig. 1c and 1d.

Adaptive A* heuristic function
The A* algorithm balances accuracy and speed using a heuristic function. However, the heuristic function often 
underestimates the distance from the current node to the goal, resulting in low search efficiency. To address this, 
this paper introduces obstacle coverage rate to abstract environmental information. It constructs a function 

(5)Vd =







vx ∈ [max(vmin, vx − axmin�t), min(vmax, vx + axmin�t)]
vy ∈ [max(vmin, vy − aymin�t), min(vmax, vy + aymin�t)]
ω ∈ [max(ωmin,ω − aωmin�t), min(ωmax,ω + aωmin�t)]

(6)G(v,ω) = σ(α · heading(v,ω)+ β · dist(v,ω)+ γ · vel(v,ω))

(a) Horizontal Expansion without Obstacles  (b) Diagonal Expansion without Obstacles

(c) Horizontal Expansion with Obstacles  (d) Diagonal Expansion with Obstacles

X X

X X

Figure 1.   Adjacency node clipping rule. (a) Horizontal expansion without obstacles, (b) diagonal expansion 
without obstacles, (c) horizontal expansion with obstacles, (d) diagonal expansion with obstacle.
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similar to a sigmoid function to dynamically adjust the weight of the heuristic function, aiming to enhance 
the efficiency of path planning. The main idea is as follows: when there are many obstacles in the environment, 
increase the heuristic function value of nodes appropriately to reduce the error between the estimated distance 
and the actual distance, thereby improving search speed. Conversely, when there are fewer obstacles, the esti-
mated cost between nodes and the goal will be closer to the actual value. In this case, appropriately decrease the 
magnitude of weight adjustment to better balance search accuracy and speed. The new cost function and obstacle 
coverage rate are defined as follows:

Here, Cobs and Cfree respectively represent obstacle space and free space; value(i, j) is the value function for 
coordinates (i, j) , indicating whether the corresponding grid is occupied by an obstacle.

Bresenham algorithm extracts key nodes
When using the A* algorithm for path planning, the planned path often contains redundant and turning points, 
increasing memory overhead, and the path is not smooth. Further optimization is required. In this paper, a 
strategy for extracting key path nodes is proposed based on the direction of node expansion and the Bresenham 
algorithm. The Bresenham algorithm is a linear scan conversion method30 that can determine the grid area 
through which the line connecting two nodes passes quickly by using the slope and intercept of the line. This 
facilitates the collision detection process. As shown in Fig. 2, the grid area through which the line connecting 
nodes A and B passes has obstacles, indicating a collision in that path segment, making it impassable.

The steps for extracting critical path nodes are as follows:

(1)	 Differentiating Redundant Nodes and Turning Points Based on Node Expansion Direction: Define 
Q(i, i + 1) as the expansion direction between two adjacent nodes Pi and Pi+1 . If Q(i − 1, i) is the same as 
Q(i, i + 1) , then node Pi is considered a redundant node; otherwise, it is classified as a turning point.

(2)	 Using the Bresenham algorithm to identify key path nodes: Starting from the initial point P1 , connect to 
the next turning point Pj and subsequent nodes Pj+k.Conduct collision detection sequentially. If the first 
collision occurs on the line connecting node P1 to Pj+k,then node Pj+k−1 is considered a key path point.

(3)	 Starting from the new key path node, repeat step (2) until the target point is extracted.

Improving the dynamic window approach
By utilizing the key path nodes extracted through the A* algorithm as intermediate target points for the Dynamic 
Window Approach, coupled with the real-time obstacle avoidance capability of the Dynamic Window Approach, 
the improved A* algorithm can promptly respond to and navigate around unknown obstacles in the planning 
environment. This enhances the environmental adaptability and success rate of A* algorithm path planning. 
Considering the tracking performance of local path planning after obstacle avoidance, this paper introduces the 
global path-following subfunction to improve the local path-following effect and achieve global optimization. 
The evaluation function and distance sub-function calculation method for improving the Dynamic Window 
Approach algorithm are as follows:

(7)f (n) = g(n)+ (1+
1

1+ e−ξ
)h(n)

(8)
ξ =

gx
∑

i=nx

gy
∑

j=ny

value(i, j)

∣

∣nx − gx
∣

∣ ∗
∣

∣ny − gy
∣

∣

(9)value(i, j) =

{

1, if (i, j) ⊆ Cobs

0, if (i, j) ⊆ Cfree

Figure 2.   Bresenham algorithm for collision detection.
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where,heading(v,w) is the azimuth evaluation function, which measures the error �θ of the Angle between 
the position direction of the end point of the trajectory and the line of the target point generated at the current 
sampling speed;Dist(v,w) is the distance evaluation function, distobs(v,w) is the obstacle avoidance function, 
representing the minimum distance between the end of the current trajectory and the obstacle. It is used to pun-
ish the sampled trajectory near the obstacle to ensure the obstacle avoidance ability of the drone. The closer the 
distance, the lower the score. distfol(v,w) is the following function, indicating the distance between the global 
optimal path and the current trajectory. The higher the trajectory score is, the better the trajectory is. The DWA 
algorithm will select the sampled trajectory action with the highest score.

In complex and dynamic environments, the Dynamic Window Approach with fixed weight values may 
encounter planning failures or result in unreasonable paths31. This paper proposes a method with adaptive 
weightings, selecting weight combinations based on the distance between the robot’s current position and obsta-
cles. This allows the robot to generate more reasonable scores in diverse environments. The specific steps are 
as follows:

(a)	 Define the detection distance between the current position and obstacles as distnow , The warning distance 
between UAV and obstacle is distalert = 2 m , and the danger distance as distrisk = 1.5 m.

(b)	 When distnow ≤ distalert,indicates that the robot is close to the obstacle, and a response to enter the safe zone 
is required. At this point, it is necessary to increase � which is the weight value of the obstacle avoidance 
function distobs(v,w) and decrease η which is the weight value of the following function distfol(v,w).

(c)	 When distnow ≤ distrisk,indicating that the current distance is within the danger distance, the primary task 
is to leave this area. Therefore, it is necessary to continue increasing the obstacle avoidance weight.

(d)	 When distnow > distalert,indicating that the robot is in a safe zone, in order to improve local path-following 
performance, it is necessary to increase the weight value of the following function distfol(v,w) and decrease 
the weight value of the obstacle avoidance function distobs(v,w) . The weight combination is as follows:

UAV performance analysis
UAV path planning involves the pre-flight formulation of an optimal reference trajectory that satisfies constraints 
based on environmental information and mission requirements. During flight, in the presence of unknown or 
dynamic threat information, local trajectory optimization is performed dynamically. The global planning objec-
tive is to avoid convergence to local optima and minimize computational complexity, while local optimization 
focuses on reducing planning time for real-time responsiveness. In certain tasks, UAVs may neglect changes in 
altitude by projecting three-dimensional objects onto a two-dimensional plane to simplify problem complexity 
and enhance trajectory planning efficiency. Two-dimensional path planning finds extensive applications across 
various domains including agricultural crop protection, search and rescue operations, and aerial photography, 
among others.

When engaging in path planning for UAVs, it is crucial to comprehensively account for the constraints 
arising from the UAV’s inherent performance limitations, thereby ensuring the seamless execution of tasks. 
The constraints integral to UAV path planning encompass factors such as the maximum turning angle and the 
maximum trajectory length, both of which must be adhered to for effective planning.

Maximum Turning Angle: During UAV flight, the turning angle is limited by the aircraft’s performance, and 
it must adhere to a specific range in order to determine the agility of the UAV. If (xi , yi) represents the current 
position of the UAV in segment i , and �θi denotes the required turning angle for transitioning to the next seg-
ment,θmax represents the maximum allowable turning angle for optimal UAV performance, satisfying:

Maximum track length: The UAV needs to avoid obstacles during flight, and it is difficult to maintain a straight 
line. The maximum flight path of the UAV is affected by its own battery energy consumption, so the maximum 
flight path of the UAV will be constrained. If the track path is composed of several sections li(i = 1, 2, · · · , n) 
and the maximum track length of the UAV is Lmax , then:

Fusion algorithm
The advantage of the A* algorithm lies in its ability to plan the shortest path in an environment with static 
obstacles. However, the planned path often contains many turning points and redundant nodes. Moreover, in 
dynamic environments, the path generated by A* in a static environment may not effectively avoid obstacles.

Due to the lack of guidance from a global path, the traditional Dynamic Window Approach algorithm often 
struggles to obtain an ideal optimal path, especially in complex obstacle environments, leading to a tendency 
to get stuck in local optima and be unable to reach the target point. Therefore, this paper integrates the global 
path planning information from the improved A* algorithm to guide the DWA algorithm. This ensures local 

(10)







G(v,w) = δ[α · heading(v,w)+ β · vel(v,w)+ Dist(v,w)]
Dist(v,w) = � · distobs(v,w)+ η · distfol(v,w)

heading(v,w) = π −�θ

(11)�θi < θ
max

(12)
n

∑

i=0

li < Lmax
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dynamic obstacle avoidance while achieving global path optimality. In the end, the workflow of the integrated 
algorithm is depicted in Fig. 3.

Fusion algorithm simulation analysis
To validate the effectiveness and superiority of the improved A* algorithm, a simulation-based comparative 
analysis was conducted among the A* algorithm, Theta* algorithm, and the improved algorithm proposed 
in this paper using different environmental maps. The computer configuration includes a Windows 10 64-bit 
operating system, an Intel (R) Core (TM) i5-10210U CPU with a base frequency of 1.60 GHz (turbo boost up to 
2.11 GHz), and 16 GB of RAM. MATLAB R2017b was used as the simulation software, and the parameter values 
used in the simulation are detailed in Table 1, where, vmax , ωmax are the maximum linear velocity and maximum 
angular velocity of local path planning, respectively, and av·max , aω·max are the maximum linear acceleration and 
maximum angular acceleration, respectively, and R is the sensing range radius of the UAV.

To validate the superiority of the algorithm proposed in this paper, simulations were conducted on grid maps 
with unknown obstacles of sizes 20 × 20 and 30 × 30. Traditional A*, traditional DWA algorithm, the algorithm 
proposed in18, and the fused algorithm proposed in this paper were compared. The experimental data is recorded 
in Table 2, and the experimental results are illustrated in Figs. 4 and 5. In these figures, magenta grids represent 
the starting points, green grids represent the target points, black grids represent known obstacles, red grid indi-
cates unknown obstacles, green broken lines indicate global paths, blue curves indicate local paths, and nodes 
along the paths are marked with asterisks (*).

From the above simulation results, it is evident that in Fig. 4a, the traditional A* algorithm fails to navigate 
around unknown obstacles, resulting in path planning failure. In Fig. 4b, the traditional DWA algorithm easily 
gets trapped in local optima, especially when faced with "U"-shaped obstacles, making it unable to reach the 
target point. Figure 4c shows that the algorithm proposed in18 successfully reaches the target point through 
dual-layer path planning; however, it exhibits large turning angles and poor local path following, still suffering 
from the issue of lengthy paths.In contrast, in Fig. 4d, the fused algorithm proposed in this paper successfully 
avoids unknown obstacles, resulting in smoother paths and stronger environmental adaptability. As indicated 

Figure 3.   Flow chart of fusion algorithm.

Table 1.   Simulation parameters and values.

Parameter Value Parameter Value

vmax (m/s) 1 av·max(m/s2) 2

ωmax (rad/s) 0.7854 aω·max(rad/s2) 2.6180

�t (s) 0.1 T(s) 3

R (m) 12 ~ 16 N 3
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in Table 2, the runtime of the fused algorithm proposed in this paper is reduced by 58.6% and 61.1% compared 
to the algorithm in the literature and the DWA algorithm, respectively. Furthermore, the path length is reduced 
by 29.1% and 51.7%, with smaller turning angles, making it more suitable for UAV flight conditions.

To further validate the superiority of the fused algorithm proposed in this paper, comparative experiments 
were conducted with the algorithm in the literature on a 30 × 30 random obstacle map, as shown in Fig. 5.

From Fig. 5a and b, it can be observed that both the algorithm proposed in18 and the fused algorithm proposed 
in this paper successfully find a path from the starting point to the destination in an environment containing 
unknown and random obstacles. However, as indicated in Table 2, compared to the algorithm in the literature, the 
fused algorithm proposed in this paper reduces the number of expanded grids by 15.1%, decreases the runtime 
by 39.1%, and shortens the path length by 10.8%. The proposed algorithm exhibits significantly improved opera-
tional speed and planning efficiency, with better local path following characteristics. Its curvature is continuous, 
and its turning angles are smaller.

Figure 6 shows the comparison between the linear velocity and angular velocity of the two algorithms in the 
path-planning process of a 30 × 30 random obstacle map. The average data records of multiple measurements are 

Table 2.   Performance comparison of global path planning algorithms.

Map type Algorithm Run time/s
Number of extended 
grids /(PCS)

Total degree of 
corner /(°)

Whether smooth 
or not Collision or not

Path length to target 
point/(m)

Ladder obstacle map

Traditional A* – – – Not Yes non-arrival

DWA 60.12 – – Yes Not 54.92

Algorithm in 
reference18 56.58 186 349.3 Yes Not 37.41

Textual algorithm 23.44 151 294.6 Yes Not 26.55

Random obstacle map
Algorithm in 
reference18 76.33 272 476.2 Yes Not 52.32

Textual algorithm 46.47 231 376.6 Yes Not 46.68

Figure 4.   20 × 20 ladder obstacle map. (a) A* algorithm, (b) DWA, (c) Algorithm in reference18, (d) This text 
fusion algorithm.
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Figure 5.   30 × 30 random obstacle map. (a) Algorithm in reference18, (b) This text fusion algorithm.

Figure 6.   Comparison of speed changes in a 30 × 30 random obstacle map. (a) Comparison of linear velocity 
changes, (b) angular velocity change comparison.
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shown in Table 3. The simulation results reveal that the proposed algorithm exhibits small and gradual changes 
in linear and angular velocities when avoiding unknown obstacles. Compared to the literature algorithm, the 
proposed algorithm shows an average increase of 67.3% in linear velocity and a 33.3% improvement in average 
angular velocity, indicating a significant enhancement in algorithm speed.

Experimental research
To further validate the effectiveness of the improved A* algorithm in practical applications, real-world experi-
ments were conducted using the P200 unmanned aerial vehicle equipped with a SLAMTEC A2 LiDAR and 
Jetson TX2 onboard computer. The experimental UAV platform is illustrated in Fig. 7, and the experimental 
parameters are provided in Table 4. The onboard computer runs on Ubuntu 18.04, and the robot operating 
system is Melodic. Prior to the experiment, the gmapping algorithm was utilized for mapping, and the experi-
mental results were visualized using the Rviz tool, as shown in Fig. 7. Figure 8 is a map of the experimental site 
reproduction in Gazebo.

In Fig. 9, the yellow curve is the path planned by the improved A* algorithm on a static known map, which 
cannot avoid unknown obstacles but can provide global guidance. In Fig. 9a and c, the UAV senses the surround-
ing environment in real-time through the LiDAR and starts to move under the guidance of the planned path, 
where the white box is the set radar detection range, the colored area is part of the detected obstacles, and the 
blue curve is the actual flight path.

As can be seen from Fig. 9, compared with the traditional dynamic window method, the two-layer opti-
mization algorithm proposed in this paper has a significantly shorter path. In addition to avoiding unknown 

Table 3.   Comparison of algorithm performance indicators.

Algorithm Mean linear velocity (m/s) Mean angular velocity (rad/s) Planning time (s)

Document algorithm 0.55 0.21 76.33

Textual algorithm 0.92 0.14 46.47

Figure 7.   UAV experiment platform.

Table 4.   Weight combination of evaluation function.

Evaluation function weight α β � η

Following weight 0.3 0.3 0.2 0.2

Obstacle avoidance weight 1 0.2 0.3 0.4 0.1

Obstacle avoidance weight 2 0.2 0.25 0.5 0.05
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obstacles, local planning has a better tracking ability for the globally optimal path, making the path smoother 
and the pathfinding efficiency greatly improved. It can be seen from Table 5 that in the same environment, the 
path length and pathfinding time of the proposed algorithm are reduced by 24.3% and 18.4% compared with 
the DWA algorithm. Therefore, in practical applications, the proposed algorithm has a short path length, high 
quality, stronger adaptability to the environment, and can avoid unknown obstacles on the path, and complete 
the path-finding task more efficiently.

Figure 8.   The experimental site in Gazebo is reproduced.

Figure 9.   The comparison between the proposed algorithm and the DWA algorithm. (a) DWA algorithm 
path planning, (b) Path planning results of DWA algorithm, (c) Algorithm path planning in this paper, (d) The 
algorithm path planning results in this paper.
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Conclusion
In order to effectively solve the problems of UAV path planning such as low search efficiency, uneven path, and 
inability to adapt to unknown environments, this paper proposes A double-layer optimization improved A* 
and dynamic window method for UAV path planning. Firstly, by designing the neighbor node clipping rule 
and defining the obstacle coverage rate, the heurizing function of the A* algorithm is introduced to dynami-
cally adjust the environment information, so as to optimize the traditional node expansion mode and improve 
the path search efficiency. Secondly, the Bresenham algorithm is used for obstacle collision detection to extract 
critical path nodes, which effectively reduces path redundancy and improves path smoothness. Then, a following 
subfunction index is proposed to improve the ability of local planning to follow the global path. By judging the 
dangerous distance from obstacles in real-time, an adaptive method of evaluation function weight is designed 
to solve the problem of unreasonable path planning caused by the fixed weight of the DWA algorithm. Finally, 
the optimized key node is used as the temporary target point of local path planning, the local plan is guided to 
follow the global path, and the two-layer path planning is realized. The simulation and experimental results show 
that the proposed algorithm makes UAV path planning efficient and short in complex environments, and the 
smooth path is more suitable for UAV flight conditions. In the face of unknown obstacles, it can flexibly trans-
form to avoid obstacles in real-time, which verifies the effectiveness and superiority of the proposed algorithm.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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