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Multi‑source remote sensing‑based 
landslide investigation: the case 
of the August 7, 2020, Gokseong 
landslide in South Korea
Shin‑Kyu Choi 1, Ryan Angeles Ramirez 2, Hwan‑Hui Lim 3 & Tae‑Hyuk Kwon 3*

Landslides pose a growing concern worldwide, emphasizing the need for accurate prediction and 
assessment to mitigate their impact. Recent advancements in remote sensing technology offer 
unprecedented datasets at various scales, yet practical applications demand further case studies 
to fully integrate these technologies into landslide analysis. This study presents a case study 
approach to fully leverage variety of multi‑source remote sensing technologies for analyzing the 
characteristics of a landslide. The selected case is a landslide with a long runout debris flow that 
occurred in Gokseong County, South Korea, on August 7, 2020. The chosen multi‑source technologies 
encompass digital photogrammetry using RGB and multi‑spectral imageries, 3D point clouds acquired 
by light detection and ranging (LiDAR) mounted on an unmanned aerial vehicle (UAV), and satellite 
interferometric synthetic aperture radar (InSAR). The satellite InSAR analysis identifies the initial 
displacement, triggered by rainfall and later transforming into a debris flow. The utilization of digital 
photogrammetry, employing UAV‑RGB and multi‑spectral image data, precisely delineates the 
extent affected by the landslide. The landslide encompassed a runout distance of 678 m, featuring 
an initiation zone characterized by an average slope of 35°. Notably, the eroded and deposited areas 
measured 2.55 ×  104  m2 and 1.72 ×  104  m2, respectively. The acquired UAV‑LiDAR data further reveal 
the eroded and deposited landslide volumes approximately measuring 5.60 ×  104  m3 and 1.58 ×  104  m3, 
respectively. This study contributes a valuable dataset on a rainfall‑induced landslide with a long 
runout debris flow, underscoring the effectiveness of multi‑source remote sensing technology in 
monitoring and comprehending complex landslide events.

Abbreviations
LiDAR  Light detection and ranging
UAV  Unmanned aerial vehicle
InSAR  Interferometric synthetic aperture radar
RGB  Red, green, blue
Radar  Radio detection and ranging
IR  Infrared radiation
KMA  Korea Meteorological Administration
SNAP  Sentinel application platform
PS-InSAR  Permanent scatterer InSAR
NIR  Near-infrared
SfM  Structure from motion
GCP  Ground control point
GNSS   Global navigation satellite system
NDVI  Normalized difference vegetation index
IMU   Inertial measurement unit
M3C2  Multiscale model-to-model cloud comparison
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LOS  Line of sight
KNGII   Korea National Geographic Information Institute
DEM  Digital elevation model

Landslides refer to sudden collapse and rapid downstream movement of destabilized earth ground, which can 
be primed or triggered by various factors, including rainfall, earthquakes, and human activities. These events 
are highly unpredictable, and they carry immense velocity and impact force, posing significant hazards. Several 
catastrophic landslide-related damages have been reported around the world, such as the Woomyeon landslide in 
 Seoul1–3, the Montecito landslide in  California4,5, the Mabian landslide in Mabian  County6, the Livadea landslide 
in Livadea  village7, the Jichang landslide in Shuicheng  County8, and the Aniangzhia landslide in Danba  County9. 
As heavy rains become more concentrated in localized regions, the frequency and severity of landslide hazards 
are becoming increasingly pronounced in numerous countries.

Records on past landslide events are one of the critical ingredients to build a capacity for accurate prediction 
of potential landslides. The landslide record or landslide inventory needs to include the volumes of initial source 
and final deposited mass, and landslide characteristics (e.g., rheology, soil properties, erosion rate) as well as 
the geographic, geologic and topographic data. Hence, conducting a comprehensive investigation of landslide 
events becomes crucial, involving a quantitative assessment of their geometry, such as area, volume, and runout 
distance, along with other relevant landslide-related characteristics. In general, walk-in field surveys immediately 
after a landslide event can provide valuable  information10–18. However, field visits are often restricted due to the 
safety concern, such as a potential danger of progressive collapse as an example.

Recently, remote sensing technology has emerged as a valuable tool to overcome this limitation as it can 
effectively monitor hard-to-reach areas and conduct prolonged and periodic observations. Additionally, it is 
cost-effective, time-saving, and portable. The types of remote sensing technology are classified according to the 
sensors (or cameras) mounted on UAVs (i.e., optical camera, LiDAR sensor, and radar sensor). Optical data 
typically includes visible radiation (red, green, and blue bands; RGB data) as well as infrared radiation (IR) 
range. In addition, monitoring using satellite radio detection and ranging (radar) enables observation of tiny 
displacements at the millimeter scale and can also observe past displacement histories. Therefore, the remote 
sensing techniques are widely utilized not only in the field of landslide disasters but also in various geo-science 
fields which requires long-term monitoring over a large  area19–26.

Use of a single technique often poses a challenge in landslide surveys. For example, the optical imaging, as 
a passive method, is difficult to acquire topographic information in densely forested areas due to the occlusion 
 effect27–29. Although the 3D point clouds gathered from LiDAR can provide topographic information, its lack 
of RGB information limits the object identification. The satellite radar is highly effective in detecting tiny 
displacements before a landslide occurs. However, its capability to observe meter-scale displacements with 
massive earth movements is limited. Rather than using a single technique, integration of multiple remote sensing 
technologies offers a promising approach to effective landslide  monitoring8,30–35.

This study presents a comprehensive investigation on a landslide, focusing on the detailed analysis of its 
characteristics through the integration of diverse remote sensing technologies. The chosen case pertains to a 
landslide with a long runout debris flow that occurred in Gokseong County, South Korea, on August 7, 2020. 
A suite of multi-source technologies was strategically employed, including digital photogrammetry utilizing 
RGB and multi-spectral imagery, 3D point clouds derived from light detection and ranging (LiDAR) mounted 
on an unmanned aerial vehicle (UAV), and satellite interferometric synthetic aperture radar (InSAR). In 
particular, InSAR technology facilitated the detection of landslide initiation, while RGB and multi-spectral 
information aided in delineating the extent of the affected areas. Additionally, for precise quantification of 
landslide magnitude, 3D LiDAR point clouds were utilized to compute the volumes involved. Through the 
synergistic utilization of these diverse remote sensing technologies, this study aims to elevate the precision and 
efficacy of landslide investigations.

Study area
On August 7, 2020, a catastrophic landslide occurred at approximately 8:30 p.m. on a mountain behind a village 
in Osan town, Gokseong County, South Jeolla Province, South Korea (35°11′40″ N, 127°8′10″ E; Fig. 1), referred 
to as the Gokseong landslide. Figure 1d represents the elevation profiles of the landslide channel before and 
after the event. It is a typical form of debris flows where eroded (or collapsed) sediment from the upstream 
area travels a long distance and accumulates in the downstream area. The primary trigger for this landslide was 
three consecutive days of heavy rainfall. The event caused extensive devastation to the downstream village as a 
significant volume of debris traveled a considerable distance, resulting in five fatalities, five houses buried, and 
a section of road collapsed (Fig. 2). Approximately 30 residents residing near the landslide site were evacuated. 
Five days post the landslide event, this study conducted a UAV field survey.

South Korea exhibits intricate climatic patterns arising from the interplay of continental and oceanic 
influences, featuring an average annual precipitation of 1,190 mm. The monsoon season, extending from 
July to September, contributes to over 50% of the total annual rainfall. Figure 3 presents rainfall data from 
a local meteorological station located 6 km from the landslide site, sourced from the Korea Meteorological 
Administration (KMA). The precipitation graph highlights the commencement of intense rainfall around 
8:30 a.m. on August 5, 2020, two days before the landslide event. Approximately 7.5 h before the landslide 
occurrence, cumulative rainfall had surpassed 150 mm, with the maximum hourly rainfall recorded at 51.5 mm. 
The antecedent cumulative rainfall in the three days leading up to the landslide event amounted to 290 mm 
(Fig. 3). Additionally, on August 5, 2020, Typhoon Hagupit induced heavy rainfall in the region.
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Figure 1.  Optical images of the Gokseong landslide site: (a) Sentinel-2 image after the event in Sites 1 and 2, 
(b) before the event in Site 1 (captured by Korea National Geographic Information Institute, KNGII in 2019), (c) 
The image representing the location of Gokseong County in South Korea and (d) the profiles before and after 
the occurrence of the landslide event. Note that the areas highlighted by the red polygons indicate the landslide 
areas.

Figure 2.  Digital photographs of the Gokseong landslide: (a) Overview of the landslide (Site 1), (b) the 
initiation zone of Site 1, (c) the deposition zone of Site 1, and (d) overview of the landslide (Site 2).
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Materials and methods
Landslide monitoring involves distinct phases before and after the occurrence. Before a landslide event, it is 
important to conduct ongoing monitoring by regularly measuring displacement in areas prone to such risks. 
Employing UAVs for this purpose proves to be inefficient. However, utilizing satellites, despite longer monitoring 
intervals, offers an effective alternative. After a landslide, quantitative assessments to area, volume, changes 
in elevation are required to identify triggers and formulate an effective recovery plan. Given that landslides 
typically occur within a range of several meters to hundreds of meters, the use of LiDAR data is more appropriate 
than radar data. Prior to the landslide, the satellite InSAR technology was utilized to detect any indications of 
pre-failure movement. Subsequent to the landslide event, the volumes of eroded and deposited materials were 
calculated using topographic data obtained from the 3D LiDAR sensor. Additionally, RGB and multi-spectral 
data were used to estimate the extent of the landslide damage area.

Pre‑failure monitoring using satellite SAR data
This study involved the collection and processing of 32 satellite SAR data from the ascending Sentinel-1 mission, 
as shown in Fig. 4. The dataset covered the period from August 1, 2019 to August 7, 2020, including the pre-failure 
state. The InSAR stack overview operator of the Sentinel Application Platform (SNAP) automatically selected 
the master image (January 1, 2020 in this analysis). Subsequently, the remaining images were co-registered as 
slave images to match the geometry of the master image. Figure 4 illustrates the spatiotemporal distribution 
of the Sentinel-1 SAR data stack and the interferometric pairs used in this study. The satellite InSAR method 

Figure 3.  Hourly and cumulative rainfalls before the Gokseong landslide (at approximately 8:30 p.m. on August 
7th).

Figure 4.  Pairing of master and slave synthetic aperture radar (SAR) images.
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is capable of providing near-real-time monitoring of ground displacement, overcoming temporal, spatial, and 
meteorological constraints. Time-series InSAR analysis using multi-temporal satellite SAR effectively detects 
tiny displacements over a long period. In particular, we employed the permanent scatterer InSAR (PS-InSAR) 
 method36, which is one of reliable and thus widely used time-series InSAR analysis methods. The PS-InSAR 
observes temporal deformation by using ground targets that exhibit stable phase behavior over the satellite radar 
data stack. The targets are primarily observed in in urban areas such as buildings, maintaining stable coherence 
and experiencing minimal noise interference. Compared to other InSAR analysis methods, it exhibits fewer 
atmospheric errors, enabling more precise estimation of ground displacement. Furthermore, it facilitates the 
analysis of long-term temporal deformation. The PS-InSAR analysis was carried out through a semi-automated 
processing chain with a two-stage workflow, consisting of the single master differential InSAR processing and 
the time series analysis.

Landslide area mapping using optical data
RGB and multi-spectral images were acquired for digital photogrammetry to examine the geometric 
characteristics of the landslide and analyze the affected area. The RGB images were captured using an 
optical digital camera (X5S, DJI) mounted on the DJI Inspire 2 UAV. Additionally, a multi-spectral digital 
camera (RedEdge-MX, MicaSense), capable of capturing five bands (i.e., 475 nm ± 32 nm for the blue band, 
560 nm ± 27 nm for the green band, 668 nm ± 14 nm for the red band, 717 nm ± 12 nm for red edge band, and 
842 nm ± 57 nm for near-infrared (NIR) band), was installed on the DJI Inspire 2 UAV to obtain multi-spectral 
images. For data analysis, 3D point clouds were generated from overlapped images taken from various locations 
using the structure from motion algorithm (SfM) with the Agisoft Metashape program (v.1.5.5). Ground control 
points (GCP) were employed to ensure high accuracy in obtaining point clouds, as the global navigation satellite 
system (GNSS) sensor mounted on the UAV had limited accuracy.

In particular, this study employed the normalized difference vegetation index (NDVI) to delineate landslide-
affected  areas37,38, and it is calculated using the NIR and red band reflectance, as follows:

where  RNIR is the reflectance of the NIR band and  Rred is the reflectance of the red band. The NDVI proves more 
accurate than results derived from RGB images, particularly in forested and vegetated areas, common locations 
for landslides. Its application extends to extracting landslide-affected areas, considering diverse characteristics 
contingent on land cover types. In this study, the NDVI was used to differentiate various land-cover types, with 
vegetated areas exhibiting higher NDVI values, while non-vegetated regions, such as soil or concrete, showed 
lower values. Therefore, when a landslide occurs, the NDVI decreases significantly as trees and vegetation are 
uprooted, leaving only exposed soil  behind38. Leveraging these distinctive features, the occurrence of landslides 
was analyzed using multi-spectral data at the Gokseong landslide site.

Topographic change estimation using LiDAR data
The landslide volume plays a crucial role in back-analyzing the flow characteristics of landslides. Additionally, 
post-disaster recovery planning necessitates volume information, which can be derived from changes in elevation 
obtained through remote sensing. This study estimated the landslide volume based on the change in topographic 
elevation before and after the landslide, where a UAV-LiDAR system was used to obtain the topographic 
information. The system was composed of a UAV (Matrice 600 Pro, DJI), GNSS, inertial measurement unit 
(IMU), LiDAR sensor (VLP-16, Velodyne), and other components. Detailed information on the UAV-LiDAR 
system used in this study can be found in Choi et al.39, including its configuration, calibration, and accuracy. 
The UAV-LiDAR system was flown at an altitude of 300 m with a velocity of 3 m/s to acquire a 3D LiDAR point 
cloud of the area after the landslide event. Then, the topographic change was quantified by using the multiscale 
model-to-model cloud comparison (M3C2) method, which calculates the distance between two point clouds even 
in cases where homologous parts are not explicitly  defined40. When two point clouds are produced, the normal 
vector is determined by analyzing the points within the circle defined by the user. The normal vector indicates 
the direction of change between the two point clouds. Next, the average elevation is determined by analyzing 
the points within a cylinder defined by the user. This entire process is repeated for each point separated by the 
input distance, allowing for a comprehensive analysis of topographic changes between the two point clouds.

Results
Landslide pre‑failure analysis
Figure 5 represents the pre-failure annual mean velocity map along the line-of-sight (LOS) direction. Securing 
observation points in forested areas becomes challenging due to the scattering of radar signals caused by 
vegetation movement. Fortunately, observation points were obtained on the road near the landslide initiation zone 
in Site 1 (PS A1-to-A4; Fig. 5b). Figure 6 shows the temporal variations of displacements in the LOS direction, 
superimposed with hourly precipitation data over time. The LOS displacements were negative, indicating 
movement away from the satellite along the LOS direction. Prior to the landslide event, the precipitation had 
continuously influenced the slope movement, specifically during Typhoon Hagupit on August 5, 2020. Similarly, 
Fig. 5c shows the pre-failure annual mean velocity map and time-series displacement results of a landslide in 
Site 2, located 4 km away from the Gokseong landslide site. The observed pattern in Site 2 closely resembles 
that of Site 1 (PS A5-to-A7; Fig. 6b). The displacement was attributed to continuous rainfall that commenced 
a few days earlier. These findings strongly suggest a significant correlation between landslide occurrences and 

(1)NDVI =
(RNIR − Rred)

(RNIR + Rred)
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rainfall patterns. Moreover, the study demonstrates that precise displacement monitoring through satellite InSAR 
technology can aid in identifying landslide-prone areas and monitoring displacement before major landslides 
occur.

Landslide area mapping
The trace of the landslide at Site 1 is illustrated in Fig. 2a. The depth of the eroded channel was approximately 
2.5 m. The initiation and deposition zones were located at elevations of 251 m and 160 m above sea level, 
respectively, with a total landslide runout distance of 678 m. The average slope of the landslide initiation zone 
was 35°. Additionally, the watershed widths of the initiation and transport zones ranged from approximately 
40–60 m, while the maximum width of the deposition fan reached 140 m.

The NDVI estimated from the multi-spectral data delineated the landslide area (Site 1), as shown in Fig. 7. The 
range of the NDVI value differed with land-cover types, and Fig. 7c illustrates the NDVI distributions for road, 
landslide, and forest areas. In this study, the NDVI value of 0.04–0.70 was determined as the landslide area, and as 
a result, the landslide area was determined to be 4.26 ×  104  m2. The delineated landslide area well matched with the 
actual landslide area, highlighting the accuracy of the method employing multi-spectral images, UAV and NDVI.

Elevation change post‑landslide
The pre-landslide DEM data was constructed by using the source provided by Korea National Geographic 
Information Institute (KNGII), as illustrated in Fig. 8a. Following the landslide event, a high-resolution digital 
elevation model (DEM) of the site was acquired using the UAV-LiDAR system (Fig. 8b). Comparison of these 
two DEM allowed to identify terrain differences caused by the landslide (Fig. 8c). The negative elevation change 
indicated the erosion and the positive elevation change means the deposition. The initiation zone of the landslide 
exhibited a substantial topographic change of more than 13 m. In the downstream area, it was confirmed that a 
significant amount of debris (5 m in thickness) was deposited as a result of the landslide. For the landslide area 
derived from the NDVI analysis, the volume of the landslide was calculated based on the changes in the terrain 
elevation. As a result, the eroded and deposited volumes were estimated to be approximately 5.37 ×  104  m3 and 
1.58 ×  104  m3, respectively.

Discussion
Effect of resolution of the NDVI data on the landslide area and volume
The Normalized Difference Vegetation Index (NDVI) can exhibit variations depending on the timing of data 
collection. Moreover, NDVI values are subject to change based on the specific characteristics of the area where 
a landslide has  occurred41–43. Accurate estimation of the landslide occurrence area requires identifying the 
appropriate NDVI range. Incorrect selection may result in underestimation or overestimation of the landslide 
area. Meanwhile, it is worth noting that the resolution of the map heavily affects the determination of NDVI 
range and landslide areas. Herein, we further compare different data acquisition techniques and examine the 
effect of image resolution on the results.

This study uses optical and multi-spectral images with 10 m resolution acquired on August 20, 2020 from the 
Sentinel-2 satellite and obtains an NDVI map (Fig. 9a,b). Herein, the NDVI of 0.08–0.53 is chosen to delineate 

Figure 5.  Annual LOS mean velocity map. (a) Gokseong landslide site, (b) Site 1, and (c) Site 2. Note that the 
red and black rectangles in Fig. 5a indicate the locations of Sites 1 and 2, respectively. Note that the red polygons 
in Figs. 5b and 5c represent the landslide boundaries. The inset photos show the sites post-landslide.
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the landslide area (Fig. 9c). Figures 7b and 9b compare the landslide covers captured from the UAV-driven 
NDVI map and satellite-driven NDVI map, respectively. The distinction between the road and debris (landslide) 
boundaries is less clear, especially in the initiation zone, in the satellite-based result compared to the UAV-
acquired result. While it is possible to distinguish between the landslide and forest covers, there is an overlapping 
section between the landslide and the road, as shown in Figure 9c. The image resolution seems to have a minimal 
impact on the aerial estimates of the depositional area: 1.72 ×  104  m2 from the UAV-RGB map with the visual 
inspection method, 1.75 ×  104  m2 from the UAV-NDVI, and 1.83 ×  104  m2 from the satellite NDVI, respectively, as 
illustrated in Fig. 10a. However, it exerts a more significant influence on the erosion area estimation: 2.55 ×  104  m2 
from the UAV-RGB map, 2.49 ×  104  m2 from the UAV-NDVI map, and 3.01 ×  104  m2 from the satellite NDVI 
map (Fig. 10b). These variations can be attributed to the lower resolution of the Sentinel-2 images, resulting in 
significant overestimation of the erosion area within the landslide region.

Similarly, image resolution has a greater impact on the estimation of erosion volume compared to deposited 
volume. When the elevation changes acquired from UAV-LiDAR used, the erosion volume is estimated to be 
5.60 ×  104  m3 from the UAV-RGB map, 5.37 ×  104  m3 from the UAV-NDVI map, and 6.21 ×  104  m3 from the 
satellite NDVI map (Fig. 10b). By contrast, the deposited volume appears to be consistent, e.g., approximately 

Figure 6.  Cumulative LOS displacement in (a) Site 1 and (b) Site 2. Note that the inset figures represent the 
results from April to August 2020.
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1.58 ×  104  m3 from the UAV-RGB map, 1.58 ×  104  m3 from the UAV-NDVI map, and 1.61 ×  104  m3 from the 
satellite NDVI map (Fig. 10a).

These results clearly demonstrate that the spatial resolution of NDVI data plays a significant role in 
determining the area and volume of landslides, particularly in areas with notable topographic changes, i.e., the 
erosion zone in this study. Therefore, it is crucial to carefully consider and select an appropriate image resolution 
when conducting landslide investigations to ensure accurate and reliable results.

Effect of topographic information on the landslide volume
The elevation change can be determined by using two approaches: digital photogrammetry using UAV-RGB 
images (or UAV-RGB) and 3D LiDAR point cloud (or UAV-LiDAR). In this context, a comparison of these two 
approaches is conducted, focusing on erosion and deposition volume estimation, as illustrated in Fig. 10. Overall, 

Figure 7.  (a) RGB composite image (b) Spatial distribution of NDVIs obtained from the UAV survey after 
the Gokseong landslide event and (c) NDVI distributions by land cover type. Polygons A, B, and C cover road, 
landslide, and forest, respectively. Note that the red polygon in Fig. 7a represents the area extracted by manual 
estimation, the black polygon in Fig. 7b represents the area extracted with an NDVI range 0.04 to 0.70, and the 
white polygons indicate the sample location to analyze the ranges of the NDVIs.
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the UAV-LiDAR method yields a greater erosion volume but a lower deposition volume when compared to the 
UAV-RGB method. This discrepancy is attributed to the interference of the tree branches in the RGB images. 
The elevation change near wooded areas is not properly captured in the volume calculation, especially in the 
narrow upstream area where erosion is prevalent. By contrast, in the downstream area with a wider deposition 
fan and fewer trees, the difference in deposited volume between the UAV-RGB and UAV-LiDAR methods is 
relatively minimal (Fig. 10b).

Distribution of soil water content
The moisture content (or water content) of soil undergoes changes during rainfall infiltration, and hence it is 
one of the important indicators to rainfall-triggered or rainfall-primed landslides. Specifically, in the event 
of a landslide and accompanying debris flow, the water contents in the various regions—such as the upslope 
landslide initiation area, eroded channel bed, and downstream deposition zone—reflects the characteristics of 
surface soils, including their density and looseness. In this section, the water content of soils at the Gokseong 
landslide site is estimated using UAV-acquired multi-spectral images. An artificial neural network (ANN) model 
developed by Lim and his co-workers44 is employed for this purpose, which utilizes soil color and NIR reflectance 
characteristics as input parameters, extracted from the multi-spectral images, to predict the water content of soils.

Figure 11 illustrates the distribution of soil water content within the soil cover affected by the landslide. The 
result reveals that the soil in the landslide initiation (source) zone exhibits a low water content, measuring below 
22%, while the downstream deposition zone features a higher water content, exceeding 26%. In the initiation 
zone, the top soil underwent erosion, leaving the exposed soil cover as the original ground. As a result, the soil 
in this area showed a high compacted density and thus a low water content when fully saturated. Furthermore, 
the multispectral imaging was carried out a few days after the precipitation ceased, potentially allowing for the 
drainage of pore water from the steep slope in this region. In contrast, the majority of the soil cover downstream 
consisted of freshly deposited soil. Consequently, this loosely deposited soil exhibited a higher water content. 
Along the curved debris flow path, a notable difference in water content is observed between the left and right-
side channels due to the prevalence of erosion on one side and the dominance of deposition on the other. 
Particularly noteworthy is an area in the middle-stream where the estimated soil water content exceeds 41%. 
This heightened water content is presumed to be primarily a result of substantial soil deposition in this specific 
corner area. However, it is also worth noting that the shading in this particular region may have influenced the 
multi-spectral imaging, potentially contributing to this unusually high water content.

To validate the water content estimation based on the ANN model, soil samples were collected from the 
deposition zone, given restricted access to the landslide site (Fig. 9a). The water content of a sampled soil was 
measured at 27.8%, while the estimated water content for the corresponding location was 26.5%. Although 
further validation is required to fully validate the ANN model, the result suggests feasibility of using the multi-
spectral images for estimating the water content across large-scale soil covers. The water content data enhances 
the accuracy of landslide predictions by accounting for the impact of preceding rainfall on landslide occurrence. 
Furthermore, post-landslide water content data can contribute to improved forecasts of potential collapses.

Implications of multi‑source remote sensing
In this study, we present four remote sensing techniques: satellite-based InSAR, UAV-driven RGB imaging, 
UAV-driven multi-spectral imaging and UAV-driven LiDAR survey. Before the landslide event, the satellite 

Figure 8.  Digital elevation information of the landslide region: (a) Before and (b) after the event. (c) Elevation 
difference map, which captures the source and deposition areas.
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InSAR technology detects occurrence and continuity of displacement over a wide area. After the landslide event, 
RGB and multi-spectral image data are used to estimate the extent of the landslide damage area. The eroded and 
deposited volumes are assessed using topographic data obtained from the UAV-LiDAR system. In addition, the 
UAV-driven multi-spectral images, in combination with a prediction model, allow estimation of water content 
of the soil cover. Integration of these valuable data advances our understanding of landslides, and it can facilitate 
not only prediction of landslide hazard but also planning of effective post-disaster recovery plans.

The satellite InSAR technology plays a crucial role in identifying landslide-prone areas and enables long-term 
pre-event monitoring, without the need for on-site visits. To ensure high accuracy, it is essential to carefully 
choose the optimal analysis method among various InSAR methods and related parameters based on the 
site conditions and type of landslides. In forested regions, the selection of an appropriate radar wavelength 
for acquiring coherent radar targets becomes especially critical. The radar wavelength directly influences the 
probability of radar waves being scattered from the crowns or stems of trees. Smaller radar wavelengths tend to 
increase the likelihood of such scattering  occurrences45–48.

Figure 9.  (a) Optical image and (b) spatial distribution of NDVIs, which were obtained from the Sentinel-2 
after the event. c Ranges of NDVI by region. Note that the black polygon in Fig. 9b represents the area extracted 
with an NDVI range 0.08 to 0.53. Note that the red circle indicates the soil sampling point.
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The UAV-acquiring RGB imaging offers numerous advantages in various applications. One significant benefit 
is the capability to acquire a digital surface model (DSM). Moreover, it facilitates visible inspections for landslide 
triggers without the need for on-site access. Additionally, the UAV-acquiring RGB imaging proves valuable in 
manually estimating the extent of landslides, providing a means to cross-verify results obtained from the NDVI 
method. Furthermore, this UAV-acquiring RGB imaging technology demonstrates remarkable efficiency and 
rapidity in monitoring areas with minimal vegetation or exposed terrain, such as rocky mountain, post-landslide 
sites, and bare soil. The simplicity of operating UAVs and processing data makes it an optimal choice for such 

Figure 10.  Estimated areas and volumes related to the landslide. (a) Results in the deposition zone and (b) 
results in the erosion zone. Note that manual estimation indicates that the landslide area is delineated with visual 
inspection of the optical image.

Figure 11.  Distribution of soil water content at the landslide site.
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monitoring tasks. However, it is important to note that in regions with dense vegetation, the UAV-LiDAR system 
becomes indispensable for acquiring accurate topographic information. The UAV-LiDAR technology offers a 
significant advantage by providing topographic information even in densely vegetated areas. However, LiDAR 
sensors using specific wavelengths may encounter limitations in data collection when the ground is saturated. 
In this study, the LiDAR points were not acquired for five days after the Gokseong landslide event, as the soil 
remained saturated after the event (the LiDAR sensor operated at a wavelength of 905 nm in this study). Fifteen 
days after the landslide event, the soil had dried sufficiently to obtain LiDAR points. The selection of appropriate 
LiDAR sensors is crucial, especially when dealing with monitoring tasks in areas with saturated ground shortly 
after a landslide event.

Conclusions
This study presents a comprehensive demonstration of the multi-source remote sensing technology employed to 
analyze the Gokseong landslide in South Korea. The novel approach involved utilizing UAV-mounted RGB, multi-
spectral, and LiDAR sensors, and satellite SAR sensor. The key findings derived from this study are as follows:

• The research employed satellite InSAR technology to monitor ground displacement before the occurrence of 
the landslide. The satellite InSAR technology can provide time-series displacement of the study area, which 
is critical in understanding the pre-landslide displacement patterns. The displacement persisted prior to the 
landslide, and its pattern exhibited a significant correlation with rainfall in the region. The selection of radar 
wavelength and InSAR analysis methods should be considered concerning the type of landslides and field 
characteristics.

• The UAV equipped with RGB and multi-spectral sensors offer a valuable means of acquiring precise 
information regarding the topography and land-cover of the study area. The UAV-mounted RGB, multi-
spectral sensors can help identify traces and erosion patterns of the landslide. The landslide area analyzed 
using the NDVI was consistent with the results obtained from the manual estimation.

• The landslide volume was analyzed by acquiring topographic information through the UAV-LiDAR 
technology. Although the flight and processing procedures are relatively complex compared to the UAV-
RGB technology, this method has the distinct advantage of collecting topographic information in forested 
areas. LiDAR data allows for precise capturing of the topography and provides high-resolution elevation 
information.

• The multi-source remote sensing technology can provide a comprehensive understanding of landslide 
characteristics, significantly enhancing disaster risk assessment and aiding in the formulation of effective 
recovery plans.

Data availability
The data and materials used in this article are available upon request by the correspondence author.
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