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Surface defect detection of hot 
rolled steel based on multi‑scale 
feature fusion and attention 
mechanism residual block
Hongkai Zhang 1,2,6, Suqiang Li 1, Qiqi Miao 1, Ruidi Fang 1, Song Xue 1, Qianchuan Hu 3*, 
Jie Hu 4* & Sixian Chan 5,6

To improve the precision of defect categorization and localization in images, this paper proposes 
an approach for detecting surface defects in hot‑rolled steel strips. The approach uses an improved 
YOLOv5 network model to overcome the issues of inadequate feature extraction capacity and 
suboptimal feature integration when identifying surface defects on steel strips. The proposed 
method achieves higher detection accuracy and localization precision, making it more competitive 
and applicable in real production. Firstly, the multi‑scale feature fusion (MSF) strategy is utilized to 
fuse shallow and deep features effectively and enrich detailed information relevant to target defects. 
Secondly, the CSPLayer Res2Attention block (CRA block) residual module is introduced to reduce the 
loss of defect information during hierarchical transmission, thereby enhancing the extraction of fine‑
grained features and improving the perception of details and global features. Finally, the experimental 
results indicate that the mAP on the NEU‑DET and GC10‑DET datasets approaches 78.5% and 67.3%, 
respectively, which is 4.9% and 2.1% higher than that of the baseline. Meanwhile, it has higher 
precision and more precise localization capabilities than other methods. Furthermore, it also achieves 
59.2% mAP on the APDDD dataset, indicating its potential for growth in further domains.

In the industrial production of hot-rolled steel  strips1–7, defect detection is a crucial task in the manufacturing 
domain. Its primary objective is to use automation and computer vision techniques to detect and identify 
defects, flaws, or anomalies in the manufacturing process. This plays a pivotal role in ensuring product quality, 
enhancing production efficiency, and reducing costs. Industrial defect detection has undergone four main stages: 
manual inspection, image processing, machine learning, and deep learning. In the deep learning stage, the rapid 
advancements in Convolutional Neural Networks (CNNs)8–10 have led to great performance improvements in 
industrial defect detection. CNNs can realize efficient and accurate defect detection through automated learning 
and feature extraction from  images11–15.

Defect detection is a specialized branch in computer vision tasks, and it is a process through which a 
computer identifies the presence and location of defects in images and annotates them with defect category 
labels, confidence scores, and bounding boxes delineating the defect’s position. For the task of detecting surface 
defects on steel strips, the challenge extends beyond the identification of single-class defects within individual 
images, as shown in Fig. 1a. It involves the detection of multiple defect classes within the same image, as shown 
in Fig. 1b, and the identification of overlapping instances of multiple defect types within a single image, as shown 
in Fig. 1c. At present, defect detection algorithms based on deep learning convolutional neural networks face a 
series of difficulties and challenges, including a lack of samples in steel strip surface defect datasets, an uneven 
distribution of samples, overly simplistic classification tasks, and inaccuracy in defect position  annotations16,17.

This paper mainly alleviates the following challenges. In the process of feature extraction using CNNs for 
accurate defect identification and precise localization, there are significant challenges. Some defect information 
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in images may be lost as they traverse through the convolutional layers of CNNs, potentially causing reduced 
detection accuracy and inaccurate target  localization18,19. Deep learning-based methods usually address this 
issue by fusing feature maps from multiple different  levels7,20–23. However, this multiscale feature fusion approach 
also has some  problems24–28. Shallow feature maps provide higher resolution and detailed information but 
have weaker discriminative power, while deep feature maps provide higher-level semantic information but 
lack sensitivity to  details29. Therefore, in the feature fusion process, there are issues related to information loss 
and inaccurate localization. This paper achieves comprehensive feature utilization by merging feature maps 
from different levels and exploiting their advantages in terms of resolution and semantic information. The 
combination of shallow feature maps with deep feature maps provides both more detailed information and 
higher-level semantic representation, leading to feature maps with both high resolution and strong semantic 
representational capabilities. This helps to better capture both detail and semantic information within the 
images, thereby enhancing model performance. Though most existing residual blocks have achieved success in 
deep  learning30–33, optimization is needed for practical industrial defect detection applications, especially for 
small-scale object detection and fine-grained feature extraction. Introducing residual blocks can address some 
of the information loss issues, but an emphasis on detailed information is still lacking, with insufficient fine-
grained feature extraction capabilities. This paper introduces the CRA block, which incorporates an attention 
mechanism to assist the network model in focusing on critical regions and features within the images when 
handling defect information. It adaptively adjusts the weights of various branches, making them more sensitive 
to defect information, thereby improving the model’s perception and feature extraction capabilities for defects, 
ultimately improving defect detection accuracy and effectiveness. In industrial production processes, due to strict 
quality requirements, collecting representative defect datasets is extremely challenging. The quantity, categories, 
and complexity of defects play a crucial role in evaluating a model’s defect detection capabilities. Since the 
occurrence frequency of specific defects is low, it is difficult to obtain a sufficient variety of defect samples, which 
may result in a model that lacks generalization ability and cannot accurately detect and classify various defects 
in real-world scenarios. Models with robust detection capabilities and strong generalization performance are 
required to overcome the great challenge of accurately detecting and localizing complex defects. This paper 
performs a comprehensive and reliable performance evaluation of the improved model using two defect datasets 
collected from real-world scenarios, and the study results provide insights into the model’s performance in 
practical applications.

The primary contributions of this paper are summarized as follows:

• The MSF strategy is proposed to enhance the faulty features’ representation capacity. It efficiently increases 
image resolution while acquiring more robust semantic information by combining the benefits of feature 
maps of various scales.

• The CRA block is introduced, which combines an attention mechanism with residual and skip connections 
to better capture multi-scale feature information and improve feature fusion, leading to increased awareness 
of general aspects and finer details.

• The model’s performance is validated using the NEU-DET, GC10-DET and APDDD datasets, and the results 
demonstrate the great capabilities of the improved YOLOv5s model.

 The rest of this paper is divided into the following sections. The “Related work” section introduces related 
research on attention-based residual blocks, multi-scale feature fusion, and deep learning applied to strip defect 
detection. The proposed fusion approach and residual blocks are described in detail in the “Methodology” 
section. The experimental data, results, and visual analysis of these results are provided in the “Experiments 
and analysis” section. The significance of enhancing the precision of detecting tiny flaws and the constraints of 
current studies are elucidated in the “Discussion” section. Finally, the approach proposed in this study is further 
discussed and evaluated in the “Conclusion” section.

Figure 1.  Complex defects on the hot rolled steel surface: (a) multiple defects, (b) multiple classes of defects, (c) 
overlapping defects.
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Related work
Deep learning application for steel strip defect detection
Deep learning, particularly CNNs, has been extensively used in the field of steel strip defect detection, gradu-
ally replacing traditional machine vision-based methods. These algorithms have gained widespread application 
in various industrial domains, including the detection of metal surface defects and PCB board defects. Deep 
learning models based on CNNs for defect detection can be categorized into two-stage and one-stage algorithms 
according to their structural differences. Two-stage detection models include R-CNN34,  SPPNet35, Fast R-CNN36, 
Faster R-CNN37, and Mask R-CNN38, which divide the defect detection task into two phases: generating can-
didate regions and classifying and locating defects. These models usually provide higher detection accuracy. 
For instance, Liu et al.39 improved the Faster R-CNN network by utilizing multiscale feature fusion and guided 
anchor RPN to realize adaptive anchor adjustment, addressing issues like complex texture interference and small 
defect sizes on uneven solar cell surfaces, significantly increasing defect detection accuracy. Xu et al.40 proposed a 
novel tunnel defect detection method based on Mask R-CNN to overcome the challenges of time-consuming and 
error-prone manual inspections. One-stage models include the YOLO  series41–46 and  SSD47, which regard object 
detection as a regression problem. These models have fast inference speeds and support real-time object detection 
but may have slightly lower detection accuracy compared to two-stage models. Researchers have improved these 
models to increase defect detection accuracy by introducing techniques such as multiscale feature fusion and 
adaptive anchor adjustment. For instance, Liu et al.48 enhanced YOLOX with a parallel fusion network structure 
and a self-adjusting label assignment algorithm and applied the model to address the differentiated semantic 
hierarchy of defects in images and the dynamic changes during model training, thereby significantly improving 
defect detection accuracy. Cheng et al.21 proposed a RetinaNet with differential channel attention and adaptive 
spatial feature fusion to enhance accuracy for specific defect categories and precise defect localization in steel 
surface defect detection. To sum up, one-stage models are more suitable for applications requiring high speed 
and real-time processing, while two-stage models are better suited for applications demanding higher detection 
accuracy and precision. Therefore, it is necessary to conduct further research to enhance steel strip defect detec-
tion accuracy while maintaining a high detection speed.

Fusion of multiple‑scale features
The feature pyramid is a classic approach in object detection, and it can exploit multiscale feature information. 
In previous research, many object detection models that directly use image features extracted by the backbone 
network were proposed. However, to enable the complementary and fusion of features at different scales, thereby 
improving the performance of object detection and segmentation, the concept of a feature pyramid was intro-
duced. Methods such as  FPN24,  PANet25, two-way  FPN26, etc. enhance model performance by fusing features 
of different scales through top-down or bottom-up pathways.  EfficientDet49 introduces a repeatable BiFPN for 
iterative feature fusion, further enhancing detection performance. NAS-FPN27 and Auto-FPN28 employ optimi-
zation techniques such as reinforcement learning or evolutionary algorithms to search for the optimal feature 
pyramid network structure to automatically discover and design more efficient feature pyramid networks. These 
methods have greatly improved the performance of object detection, providing new insights and approaches for 
feature fusion and network architecture design.

Blocks with residual based on attention mechanism
In defect detection, residual blocks play a crucial role in improving the depth and performance of models. The 
concept of residual blocks was introduced by He et al.50, enabling networks to model deeper levels and enhancing 
feature representation capabilities. Skip connections can address the issue of gradient propagation. Attention 
mechanisms help the model to focus on areas where defects may exist, thereby enhancing detection rates and 
localization accuracy. In defect detection tasks, the introduction of attention-based residual blocks is highly 
significant. Firstly, due to the diversity and complexity of defects, deeper models are needed to extract rich fea-
ture representations. Residual blocks enable deeper modeling and thus enhance the model’s expressive power. 
Secondly, residual blocks, through skip connections, can directly transmit information from shallow layers to 
deep layers, thereby providing a stronger gradient flow path while maintaining the effectiveness of low-level 
features. Finally, attention mechanisms make the model focus more on areas where defects may exist, leading to 
enhanced defect detection rates and localization accuracy. Xue et al.51 introduced a novel hierarchical residual 
network with an attention mechanism for spectral-spatial classification of hyperspectral images. The incorpo-
ration of attention mechanisms into residual blocks improves the model’s learning and feature representation 
capabilities, allowing the model to better capture and distinguish defect features. Liu et al.52 introduced residual 
blocks with coordinated attention mechanisms to reduce feature information loss and accelerate the detection 
progress. Thus, in current defect detection research, attention-based residual blocks are widely used in various 
deep learning models, making great contributions to improving the accuracy and robustness of defect detection.

Methodology
In industrial defect detection tasks, both one-stage and two-stage detection models are widely utilized. One-
stage models have advantages such as high real-time performance, simplicity, and speed, so they are suitable for 
industrial applications rerunning real-time response and high efficiency. Meanwhile, two-stage models provide 
higher detection accuracy and precise localization capabilities, making them suitable for detecting small defects 
in complex scenes. Based on the requirements of industrial defect detection, YOLOv5s is chosen as the baseline 
in this study because of its advantages in terms of lightweight design, multi-scale detection, data augmentation, 
and ease of deployment. In industrial defect detection, YOLOv5s can detect and locate various defects rapidly 
and accurately, thereby improving production quality and efficiency.
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Baseline network architecture
YOLOv5 is a single-stage object detection algorithm based on anchors, and it is designed to provide a high-per-
formance, high-speed, and high-accuracy framework for object detection. YOLOv5 has many versions, includ-
ing YOLOv5-n, YOLOv5-s, YOLOv5-m, YOLOv5-l, and YOLOv5-x, where the “n”, “s”, “m”, “l”, and “x” suffixes 
represent variations in network architecture and parameter quantities. As the depth and width of the network 
increase, the detection accuracy also improves, but it comes at the cost of reduced speed. YOLOv5s consists of 
three main components: the Backbone, the Neck, and the YOLO Head, as illustrated in Fig. 2. YOLOv5 utilizes 
the CSPDarkNet53 and SPPF modules as the backbone network for feature extraction from images. CSPDark-
net53 is a combination of Darknet and CSPNet. It divides the input features into two paths and connects them 
through an intermediate CSP module to achieve better feature representation capability. The SPPF module 
consists of three sequential MaxPooling layers with a convolutional kernel size of 5 × 5. This module is utilized 
to further aggregate and strengthen the features extracted by the backbone network. It can capture contextual 
information of the target at different receptive fields, thereby providing more expressive feature representations 
for subsequent object detection tasks. YOLOv5 combines PAN in a manner that facilitates the propagation of 
semantic information from top to bottom and the transmission of detailed information from bottom to top. 
This implementation is conducive to multi-scale feature fusion, thereby providing the network with more com-
prehensive and representative feature information. By utilizing the PAN structure, YOLOv5 can better integrate 

Figure 2.  YOLOv5’s overall architecture diagram.
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feature information across various scales, thereby providing a more robust representation of both semantic and 
fine-grained details. The YOLO Head is a crucial component in YOLOv5, and it is responsible for performing 
object detection tasks on the features extracted from the backbone network. It achieves this by defining prediction 
boxes using anchor boxes and utilizing an independent logistic classifier for category prediction. Meanwhile, it 
refines the bounding box coordinates and dimensions through regression for precise localization. Finally, the 
final object detection results are obtained by applying thresholding and non-maximum suppression.

Improvement of YOLOv5s network architecture design
The multiscale feature fusion approach
The feature information used for detecting small and medium-sized objects are intertwined at the lower level 
(P2) of the FPN. Though different levels of the pyramid contain size-specific object information, current feature 
fusion methods usually neglect high-resolution shallow layers, resulting in difficulties in detecting small objects. 
To address this issue, this study proposes a new fusion technique called MSF, as shown in Fig. 3. MSF aims 
to leverage shallow layers effectively and enhance the detection of small objects. To combine the P2 feature 
map with semantically enhanced feature layers, MSF provides two fusion techniques, and the combination 
of them can improve the feature map’s resolution while retaining more robust semantic information. The P2 
feature layer and detection layer are combined to reduce information loss, improve multi-scale and small object 
identification capabilities, increase the accuracy of detecting objects of various sizes, and further improve feature 
representation. Defects in steel strips are often small-scale and contain specific information, such as “crazing” and 
“rolled-in scale” in the NEU-DET dataset, “Punching” and “Inclusion” in the GC10-DET dataset. Therefore, it is 
crucial to fully exploit the P2 layer retrieved by the YOLOv5s backbone network to better capture the specifics 
and small-scale target information in defect images.

CRA block
Residual blocks are a common choice for model architectures in the current work. Figure 4 shows a comparison 
between three commonly used residual blocks: the Basic block, the Bottleneck block, and the Res2Net  block53. 
These blocks are incorporated into various model architectures currently in use. However, these residual block 
models might be susceptible to noise interference, leading to the loss of fine details throughout the processing 
and limiting the model’s performance. The Res2Attention block is shown in Fig. 6a, the CSPLayer is shown in 
Fig. 6b, and both are integrated into the CRA block, as illustrated in Fig. 6c, to mitigate the detrimental effects 
that noise has on the performance of residual block models. By expanding the receptive field and adding the 
CBAM attention module, as illustrated in Fig. 5, the CRA block overcomes the limitations of receptive fields and 
information loss during feature extraction, making the model have higher robustness. Besides, skip connections 
and residual connections work together to reduce overfitting while improving feature fusion and information 
interaction capabilities. Additionally, the addition of attention processes and residual connections enhances 
feature extraction, model stability, and generalization capacity.

The CRA block applies a 1Ã-1 convolution to split the channel dimension of the input feature map into S 
groups, denoted as x1, x2, ..., xS . Although the number of channels is decreased to 1/S of the original, each feature 
map subset xi has the same spatial size. Meanwhile, a 3Ã-3 convolution operation is used in each group, except 
for x1 , and it is designated as Ki( ) . With the exception of x1 and x2 , the feature map xi is added with the output 
of Ki−1( ) before it is fed into Ki( ) . The above operations are expressed in the following formulas:

Figure 3.  Multiscale feature fusion approach: (a) the gray lines represent the fusion of the P2 feature layer with 
the detection layer separately, (b) the blue lines represent the fusion of the P2 feature layer with the detection 
layer successively.
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Figure 4.  Comparison of different residual blocks.

Figure 5.  The overall structure of CBAM consists of CBAM modules, including the channel attention module 
and spatial attention module.

Figure 6.  Comparison of three residual blocks: (a) Res2Attention block, (b) CSPLayer, (c) CRA block. The 
configurable scaling dimension of the Res2Attention block is set to 4.
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where yi denotes the output from each group, S denotes the configurable scaling dimension, and Ki( ) denotes 
convolution. The outputs from the S groups are yi concatenated along the channel dimension and supplied to 
the CBAM attention mechanism. The feature maps are further improved using residual connections after they 
undergo a 1Ã-1 convolution to change the channel dimension. To replace the Bottleneck block, the Res2Atten-
tion block is finally incorporated into the CSPLayer.

Loss function
The YOLOv5 loss function consists of three key elements: the target confidence loss, the classification loss, and 
the coordinate loss. The coordinate loss is computed using CIoU loss, whereas the target confidence loss, clas-
sification loss, and loss with logits are computed using BCE with logits loss.

By assigning different weights to feature maps of various scales, the weighted target confidence loss is used to 
make the model concentrate more on small objects during the detection phase. The output feature map sizes of 
4.0, 1.0, and 0.4 correspond to 80Ã-80, 40Ã-40, and 20Ã-20, respectively. This highlights the necessity of high-
resolution feature maps for increasing the precision of small item detection. Detected objects are accurately sorted 
into different groups by using the classification loss to evaluate the accuracy of the classification predictions. The 
positional variations between predicted boxes and ground-truth boxes are quantified using the coordinate loss. 
Given the nature of object detection tasks, it is crucial to consider target confidence, classification, and position 
information. The following shows the computation of the overall loss function:

where the balancing coefficients, represented by the variables �1 , �2 , and �3 , are used to adjust and balance the 
relative importance of different loss components in the overall loss function.

The following formula is used to determine the target confidence loss:

where S2 denotes the number of separated grids, B denotes the number of anchor boxes in each grid, Inoobjij  denotes 
the presence of an object in the anticipated box, and it has a value of 0 or 1. The ground truth confidence score 
is represented by the letter Ĉi , and Ci stands for the target’s projected confidence score. The penalty weight coef-
ficient is represented by �noobj.

The following equation is used to determine the categorical loss:

where Pi(c) and P̂i(c) represent the probability values of the predicted and actual targets, respectively.
The CIoU Loss is used by YOLOv5 for bounding box regression. The coordinate loss in YOLOv5 is calculated 

using the following formula:

where b represents the centroid of the predicted frame, while bgt represents the centroid of the actual frame. The 
symbol ρ denotes the Euclidean distance between these centroids. Besides, m represents the diagonal length of 
the bounding box that encloses both the predicted frame and the real frame, α denotes the weight coefficient, 
IoU represents the intersection over union, which calculates the ratio of the intersection area to the union area 
of the predicted and real frames’ bounding boxes. v represents the aspect ratio difference between the predicted 
box and the real box.

Experiments and analysis
The proposed method was evaluated on three publicly available steel surface defect detection datasets that are 
widely used in the field of object detection: NEU-DET, GC10-DET and APDDD datasets. Through extensive 
experiments, this paper demonstrates the soundness, effectiveness, and superiority of the experimental design 
for the improved YOLOv5s.
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Experimental details
In this study, the experiment was carried out using the PyTorch deep learning framework, and the environment 
was set up on a Windows 10 operating system. The experiment’s hardware and software setup are as follows: Intel 
Core i5-12400F CPU, NVIDIA GeForce RTX 3060Ti G6X GPU, PyTorch 1.12.1, and CUDA 11.6. YOLOv5s was 
taken as the experiment’s preferred model. The SGD optimizer was used throughout the training process, with 
500 epochs, an initial learning rate of 0.01, a momentum of 0.937, a weight decay factor of 0.005, a batch size of 
8, and 1 worker for data loading.

Datasets for evaluation
NEU‑DET dataset
The NEU-DET  dataset54 is a collection of steel surface defect data gathered by Northeastern University and is 
mainly used for research on surface defect spotting and detection in hot-rolled steel strips. It includes 1800 gray-
scale images with a size of 200Ã-200 pixels. There are six common surface flaws in hot-rolled steel strips: crazing, 
inclusion, patches, pitted surface, rolled-in scale, and scratches. As illustrated in Fig. 7, the dataset includes 300 
images for each category of defect, some of which may have several different types of faults.

GC10‑DET dataset
The GC10-DET  dataset55 was recently generated under actual industrial settings for extensive metal surface 
defect identification. It includes a total of 2300 images with a resolution of 2048Ã-1000 pixels. The dataset 
includes ten types of defects found on the surface of steel plates, including various punching hole, weld line, 
crescent gap, water spot, oil spot, silk spot, inclusion, rolled pit, crease, and waist folding. Figure 8 displays some 
defect sample images with annotations. With strong inter-class similarity and unbalanced sample distribution, 
the GC10-DET dataset shows a substantial variance in the number of images for each type of defect. Also, there 
could be multiple defect types in the same image, posing a challenge to defect detection algorithms due to the 
unbalanced data distribution.

Aluminum profile surface detection database
The image of the data set produced by the initial open source dataset of the 2018 Guangdong Industrial Intel-
ligent Manufacturing Big Data Innovation Competition-Intelligent Algorithm competition “Aluminum Profile 
Surface Defect Identification”. APDDD is the name of the detection dataset. The APDDD dataset contains 1,885 
defect samples, with a picture size of 2560 x 1920, and a total of ten different defect types, including dents, non-
conductivity, scratches, orange peel, bottom leaks, bumps, pits, bumps, coating cracks, dirty spots.

Datasets are frequently stored in file formats including XML, TXT, CSV, etc. After downloading via the data 
availability download link, the NEU-DET and GC10-DET datasets utilized in the paper are automatically in 
XML file format, whereas the YOLOv5 model because the TXT file format is utilized, which is relatively easy, we 
must transform the file format in order to fulfill the requirements of testing and training the model. The approach 
used in this study is to divide the dataset into two groups: a training set and a test set. Refer to the following 
 papers56–58, the network model is trained on about 70% of the data that are randomly selected, and the accuracy 
and robustness of the model are tested on the remaining 30% of the data, as shown in Table 1. Many of the defects 
in the datasets have relatively modest sizes and diverse irregular shapes and patterns. Meanwhile, the complex 
geometries of these defects and their high degree of similarity across defect categories require algorithms with 
higher resolution and sensitivity to detect and categorize these defects correctly. Determining the presence of steel 

Table 1.  Details of the segmentation of the experimental datasets.

Dataset Train set Test set Sum

NEU-DET 1260 540 1800

GC10-DET 1608 690 2298

Figure 7.  Annotated example images from the NEU-DET dataset show six different types of defects that have 
been found in steel strips.
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surface defects is complicated due to the high complexity of the defects’ shapes and their tiny size. The developed 
algorithm must distinguish between tiny distinctions between defects and other textures or impurities on the 
steel surface as well as perform accurate defect recognition for various defect types. Additionally, the system must 
recognize and classify numerous defect types at once because some images may contain multiple types of defects.

Metrics for evaluation
To evaluate the effectiveness of the improved model, this study uses four commonly used object detection model 
assessment measures: AP, mAP, GFLOPs and FPS. In AP, the precision of the model is evaluated for a given 
detection category by measuring the area under the precision-recall curve. mAP is the averaged AP score across 
all categories, and it provides a measurement of the overall detection accuracy. The quantity of floating point 
operations, or FLOPs for short, is a measure of computing level. It may be applied to quantify a model’s complex-
ity. The frame-per-second (FPS) provides an assessment of the object detection model’s real-time performance 
by indicating the number of photos it can analyze in a second. The following provides the calculation formulas 
for recall and precision:

where the key measurements of the confusion matrix are TP, FP, and FN. TP denotes the number of true posi-
tive samples the classifier properly identified, FP denotes the number of false positive samples that the classifier 
reported, and FN denotes the number of false negative samples. The above formulas show that a higher mAP 
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TP

TP + FP

(9)Recall =
TP

TP + FN

(10)AP =
Precision+ Recall

2

(11)
mAP =
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APi

k
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1

1
n
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Figure 8.  Labeled images of strip defects from the GC10-DET dataset.
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indicates better overall model performance. Here, i represents a particular class, while k represents the overall 
number of detection classes. The parameters n and t represent the number of pictures to be identified and the 
time taken to detect one image, respectively.

Performance assessment
Comparison with state‑of‑the‑art
In this research, the efficiency of the proposed model is evaluated using the NEU-DET dataset and the GC10-
DET dataset. Existing one-stage and two-stage detection models are compared in terms of mAP. The NEU-
DET dataset is taken as the basis for the initial comparison trials, and the comparison results of each model’s 
mAP and numerous default categories are listed in Table 2. Since small things like crazing make up most of the 
NEU-DET collection, it is essential to increase small object identification accuracy. The comparison between 
common one-stage approaches including SSD,  RetinaNet59,  FCOS60, and YOLO series (including YOLOv3, 
YOLOv3-spp, YOLOv4, and YOLOv8s) and two-stage approaches including Faster R-CNN, Cascade R-CNN61, 
and  DDN20 show that the Faster R-CNN with VGG16 and ResNet50 as the backbone networks tend to achieve 
higher detection accuracy. In terms of performance against other fault categories, the improved model performs 
the best. The mAP of the improved model reaches 51.2%, 83.1%, 91.0%, 82.2%, 71.5%, and 91.8% for crazing, 
inclusion, patches, pitted surface, rolled-in scale, and scratches, respectively. Faster R-CNN with  ResNet5050 as 
the backbone network marginally outperforms other approaches in crazing and rolled-in scale, while RrtinaNet 
outperforms other approaches in pitted surface, and YOLOv3-spp takes the lead in scratches. However, the results 
demonstrate that the improved YOLOv5s achieves an mAP of 78.5%, with 4.9% higher mAP than the baseline, 
showing the best overall average detection precision. Then, comparison experiments were conducted on the 
GC10-DET dataset for current advanced network models, such as Faster R-CNN, SSD, RetinaNet, YOLOv3, 
YOLOv3-spp, YOLOv4, and YOLOv8s, to further confirm the improved model’s robustness and generalization 
ability. The comprehensive comparison results of defect accuracy and mAP for each model are shown in Table 3. 
Compared to the baseline, the improved YOLOv5s achieves an average detection precision of 67.3% in terms of 
mAP. To sum up, the improved YOLOv5s model can accurately and promptly identify various steel strip defects 
in a variety of application settings, satisfying the practical needs of industrial defect detection. By contrasting the 

Table 2.  Comparison results of different models on NEU-DET.

Method Network mAP (%)

AP (%)

GFLOPs FPSCr In Pa Ps Rs Sc

Baseline CSPDarknet53 73.6 42.4 82.0 90.0 77.8 59.4 89.9 15.8 112

YOLOv3 Darknet53 72.8 45.6 77.8 85.4 79.4 58.1 90.3 154.6 43

YOLOV3-spp Darknet53 72.5 41.1 79.7 90.6 70.8 61.1 92.1 155.5 36

YOLOv4 CSPDarknet53 70.8 41.6 72.7 83.1 76.4 59.6 91.4 29.9 60

YOLOv8s CSPDarknet53 75.4 44.7 81.2 88.5 80.1 66.4 91.4 28.4 91

SSD VGG16 74.8 46.9 75.9 90.6 83.8 67.3 84.1 30.7 32

Faster R-CNN VGG16 72.3 42.9 67.9 84.9 79.1 68.8 89.9 200.9 18

Faster R-CNN ResNet50 77.9 52.5 76.5 89.0 84.7 74.4 90.3 91.3 14

DDN ResNet34 74.8 48.0 75.9 87.4 78.3 68.4 90.8 – 17

FCOS ResNet50 71.3 44.1 76.1 86.5 79.8 63.3 78.2 80.6 40

Cascade R-CNN ResNet50-FPN 73.3 38.3 76.0 88.4 81.3 67.8 88.2 119.0 12

RetinaNet ResNet50 71.2 41.6 77.5 90.4 83.9 61.8 72.1 83.2 23

Our work CSPDarknet53 78.5 51.2 83.1 91.0 82.2 71.5 91.8 20.1 54

Table 3.  Comparison results with different models on GC10-DET.

Method Network

AP (%)

GFLOPs FPSmAP (%) Pu Wl Cg Ws Os Ss In Rp Cr Wf

Baseline CSPDarknet53 65.2 96.5 93.6 96.2 77.5 62.8 59.1 23.3 33.5 40.2 69.1 15.8 71

SSD VGG16 56.3 94.8 89.3 90.8 65.8 55.0 45.4 18.2 12.4 20.5 70.5 30.7 47

RetinaNet ResNet50 59.9 92.4 88.4 94.5 74.1 54.5 54.4 28.7 15.5 21.4 75.1 41.6 18

Faster R-CNN ResNet50 60.8 82.2 78.0 95.4 69.2 57.7 58.3 24.8 29.2 30.7 82.6 52.8 14

YOLOv3 Darknet53 58.3 96.7 73.0 95.2 77.1 56.7 45.9 25.8 20.2 14.4 77.6 154.7 61

YOLOV3-spp Darknet53 60.6 96.5 82.5 96.8 75.5 57.4 48.4 26.4 22.0 20.6 79.8 283.9 55

YOLOv4 CSPDarknet53 61.2 90.4 89.8 93.9 62.6 59.4 48.3 23.6 17.7 37.6 88.2 30.0 56

YOLOv8s CSPDarknet53 66.9 97.0 87.7 96.4 84.7 65.8 56.0 24.3 30.0 45.9 81.5 28.7 60

Ours CSPDarknet53 67.3 97.1 94.3 96.0 76.2 62.9 56.1 25.2 33.1 50.7 81.9 20.4 34
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two parameters, GFLOPs and FPS, with those of other models using the NEU-DET and GC10-DET datasets, we 
were able to increase the model’s detection accuracy. The GFLOPs have gone up from Baseline, although they 
are still lower than in other models. The model’s frame rate per second has dropped. For more information, see 
Tables 2 and 3.

Ablation experiment
Ablation experiments were conducted to evaluate the impacts of MSF and CRA block and investigate the per-
formance of the YOLOv5s model on the NEU-DET and GC10-DET datasets. Table 4 displays the results of the 
ablation experiments. To explore the impact of MSF, it can be seen that various feature fusion approaches can 
affect the model’s concentration on feature information and its power to collect fine features and identify small 
objects. In this study, the model’s exploitation of minute information was enhanced by the use of three different 
fusion approaches. According to the experimental results shown in Table 5, using these three fusion approaches 
on the NEU-DET dataset can enhance the model’s functionality. Specifically, fusion approaches a and method 
b improved the mAP by 2.4% and 2.5% over baseline, respectively. Then, the two approaches were combined to 
develop the third fusion approach, MSF, which outperformed fusion approaches a and b, leading to a 3% increase 
in mAP over the baseline. According to the test results, the proposed fusion approach may collect global and 
local detailed information more effectively, enrich defect feature information, and improve the performance of 
the model.

Meanwhile, the research investigates the effects of various attention processes on the CRA block, building on 
the baseline that makes use of the MSF.  ECA62,  SE63,  EffectiveSE64, and  CBAM65 were tested on the NEU-DET 
dataset along with other attention mechanisms. The effect of using the attention mechanism is listed in Table 6. 
Note that each of these approaches helped to reduce the computational complexity and parameter quantity of 
the model. Particularly, compared to the baseline with MSF, the baseline with CBAM achieved 1.9% higher mAP. 
The examination of the experimental data indicates that the CBAM significantly improves the feature extraction 
capabilities of the model’s backbone when building the CRA block. It emphasizes capturing more features and 
mitigating the effect of noise, thereby greatly enhancing the model’s detecting capacity.

Table 4.  Results of ablation experiments on different datasets.

Ablation 
setting mAP (%)

MSF CRA NEU-DET GC10-DET

× × 73.6 65.2

×
√

76.1 66.8
√

× 76.6 66.2

Baseline
√ √

78.5 67.3

Table 5.  Performance of different fusion methods on NEU-DET.

Method FLOPs Parameters mAP (%)

AP (%)

Cr In Pa Ps Rs Sc

Baseline 15.8 G 6.70 M 73.6 42.4 82.0 90.0 77.8 59.4 89.9

Baseline+a 17.0 G 6.79 M 76.0 43.7 83.8 89.8 80.1 68.9 89.4

Baseline+b 22.1 G 9.98 M 76.1 44.7 83.3 92.2 83.5 62.2 90.8

Baseline+a+b 23.2 G 10.07 M 76.6 47.1 81.8 91.4 82.0 66.4 91.1

Table 6.  Comparison of different attention mechanisms on NEU-DET.

Attention FLOPs Parameters mAP (%)

AP (%)

Cr In Pa Ps Rs Sc

ECA 20.0 G 8.29 M 76.4 47.8 85.0 91.5 78.7 64.5 90.6

SE 20.0 G 8.32 M 77.0 47.6 84.0 91.4 78.1 69.8 91.0

EFSE 20.5 G 8.61 M 77.5 48.2 83.6 92.7 82.2 65.4 92.6

CBAM 20.1 G 8.33 M 78.5 51.2 83.1 91.0 82.2 71.5 91.8
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Results of defect detection visualization
A visual analysis was performed to investigate the model’s efficacy by comparing it with the baseline on the NEU-
DET and GC10-DET datasets, and the results demonstrate the model’s performance intuitively. Figure 9 shows 
the predictions on the NEU-DET dataset, whereas Fig. 10 displays the predictions on the GC10-DET dataset. 
These plots provide a visual representation of how the model recognizes several types of defects in the images. 
These prediction results demonstrate that the proposed method achieves higher prediction accuracy and more 
exact localization of the defects than the baseline.

Discussion
During the industrial manufacture of strip steel, minor flaws including Cr, Pa, In, and Sc defects are frequently 
observed in the NEU-DET dataset, as shown in the Fig. 11. It is natural to notice from the images that many 
fault categories have tiny overall flaws. There are several and minor flaws. As the image illustrates, it is evident 
that addressing the issue of numerous minor faults is more important than addressing the large-area problems 
of Ps and Rs. Table 2 demonstrates how our technique increases the accuracy of tiny defect identification, and 
Fig. 9 illustrates how our method performs better and increases defect detection accuracy. Comparative tests 
were carried out on the APDDD dataset, as indicated in the Table 8, to confirm the scalability of our approach 

Figure 9.  Visualization of the prediction results on the NEU-DET dataset.

Figure 10.  Visualization of the prediction results on the GC10-DET dataset.
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for defect identification in various materials. The findings in the table show that our approach came in second 
best highest ranking in mAP, suggesting that there may be room for growth with this approach. Furthermore, 
on two datasets, we compared the mAP and FPS parameters with those of other models. Table 7 shows that our 
approach produces the best results in terms of both mAP and FPS when compared to other approaches.

Limitation and future work
Even though our strategy has produced excellent outcomes, there are still certain problems that require attention. 
Environmental variables might affect our model’s performance because not all situations may have been included 
in the datasets used for training and assessment. The effects of light, smoke, loud noises, and other environmental 
factors can be introduced. As an alternative, data augmentation of defect attributes, transfer learning, and pre-
training on other data sets can be used to improve the model’s generalization ability. Future research will focus 
on the integration of real-time fault detection and field deployment models, which is essential for practical use 
in industrial hot-rolled steel manufacturing.

Conclusion
This work proposes an improved lightweight one-stage detection model, YOLOv5s, which can make predictions 
with higher precision in response to the difficulties in the surface defect detection of steel strips and satisfy the 
practical application needs in industrial production. First, the MSF module is designed to enhance the model’s 
ability to recognize small objects and increase prediction accuracy at various sizes. This improves the feature 

Table 7.  Comparison results with different methods.

Dataset Method Backbone mAP (%) FPS

NEU-DET

Li et al.58 CSPDarknet53 74.7 –

GA-RetinaNet56 ResNet50 72.8 8.6

ACA-Net56 ResNet50 74.6 7.6

GA-Faster R-CNN56 ResNet50 75.6 7.5

ACA-Faster R-CNN56 ResNet50 76.4 6.0

Our work CSPDarknet53 78.5 54.0

GC10-DET

M-YOLOv357 Darknet53 41.1 -

GA-RetinaNet56 ResNet50 58.9 6.1

ACA-Net56 ResNet50 60.5 5.9

Our work CSPDarknet53 67.3 34.0

Table 8.  Comparative outcomes on APDDD dataset using various models.

Method Backbone mAP (%)

AP(%)

De Nc Sc Op Bl Bp Pi Cp Cc Ds

RetinaNet ResNet50 33.5 21.8 57.1 16.2 62.2 32.4 1.7 48.4 30.0 63.8 1.8

Faster R-CNN VGG16 38.6 30.8 53.4 19.3 63.0 30.6 13.0 42.7 38.4 87.9 6.8

Faster R-CNN ResNet50 41.4 50.8 50.4 21.0 67.4 25.8 12.8 36.5 84.6 59.7 4.8

YOLOv3-tiny Darknet19 55.6 68.8 69.1 21.7 79.3 53.5 42.4 45.6 57.1 89.3 29.4

YOLOv4 CSPDarknet53 53.8 45.6 70.0 33.3 66.4 42.8 27.2 63.5 96.4 66.2 26.2

YOLOv7 E-ELAN 54.5 64.1 72.1 32.5 83.4 53.4 31.2 35.3 59.4 94.3 19.3

YOLOv8s CSPDarknet53 63.5 68.0 76.4 43.0 83.0 58.0 65.6 59.9 61.2 91.9 28.5

Our work CSPDarknet53 59.2 64.1 74.9 35.1 77.8 60.2 38.3 68.6 58.0 97.5 17.4

Figure 11.  Analysis of different defects from NEU-DET.
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representation capabilities of feature maps. Second, the CRA block, based on attention-focused aggregation, 
improves the backbone network’s feature extraction capability and makes the model pay more attention to fine-
grained defect feature information, thereby further enhancing the model’s performance in detecting steel strip 
surface defects with high inter-class similarity and complex backgrounds. By reducing noise, it can improve 
defect localization and detection accuracy. Finally, extensive comparative experiments with advanced models 
were carried out on the steel strip surface defect detection datasets, NEU-DET, GC10-DET, and APDDD, to 
confirm the model’s performance advantage. The experimental results show that the proposed method performs 
better in detecting steel strip surface defects, achieving higher detection accuracy and better defect localization 
performance. The proposed model may be useful in industrial production because it can successfully address 
the issues of complicated backdrops and high inter-class similarity in defect identification.

Data availibility
This study did not report any data. The proposed method was evaluated on three publicly available steel surface 
defect detection datasets that are widely used in the field of object detection: NEU-DET(http:// facul ty. neu. edu. 
cn/ songk echen/ zh_ CN/ zdylm/ 263270/ list/), GC10-DET(https:// www. kaggle. com/ datas ets/ alex0 00kim/ gc10d 
et) and APDDD(https:// tianc hi. aliyun. com/ datas et/ 148297).
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