
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports

Construction, observation
and knowledge abstraction for go
endgames on small boards
Chia‑Ming Hsu 1, Hung‑Cheng Lin 2, Yueh‑Ting Chen 2, Chih‑Wen Hsueh 2 & Tsan‑sheng Hsu 1*

A Go endgame database consists of optimal game values and moves for every legal arrangement of no
more than S pieces on an N by N board. This paper describes methods for constructing such databases
when 1 < N ≤ 5 and S = N

2 . When cycles of plies with lengths greater than 4 are encountered, two
rules, one allowing cycles and the other disallowing them, are implemented. Observations and
knowledge are obtained for these endgames, which may elucidate the fundamental properties of the
popular game Go. First, the optimal game values are different when N is even and odd, regardless of
whether the repetition of positions is allowed. When N is odd, the first player can occupy the whole
board, while this is not the case when N is even. Second, allowing cycles makes the first and second
players equal in strength when N is even, whereas the first player always dominates when N is odd.
Using the state‑of‑the‑art open‑source deep learning Go engine KataGo to correctly solve a given
position as an indicator, factors affecting level of difficulty are found, including the distributions of
the optimal game values among all legal plies and the cardinality and values of the true optimal plies.
A simple formula is designed that works on more than 10% of the positions so that positions with a
given level of difficulty can be found with a high probability.

Go is an ancient board game that is popular internationally1–4. Over the years, people have played Go with vari-
ous board sizes, ranging from 45 to 19. Different rules are used for scoring6,7; these rules include the setting of
a Komi value8, which represents the compensation given to the second player due to the advantage of the first
player obtained from the initiative, and different treatments are used when a repetition of plies occurs9. Regarding
this last point, cycles of plies or repetition of positions, whose lengths are always even, may occur. To encourage
meaningful play, Go forbids the formation of length-2 cycles, called Ko, which can be created easily by players.
Different Go rules involve different complicated treatments for allowing and disallowing other types of cycles10.

Regardless of which variant is used, they are all enjoyable, though it is not known why. In this research,
through the construction of Go endgame databases11, which consist of optimal game values and moves for
every legal arrangement of no more than S pieces on an N by N board, we aim to shed light on the above ques-
tions. Our approach relies on constructed endgame databases instead of developing solvers12 to find optimal
plies when particular board positions are given. Although a solver can quickly find solutions for a particular
board position, and thus can be used to determine the optimal ply on initially empty boards, this does not give
an aggregated picture of solutions for all possible positions. It will take too much time to run the solver on all
possible positions. On the other hand, the construction of an endgame database usually requires much more
time but gives all the results at once. However, the amortized time needed to solve a position is much shorter
than the time needed for a solver to complete this task.

We use the classical retrograde analysis algorithm13 to construct the databases. Due to the large size of the
databases and the need to address cycles in plies, we develop memory-efficient methods tailored for handling
graphs with cycles14 that cannot fit into the main memory. After the databases are constructed, we perform
data analysis to obtain an overall picture of the results. We find the following interesting properties. First, the
optimal game values are different when N is even and odd, regardless of whether repeated positions are allowed.
When N is odd, the first player can occupy the whole board, while this is not the case when N is even. Second,
allowing cycles makes the first and second players equal in strength when N is even, whereas the first player is
always dominant when N is odd.

Furthermore, taking the time required by the state-of-the-art open-source deep learning Go engine KataGo
to correctly solve a given position as an indicator, the factors affecting the level of difficulty are found to include
the distributions of the optimal game values among all the legal plies and the cardinality and values of the true

OPEN

1Institute of Information Science, Academia Sinica, Taipei 115201, Taiwan. 2Department of Computer Science and
Information Engineering, National Taiwan University, Taipei 106216, Taiwan. *email: tshsu@iis.sinica.edu.tw

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-57338-x&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

optimal plies. A simple formula is designed so that positions with a given level of difficulty can be found with
a high probability.

The remainder of this paper is organized as follows. In Sect. "Preliminaries", we present preliminaries regard-
ing Go rules and related work. In Sect. "Methodologies", we describe our main methods, including the algorithms
and data structures used. In Sect. "Experimental results", we describe the experimental settings and results. In
Sect. "Discussion", we analyze the databases and discuss interesting points found in the analysis. In Sect. "Con-
cluding remarks and future work", we present the conclusion and possible future work.

Preliminaries
Rules of Go
Each turn in the game of Go involves one of two actions: playing a stone or passing. These actions are referred
to as a ply, and the game ends when both players pass consecutively. Stones in Go can be placed only at intersec-
tions. Each empty intersection connected to a stone is considered a liberty of the stone. The liberties of the black
stone in Fig. 1 are labeled. According to the Go rules, any connected or single stone must have at least one liberty.
Otherwise, the stones are considered dead and must be removed from the board. To balance the advantages of
both players, komi is introduced as a bonus score for the second player. Additionally, seki is a special pattern in
which neither player benefits from playing a stone, as shown in Fig. 2. Liberties that are shared by both players
in a seki are called shared liberties, as labeled in Fig. 2. Moreover, it is important to count the enclosed empty
intersections when calculating the score, as demonstrated in Fig. 3.

Scoring: territory/area
The number of occupied intersections is used in Go to determine the winner, which is the player who scores more
points after deducting the komi from the first player. There are two major ways to count, namely, area scoring
and territory scoring6,7. Before calculating the score, both scoring methods require the removal of dead stones.
In area scoring, both the stones and the empty intersections enclosed by the stones are considered to be the
occupied intersections. In addition, the shared liberties in seki are equally divided between both players. If the
number of shared liberties, that is, the empty intersections that have both black and white stones as neighbors,
in seki is odd, then the last liberty is given to the player who passed first. In contrast, in territory scoring, only
the intersections enclosed by stones of the same color are counted, not stones. Thus, shared liberties in seki are
not counted at all. The final score is calculated by subtracting the number of stones captured in the play.

Figure 1. A black stone with 3 liberties, labeled with ’X’.

Figure 2. An example of seki. In the figure, ’X’ represents a shared liberty.

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

Cycles: Ko and others
In Go, if there are stones that have no liberties, the stones are removed. Since stones can be captured, it is pos-
sible to cause cycles. Cycles can be divided into many types according to length, where a 2-length cycle is called
ko and occurs frequently during play. To keep the game going, 2-length cycles are forbidden. However, cycles of
length other than 2 are handled differently under different rules. Some Go rules allow such cycles, and the game
results in a draw, but some Go rules forbid any kind of cycle.

Major variations among rules
Currently, there are many Go rules, such as the AGA Rules, Chinese Rules, Ing Rules, New Zealand Rules, Japa-
nese Rules, and Korean Rules. Area scoring is adopted by the Chinese Rules, Ing Rules, AGA Rules, and New
Zealand Rules, then territory scoring is adopted by the Japanese Rules and Korean Rules. According to the AGA
Rules and New Zealand Rules, all cycles are forbidden. However, according to the type of cycle, the game may
end in a draw; cycles are forbidden in the Chinese Rules. According to the Japanese Rules and Korean Rules,
games are judged as having no result and may be replayed after a cycle occurs. Ing Rules are similar to Chinese
Rules but use more complex rules for dealing with cycles. Table 1 shows a comparison of Go rules15.

Related work
We first describe previous Go endgame databases. In 2001, Bouzy Bruno used retrograde analysis to construct
1× 1 Go, 2× 2 Go, and 3× 3 Go endgame databases16. In his paper, the repetition of states is forbidden. In the
1× 1 Go scenario, the game ends in a draw because both players cannot play anywhere. In addition, the black
player can win 1 in 2× 2 Go due to the repetition rule. In 3× 3 Go, if the black player plays at the center, then
the white stones cannot avoid being captured. Therefore, the black player can win 9 in 3× 3 Go. We next describe
the Go solver results.

Erik C.D. Van Der Werf et al. used a search-based approach to solve Go problems on small boards17. They
wrote a program, Migos, to solve Go boards of sizes up to 5× 5 . Migos is based on alpha-beta and implements
a transposition table, symmetry lookup, internal unconditional bounds, and move ordering. They found Go
solutions for four different ko rules: basic, Japanese, approximate SSK, and SSK. According to the SSK ko rules,
the black player can win 2 and 25 in 4× 4 Go and 5× 5 Go, respectively.

The Go program Crazy Stone, using Monte Carlo tree search (MCTS), won 9× 9 Go in the 11th Computer
 Olympiad18. Afterward, it was found that MCTS is more suitable for Go. Cheng-Wei Chou et al.19 used Meta-
MCTS to solve 7× 7 Go in 2011. Although his algorithm does not completely solve 7× 7 Go, it provides strong
opening books. In addition to MCTS, machine learning (ML) has been a good method for Go in recent years.
KataGo was created by David J. Wu and is a Go program based on AlphaGo Zero and AlphaZero20. In 2021, the
7× 7 Go opening books calculated by KataGo were uploaded21. Although there is no proof that 7× 7 Go has
been solved, the authors believe it is very close to being solved.

Figure 3. An example of enclosed empty intersections. In the figure, ’X’ and ’O’ represent empty intersections
enclosed by the black and white players, respectively.

Table 1. Comparison of rules for 19× 19 Go.

Scoring method No suicide rule Repeated positions Komi

AGA rules Area Yes Forbidden 7.5

Chinese rules Area Yes Forbidden or a draw 7.5

Ing rules Area No Depends on ko rules 8

Japanese rules Territory Yes Game ends with no result 6.5

Korean rules Territory Yes Game ends with no result 6.5

New Zealand rules Area No Forbidden 7

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

Yang, Bohong et al. published an approach to train Go models without prior knowledge of komi22. Moreover,
the Go model can learn komi during training. Their model uses Tromp Taylor rules and estimates that the komi
is 9, 2, and 4 for 3× 3 Go, 4× 4 Go, and 6× 6 Go, respectively. The best first moves for 3× 3 Go, 4× 4 Go, and
6× 6 Go are b2, c3, and d4, respectively. The authors also provided the solutions of their model for 6× 6 Go,
6× 7 Go, and 7× 8 Go.

Methodologies
In this paper, we construct Go endgame databases using AGA Rules23 with two variations. One treats cycles of
length ≥ 4 as draws and the other does not allow any cycles. In accordance with the AGA Rules, area scoring is
used for score calculation. Additionally, cycles and suicides are not allowed, which means that any moves that
cause a cycle or a suicide are considered illegal moves. Finally, we set the komi to 0.

This chapter is divided into two parts. The first part describes the algorithms for building the endgame data-
bases and addressing cycles. In the second part, we focus on the data structures and the approach used to reduce
memory usage and the amount of storage space needed.

Retrograde algorithm
Retrograde analysis is a widely used algorithm in the construction of endgame databases13. Initially, all states are
labeled as unknown, except for the states where the game outcomes are already known, which are the leaves of
the game tree. Retrograde analysis involves calculating the endgame value of each state by backtracking from the
leaves of the game tree. There are various ways to implement retrograde analysis algorithms, including retrograde
analysis algorithms with external memory24 and parallel retrograde analysis algorithms25.

Repeated forward checking with no cycles
We use the forward-checking variant to implement the retrograde analysis algorithm, which means that we check
each state repeatedly and calculate the endgame value of the state based on the endgame values of its children.
Since cycling causes the endgame values of the states in the cycles to continue changing, this makes it impossible
to stop retrograde analysis. When there is no child that can win and there is a child with an unknown endgame
value, to prevent the effect of cycles on retrograde analysis, the endgame value is not updated. Otherwise, we
will change the endgame value of the current state to the best endgame value for the current player based on
the children.

Loop handling—SCC
In Go, there are various kinds of cycles. The reason a cycle occurs is that there is no way for any state in a cycle
to win. After performing retrograde analysis, there are some states whose endgame values are unknown; these
states are called unstable states. The other states are called stable states. The unstable states can be divided into
two types, in-cycle and out-cycle states, according to whether the state is in a cycle. The states in cycles are called
in-cycle states, and the others are called out-cycle states. To prevent cycles in Go, we need to determine the in-
cycle states in the game tree and calculate the endgame values when removing the edges that can cause a cycle
to form. After finding the endgame values of in-cycle states, we calculate the endgame values of out-cycle states.

Each in-cycle state is reachable from any other in-cycle state in the same cycle, which is a strongly connected
component (SCC)14. A cycle can be composed in a very complicated way in a graph. In addition to the single
4-cycle, two 4-cycles can form a larger cycle. Moreover, an out-cycle state is also an SCC with only one state.
According to the types of the states in the SCCs, we divide the SCCs into in-cycle SCCs and out-cycle SCCs.

After finding the in-cycle and out-cycle states, we first calculate the endgame values for each in-cycle SCC
by depth-first search (DFS) to iterate through all the states in an in-cycle SCC and remove the edges that cause
cycles. For those states whose edges are deleted, the endgame values can be calculated using other children.
However, because whether an edge causes a cycle is related to the visiting path, the endgame value of the same
state may be different when the visiting path is different. Therefore, we have to calculate the endgame values for
a state when the visiting paths are different.

After calculating the states in the SCCs, we calculate the endgame values of all the out-cycle SCCs. Because
each out-cycle SCC consists of only one vertex, we use retrograde analysis on all out-cycle SCCs to calculate the
endgame values. In addition, some in-cycle SCCs are connected to other in-cycle SCCs through out-cycle SCCs,
so we calculate the in-cycle SCCs again. We repeat the calculation of the endgame values of the in-cycle SCCs and
the out-cycle SCCs until the endgame values of all SCCs have been calculated. Although we have already found
the endgame values for each in-cycle and out-cycle state, the task is not over. If we update the endgame values
of the SCCs, then the stable states should also be updated because the stable states may find a better endgame
value in the SCCs. Moreover, after updating the stable states, unstable states also may find better endgame values.
Therefore, we need to update both the unstable and stable states until no state can be changed.

Implementations
N ≤ 4 : Since we use the forward-checking variant to implement the retrograde analysis algorithm, it is neces-
sary to know the number of children for each state to calculate the endgame value of each state. However, the
overhead of calculating the children of each state is very high. Therefore, we store the children of each state
first and use them directly. While performing retrograde analysis, we load the children and endgame values of
each state and perform retrograde analysis until all the states are stable. Finally, we address the cycles, and the
endgame database is completed. To increase the speed, we also use parallel computing to calculate the endgame
values of several states simultaneously.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

N = 5 : In 5× 5 Go, the process of building the endgame databases is similar to that for 4× 4 Go. However,
as the number of states increases, the states cannot be completely loaded into the memory. Therefore, we divide
all the states into several groups. We perform retrograde analysis for one group at a time, so we only need to load
the children of those states into the group, which significantly reduces the memory requirements.

On the other hand, since the SCC sizes of 5× 5 Go also increase, we use alpha-beta search instead of DFS to
calculate the endgame values to save time.

Implementation of endgame databases
In Go, each possible configuration is referred to as a state, which comprises a board position, a board status,
and a turn. The board position indicates the positions of all stones, and we encode board positions as numbers
using board serials. The board status pertains to the status of the board position, such as ko or pass. The board
status is represented by a numerical code known as the board status code. The turn records who plays next. To
generate all the legal states in Go, we enumerate all the board serials and board statuses and verify their legality.
For more information on the data structures and illegal conditions, please refer to Supplementary Information
SI. Table 2 displays the numbers of legal and illegal states, and Table 3 presents the quantity of stored children.

For each size of Go board, we build separate endgame databases instead of extending smaller ones. This is
because additional rows and columns prevent some stones from being captured, resulting in different winning
strategies and game results. Additionally, it is important to note that only the states in which it is the black player’s
turn need to be saved since the game value of a state remains the same after changing the current player and
reversing the colors of all the stones.

N ≤ 4 : Since the maximum number of board serials is 316 = 43, 046, 721 , which can be stored in 26 bits
(⌈log2 316⌉ = 26), we put the board serials in bit 1 to bit 26. The maximum number of status codes is 101012 ,
which can be stored in 5 bits, namely, bit 27 to bit 31. Finally, the total number of bits in the state index is 31.
Thus, we use a 32-bit integer to store a state index. Equation (1) shows the formula that converts a board serial
and a status code into a state index in 4× 4 Go. We traverse through all the state indices and check whether
they are legal. However, some of these states are redundant because the board serial is larger than 316 ; thus, the
states are marked as illegal. Once the legal states are obtained, we calculate all the children of these legal states
and use the CSR format to store them.

N = 5:
Since the number of board serials in 5× 5 Go is enormous, we use isomorphic reductions to reduce the

number of board serials. Some boards with different board serials have the same board positions after rotation
or mirroring; these are called isomorphic boards. If we rotate the board in Fig. 4 clockwise 90 degrees, then it
becomes the board in Fig. 5. Therefore, the board in Fig. 4 and the board in Fig. 5 are isomorphic. Because of
the property of isomorphic boards, we need to save only one state, which can significantly reduce the number
of states. Therefore, except for the board with the lowest board serial among isomorphic boards, we consider
the other board serials illegal.

Although we have succeeded in reducing the number of legal states, the scattered legal states are inefficient to
store. Therefore, we use RRR 26 to renumber these legal states. RRR is a data structure that can compress sparse
bit arrays to store the same data in less space. RRR provides three operations, namely, access , rank , and select .
Access is an operation that obtains the bit value of an index. Rank is an operation that returns the number of
1-bits before an index, and select is an operation that returns the position of the kth 1-bit. Select is the inverse
of rank , which means that we have the following relationships.

(1)IndexB = StatusB × 226 + SerialB

Table 2. Numbers of legal and illegal states.

Size Legal states Illegal states

2× 2 157 996

3× 3 38,651 420,102

4× 4 76,046,601 1,333,239,544

5× 5 163,665,274,870 26,102,281,617,863

Table 3. Numbers of children stored.

Size Numbers of children stored

2× 2 260

3× 3 109,944

4× 4 345,910,100

5× 5 565,815,779,101

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

For each board status, we perform RRR on the bit array representing whether the state is legal and use rank to
calculate the new serial of the states, named the RRR serial. Thus, using RRR serials, we can store all the end-
game values in a continuous space. On the other hand, storing the children of all states is costly in storage. After
observing the relationship between board statuses and actions, we propose an approach to share children with
other board statuses. The details for sharing children are given in Supplementary Information SII.

Verification
After building the endgame databases, we verify the correctness of these databases. We use two approaches to
verify the endgame databases: consistency checking and checking previous publication data.

Consistency checking
For each state in the endgame databases, the player always chooses the best ply for him- or herself. For example,
in 5× 5 Go, if there is one ply that leads the player to win-25, the endgame value of at least one child must also
be win-25. Therefore, according to the above rule, we verify the consistency of all the states.

Checking previous publication data
In 2018, Zhang Xu published a problem set for 4× 4 Go5. Fukui Masaaki also published problem sets for 5× 5
 Go2728 in 2000 and 2002. We use the problems in these books to verify the correctness of the constructed endgame
databases. Although the rules used in these problem sets are Japanese Rules and our endgame databases use
AGA Rules, the answers are the same in most cases. Only 7 out of 225 problems have different results because
of the different scoring rules. One such example will be discussed in the following section. All 7 examples are
given in Supplementary Information SIII.

Level of difficulty
There is no explicit definition of problem difficulty in Go. However, players generally agree that certain positions
are more challenging than others. Endgame databases can assist in determining the ply that will result in the
highest game score for any given position. With this information, we aim to design a formula to quantify the
difficulty or easiness of Go.

(2)rank(select(i))+ 1 = i

(3)select(rank(i)+ 1) = i

Figure 4. Isomorphic board (a).

Figure 5. Isomorphic board (b).

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

If the endgame value remains the same after playing a ply, it is considered optimal. However, if the endgame
value decreases, which means you’ve lost a chance to get more scores, this ply is considered nonoptimal. An
endgame value denotes the upper bound of the position’s score. Whatever the ply you play, the best score you
can get is the endgame value. During constructing the endgame, we make sure there is at least one ply whose
endgame value stays the same after it is played. Therefore, no ply can increase the endgame value, and a ply is
optimal if and only if the endgame value remains the same after playing the ply. In Fig. 6, the black player plays
next. Both a2 and d1 are optimal plies, but playing at d1 requires additional plies to capture all the opponent
stones, as shown in Figs. 7 and 8. On the other hand, playing at b4 causes all of our stones to be captured, which
results in lose-16. Therefore, b4 is not an optimal ply. Additionally, if we choose to pass, we cannot capture all of
the white stones, which is also not an optimal ply.

Designing a formula for the easiness of positions
For a position, the legal moves can be divided into two categories depending on whether the move is optimal. Let
b be a position with N(b) legal moves, m1,m2, . . . ,mN(b) , where the first T(b) are optimal. Let si be the endgame
value of mi . We note the following observations that may affect the easiness of a position. Note that opt(b) is the
optimal value for b.

Figure 6. An example of an optimal ply. In the figure, ’X’ indicates the optimal ply.

Figure 7. Optimal solution with a length of 5.

Figure 8. Optimal solution with a length of 7.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

Ratio of optimal moves Intuitively, the greater the ratio of optimal moves among all legal moves is, the greater
the chance of choosing one such move. Hence, we first note the following formula for the easiness of b.

Distinguishability In addition to considering the chance of choosing optimal moves, it should be noted that
when the values of nonoptimal moves are closer to the optimal value, human players may be easily confused and
choose an incorrect move. Hence, in Eq. (5), we add weights to such nonoptimal moves and redefine easiness in
Eq. (6). The weight is calculated by the difference between opt(b) and si.

The weighting constants c1 and c2 determine the balance between the number of optimal moves and distinguish-
ability. The value c1 denotes the upper bound of the weight that a nonoptimal ply can affect the difficulty. As a
result, c1 is non-negative. On the other hand, when the difference between the endgame values of the nonoptimal
plies and the optimal value becomes larger, c2 controls the magnitude of the decline in the influence. Thus, c2 can
be any positive number greater than 1 because we need to ensure the influence falls as the differences become
larger. Note that c1 and c2 need to be considered together. When c1 and c2 are large, F(b) is dominated by distin-
guishability. Based on the above properties, we find that the constants c1 = 1.4 and c2 = 6 best fit our intuition.

The value of opt(b) If opt(b) is win-25 or lose-25, which according to Fig. 10 are common scenarios in Go, the
game should be relatively easy since one side has a great advantage. Positions whose optimal values are closer to
a draw are often difficult since both players have counter moves in a sequence of plies to follow. Hence, we use
a hyperbolic equation, Eq. (7), to capture this idea.

We set c3 =
√
3

25 to ensure the output range of G(b) is between 0 and 1. Finally, the easiness of b is given by Eq. (8).

Experimental results
We next construct the N × N Go endgame databases for N = 2 to 5.

Experimental design
We used the specifications in Tables 4 and 5 to construct the endgames. The programs used were written in C++
and compiled with C++17 and O3 flags. Additionally, we used OpenMP to speed up the execution.

We performed retrograde analysis for different sizes of Go, and the numbers of states are shown in Table 6. We
also recorded the number of epochs and the duration of the retrograde analysis, as shown in Table 7. An epoch

(4)E1(b) =
T(b)

N(b)

(5)F(b) : T(b)+
N(b)
∑

i=T(b)+1

c1

exp (
|opt(b)−si |

c2
)

(6)E2(b) =
T(b)

F(b)

(7)G(b) :
√

(

c3 · opt(b)
)2 + 1− 1

(8)E3(b) =
T(b) · G(b)

F(b)

Table 4. The experimental settings for 2× 2 Go, 3× 3 Go, and 4× 4 Go were used.

CPU Intel(R) Xeon(R) CPU E5-4650 0 @ 2.70GHz

Memory 192 GB

OS FreeBSD 11.2-RELEASE-p14

Compiler gcc 7.5.0

Parallel OpenMP 3.1

Table 5. Experimental settings for 5× 5 Go.

CPU Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

Memory 756 GB

OS Ubuntu 16.04.6 LTS

Compiler gcc 5.5.0

Parallel OpenMP 4.0

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

is an iteration in which all states are updated. As the size of the board increases, the number of epochs required
also increases. With 5× 5 Go, as mentioned before, we spent much time loading files because we performed the
retrograde analysis part by part.

After removing the stable states, we found all the SCCs, including the in-cycle SCCs and the out-cycle SCCs.
Table 8 shows the maximum and minimum values of the sizes of the in-cycle SCCs. In particular, there is only
one in-cycle SCC for 2× 2 Go, but this SCC has more states than the other SCCs for 3× 3 Go and 4× 4 Go.

Finally, after dealing with the cycles, the results are shown in Table 9. For 2× 2 to 5× 5 Go, the number of
winning states is greater than the number of losing states. Since we assume that all of the states are on the black
player’s turn and that the results are recorded from the perspective of the black player, we believe that this is due
to the advantage of having the first move. For 5× 5 Go, after using RRR, we reduced the space used by 99.36%.

Data analysis
We use 5× 5 Go to illustrate the data analysis. First, we calculate the number of best plies and the number of
legal plies for each state. The values on a log10 color scale are shown in Fig. 9. There are only 15 or fewer legal
plies in most of the states. In addition, many must-win and must-lose states appear on the diagonal line, which
means that every ply leads to the same score. On the other hand, there are also many states with only one best
ply, which means that many states have only one correct countermove.

Next, we perform statistical analysis based on the number of stones and the endgame values for all the states,
as shown in Fig. 10. The values in Fig. 10 are on a log10 color scale. A negative endgame value means that the
black player loses, and a zero endgame value means a draw. As shown in Fig. 10, most states are either win-25
or lose-25. In addition to win-25 and lose-25, there are many states whose endgame values are approximately
draws. Furthermore, when more stones are placed on the board, we observe diverse endgame values.

Table 6. Numbers of states before dealing with cycles.

Size Win Draw Lose Unstable Total

2× 2 60 13 26 58 157

3× 3 23,672 2,069 12,254 656 38,651

4× 4 44,840,522 3,804,952 26,520,321 880,806 76,046,601

5× 5 96,426,010,559 5,732,658,717 60,764,063,490 742,542,104 163,665,274,870

Table 7. Numbers of epochs used in the retrograde analysis.

Size Number of epochs Time spent (ms)

2× 2 3 5

3× 3 18 22

4× 4 29 16,597

5× 5 39 710,488,652

Table 8. Minimum/maximum sizes of SCCs.

Size Minimum Maximum

2× 2 44 44

3× 3 6 8

4× 4 4 24

5× 5 4 562

Table 9. Numbers of states after dealing with cycles.

Size Win Draw Lose Unstable Total

2× 2 98 13 46 0 157

3× 3 23,900 2,089 12,662 0 38,651

4× 4 44,947,882 4,409,232 26,689,487 0 76,046,601

5× 5 96,751,250,972 5,753,029,628 61,160,994,270 0 163,665,274,870

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

Results of initial states for different board sizes and rules used
To observe the effect of cycles, we construct two types of endgame databases with different rules. One is the
AGA rule, called the No-Cycle endgame. The other allows cycles of lengths greater than 2, called the Cycle-Draw
endgame. If the length of a cycle is greater than 2, the game ends with a cycle-draw. After building two different
rule endgame databases for different sizes of Go, the endgame values of the initial states for different board sizes
are as shown in Table 10. We found that allowing cycles gives the second player a chance to draw when the board
size is even. When the board size is odd, the first player is sure to win regardless of whether cycles are allowed.

Time taken by KataGo to solve problems of different difficulty levels
KataGo is a state-of-the-art open-source deep learning Go engine that can handle various board sizes, including
4× 4 Go. We input 4× 4 Go problems from the book published by Zhang Xu5 into KataGo and recorded the
time taken for KataGo to solve them. The problems are divided into five levels, S, A, B, C, and D, with S being
the most difficult and D being the easiest. Figure 11 shows the average time taken by KataGo to solve prob-
lems of different levels. Due to the differences in Go rules between KataGo and the problems of Zhang Xu, we
filtered out five level-A problems that can only be solved correctly for more than 17 seconds, whereas the rest
295 problems are solved within 9 seconds. We feel KataGo may have flaws in solving them. As shown, KataGo
solves easier problems (levels B, C, and D) faster than more difficult problems (levels S and A). The correlation
coefficient of the average solution time is 0.98. Therefore, the time taken by KataGo can be used as a measure of
the difficulty of a problem.

Although KataGo’s solution time can indicate the difficulty of a problem, the reasons making some positions
spend more time than others are not known. Additionally, KataGo takes time to judge the difficulty of a problem,
which is unacceptable when it is needed to examine and compare a huge number of positions. Therefore, we aim
to develop a formula to address the difficulty measure that KataGo provides, with the aim of giving Go players
insights into why some positions are more difficult than others.

Correlation between E
3
(b) and the time KataGo needs to solve b

Equation (8) outputs a value between 0.0 and 1.0 and is used to capture the easiness of a position in Go. We
divided the states into groups according to their E3(b) values. Each group had a range of 0.05, with 1.0 being
the last group. Then, we randomly selected 1000 games in each group to be tested by KataGo. For each game,

Figure 9. Plot of the numbers of states, using the log10 color scale on the right, under different number of
optimal plies and legal plies.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

we recorded the number of seconds required for KataGo to find the correct answer. In the end, we averaged the
time required for each group of games. The results are shown in Fig. 12.

In Fig. 12, on average, when E3(b) is between 0.0 and 0.05, the games take the longest time to solve; conversely,
the shortest time is taken when E3(b) is between 0.95 and 1.0. We find that when E3(b) ≤ 0.35 , our formula has
a strong correlation with the average time KataGo needs to solve b. When E3(b) is above 0.35, and especially
when it is above 0.6, the formula is not accurate.

We performed additional tests on the cases between 0 and 0.36. We further subdivided these cases into 18
segments. Each segment has a range of 0.02. Similarly, we input the games into KataGo and recorded the solu-
tion times, with 10,000 randomly selected positions for each segment. Figures 13 and 14 show the histograms of
the solution time needed versus the percentage of positions solved for Segment 1 and Segment 18, respectively.
Figures 13 and 14 show that the results have a geometric distribution with a success probability p. Therefore, we
tested whether the samples follow a geometric distribution by using the chi-square goodness of fit test. Figure 15
shows the p values of the tests. We then checked whether the data in a segment fit a geometric distribution with
a success probability p̂ by estimating p̂ using maximum likelihood estimation (MLE). We found that the sample
data of most segments fit. In addition, according to the figure, there is high confidence that Segment 1 and Seg-
ment 18 do not come from the same geometric distribution.

Figure 10. Plot of the numbers of states, using the log10 color scale on the right, under different endgame values
and the number of stones.

Table 10. Endgame values of the initial states for different board sizes.

Board size No cycle Cycle-draw

2× 2 Win 1 Cycle-draw

3× 3 Win 9 Win 9

4× 4 Win 2 Cycle-draw

5× 5 Win 25 Win 25

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

Discussion
Differences in Go rules
In the previous section, we verified the correctness of the constructed endgame databases by using the problems
in a published book28. Figure 16 shows one of the 7 examples found to deviate from the answer given in the
 book28. The answer is shown in Fig. 17. Since the white player captures two black stones in the fourth ply and
three fewer empty intersections than the black player, the white player ultimately obtains lose-1 using the Japanese
Rules. The white player also obtains lose-1 under the AGA Rules. However, captured stones are not counted in the
score according to the AGA Rules. If we play the same plies as in Fig. 17, then the black player ultimately scores
three more points than the white player does, which results in the white player obtaining lose-3. The optimal
moves according to the AGA Rules are shown in Fig. 18. The white player should play at a3 instead of d4 at the
second ply to obtain lose-1. This example shows the difference between using different rules. All 7 examples are
shown in Supplementary Information SIII.

How well E
3
(b) measures the level of difficulty

Observations
In the previous section, we subdivided the area between 0 and 0.36 into 18 segments. We assume KataGo builds
a model that has a probability p of solving game b depending on how easy b is every second it runs. We thus fit
the geometric distributions of all 18 segments to determine the changes in probability p. The results are shown in
Fig. 19. The R-squared (R2) value of the fit is 0.758, which indicates good agreement. The estimated parameters p̂
for Segment 1 and Segment 18 are 0.6676 and 0.9639, respectively, which shows that Segment 1 is more difficult
than Segment 18 is. In addition, Fig. 19 illustrates that the value of p̂ increases as the value of easiness increases,

Figure 11. The average solution time for problems of each level.

Figure 12. The average solution time for each group.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

which means that Eq. (8) works well when E3(b) ≤ 0.35 . We checked all 5× 5 Go positions and found that 11.2%
of them were within this range. Figure 20 shows the percentage of positions within each group.

Limitations
Figure 12 shows that our method works well when E3(b) ≤ 0.35 . To test the correctness of our observations, we
divided the positions into 101 parts according to easiness, and we present the values of T(b), G(b), and F(b) for
each part in the box plots in Figs. 21, 22 and 23, respectively. When E3(b) ≤ 0.35 , we observe that as the value of
easiness increases, the values of T(b) and G(b) both increase, and the maximum value of F(b) decreases, which
corresponds to our observations. However, when E3(b) > 0.35 , T(b) and G(b) are generally close to 1.0, which
results in a negative correlation between E3(b) and F(b). Therefore, in addition to our observations, domain-
specific knowledge is required to determine the optimal ply that is not currently included in the formula. In a

Figure 13. Histogram of the solution time needed versus the percentage of positions solved when
E3(b) ∈ [0.0, 0.02).

Figure 14. Histogram of the solution time needed versus the percentage of positions solved when
E3(b) ∈ [0.34, 0.36].

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

life-death problem, there is usually only one optimal move, and only one side can survive. If one makes a mis-
take, one is likely to lose all territory. Hence, T(b) = 1 and opt(b) = 25 , which imply a high G(b) and a low F(b).
Although this position is difficult, we still obtain a high score from Eq. (8).

Taking the board in Fig. 24 as an example, it is the black player’s turn, and the optimal ply is c3. Figure 25
shows the endgame values after each legal move. If the black player plays at c3, the white stones can be captured
since there is no space for the white player to form two eyes to prevent capture. Finally, the black player obtains
win-25. On the other hand, if the black player makes other moves, the white player can play at c3, and the white

Figure 15. The p values of the chi-square goodness of fit test.

Figure 16. A sample position whose answer deviates from the published results.

Figure 17. Answer for the board in Fig. 16 using Japanese Rules.

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

Figure 18. Answer for the board in Fig. 16 using AGA Rules.

Figure 19. Plot of the estimated parameters p̂ of all segments and a linear regression of p̂.

Figure 20. Percentages of positions within each group.

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

stones survive. In the end, the black player loses since the white player can occupy the most territory. This exam-
ple is relatively difficult since it requires specialist knowledge to find the exact answer. However, E3(b) reaches
0.938, where T(b) = 1.0 , G(b) = 0.999 , and F(b) = 1.066 . The value of easiness is obviously not correct. Thus,
without considering specialist knowledge, the easiness of positions may lead to mistakes.

Concluding remarks and future work
In Go, cycles can occur during the game due to a special rule: capturing. However, in some rules, cycles are for-
bidden, which makes it almost impossible to use retrograde analysis directly when building endgame databases.
In this paper, we provide an approach for building endgame databases without cycles. With SCCs, we can handle
cycles and determine the endgame values of cycles according to the rules used. We also use RRR to reduce the
memory usage when working with larger board sizes. After building endgame databases using different rules
and different board sizes, we observe that the second player has a chance to draw with the first player only when
the board size is even and cycles are allowed. Finally, we make several observations regarding why some posi-
tions are easier than others, which enables us to easily identify positions with a given level of difficulty with a
high probability. This formula can be used in computerized tutoring systems to help humans improve their Go
playing skills.

Although we are able to determine easier positions with a high probability, we cannot easily recognize more
difficult ones perhaps due to no specialist knowledge being used. The KataGo solution times of 5 out of 300

Figure 21. Box plot of T(b) for each part.

Figure 22. Box plot of G(b) for each part.

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

positions from the expert’s annotated book5 are much more than the average solution time of the rest 295 ones
as mentioned in Sect. "Time taken by KataGo to solve problems of different difficulty levels". All of them are
level-A, and it appears that more insights into those positions are needed to remedy possible shortcomings of
KataGo. This will be the focus of future work.

Figure 23. Box plot of F(b) for each part.

Figure 24. An example of a difficult position that has a high E3(b) value, 0.938. In the figure, ’X’ indicates the
optimal ply.

Figure 25. Endgame values after playing each legal move of the board in Fig. 24.

18

Vol:.(1234567890)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

Data availability
The analysis data in this study are available from the corresponding author upon reasonable request.

Received: 31 May 2023; Accepted: 18 March 2024

References
 1. ICGA. https:// icga. org/
 2. Ing cup. https:// en. wikip edia. org/ wiki/ Ing_ Cup
 3. LG cup. http:// baduk. lg. co. kr/ eng/
 4. Asian TV cup. https:// www. nihon kiin. or. jp/ match/ tv- asia/ archi ve. html
 5. Xu, Z. Go Puzzle 4 × 4 Problem Collection 105: Challenge from Zhang Zi (幻冬舎, 2018). ISBN: 978-4344979765, 囲碁パズル4路

盤問題集105: 張栩からの挑戦状. (In Japanese).
 6. Area scoring. https:// sense is. xmp. net/? AreaS coring
 7. Territory scoring. https:// sense is. xmp. net/? Terri toryS coring
 8. Komi. https:// sense is. xmp. net/? Komi
 9. Superko. https:// sense is. xmp. net/? Super ko
 10. Cycle. https:// sense is. xmp. net/? Cycle
 11. Chen, C., Fan, G. Y., Tsai, S. Y., Lin, T. Y. & Hsu, T. S. Compressing Chinese dark chess endgame databases. in 2015 IEEE Confer-

ence on Computational Intelligence and Games (CIG) (IEEE, 2015)
 12. Yen, S. J., Chou, C. W., Chen, J. C., Wu, I. C. & Kao, K. Y. Design and implementation of Chinese dark chess programs. IEEE Trans.

Comput. Intell. AI Games 7, 66–74 (2015).
 13. Thompson, K. Retrograde analysis of certain endgames. ICGA J. 9, 131–139 (1986).
 14. Harary, F. Graph Theory (Addison Wesley Longman Publishing, 1969).
 15. Comparison of some go rules. https:// www. britgo. org/ rules/ compa re. html
 16. Bouzy, B. Go patterns generated by retrograde analysis. Evaluation 1, 9 (2001).
 17. van der Werf, E. C. D., van den Herik, H. J. & Uiterwijk, J. W. H. M. Solving go on small boards. ICGA J. 26, 92–107 (2003).
 18. 11th computer olympiad. https:// icga. org/ icga/ news/ Olymp iad/ Olymp iad20 06/
 19. Chou, C. W. et al. Towards a solution of 7 x 7 go with meta-MCTS. In Lecture Notes in Computer Science, 84–95 (Springer Berlin

Heidelberg, Berlin, Heidelberg, 2012).
 20. KataGo distributed training. https:// katag otrai ning. org/
 21. KataGo opening books. https:// katag obooks. org/
 22. Yang, B., Wang, L., Lu, H. & Yang, Y. Learning the game of go by scalable network without prior knowledge of komi. IEEE Trans.

Games 12, 187–198 (2020).
 23. AGA concise rules of go. https:// www. usgo. org/ aga- conci se- rules- go
 24. Wu, P. H., Liu, P. Y. & Hsu, T. S. An external-memory retrograde analysis algorithm. in Computers and Games, 145–160 (Springer

Berlin Heidelberg, Berlin, Heidelberg, 2006).
 25. Romein, J. W. & Bal, H. E. Solving awari with parallel retrograde analysis. Computer 36, 26–33 (2003).
 26. Raman, R., Raman, V. & Satti, S. R. Succinct indexable dictionaries with applications to encoding k -ary trees, prefix sums and

multisets. ACM Trans. Algorithms 3, 43 (2007).
 27. Masaaki, F. Go training: 5 ××5 Go Improvement Methods (日本棋院, 2000). ISBN: 978-4818204782, 囲碁特訓五×五:五道盤上

達法. (In Japanese).
 28. Masaaki, F. Go training: Advanced 5 × 5 Go Improvement Methods (日本棋院, 2002). ISBN: 978-4818204973, 五路盤問題集:画

期的囲碁上達法 (In Japanese).
 29. Lin, H. C. Memory efficient algorithms and implementations for solving small-board-sized Go. Master’s thesis, National Taiwan

University (2018).
 30. Hsu, C. M. Small-board-sized Go endgames for different cycle-breaking rules: Constructions and Observations. Master’s thesis,

National Taiwan University (2022).

Acknowledgements
This research was supported by the National Science and Technology Council, R.O.C. (NSTC), under project
MOST 108-2221-E-001-011-MY3 and project MOST 111-2221-E-001-017-MY3.

Author contributions
C.M.H. conducted the experiments, analyzed the results, and wrote the manuscript. H.C.L. and Y.T.C. developed
the underlying Go library and the library implementing the RRR data structure, respectively. C.W.H. provided
advice on the modifications and the design of the experiments. T.S.H. formulated the study, conceived the overall
architecture, and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/
10. 1038/ s41598- 024- 57338-x.

Correspondence and requests for materials should be addressed to T.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://icga.org/
https://en.wikipedia.org/wiki/Ing_Cup
http://baduk.lg.co.kr/eng/
https://www.nihonkiin.or.jp/match/tv-asia/archive.html
https://senseis.xmp.net/?AreaScoring
https://senseis.xmp.net/?TerritoryScoring
https://senseis.xmp.net/?Komi
https://senseis.xmp.net/?Superko
https://senseis.xmp.net/?Cycle
https://www.britgo.org/rules/compare.html
https://icga.org/icga/news/Olympiad/Olympiad2006/
https://katagotraining.org/
https://katagobooks.org/
https://www.usgo.org/aga-concise-rules-go
https://doi.org/10.1038/s41598-024-57338-x
https://doi.org/10.1038/s41598-024-57338-x
www.nature.com/reprints

19

Vol.:(0123456789)

Scientific Reports | (2024) 14:6903 | https://doi.org/10.1038/s41598-024-57338-x

www.nature.com/scientificreports/

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Construction, observation and knowledge abstraction for go endgames on small boards
	Preliminaries
	Rules of Go
	Scoring: territoryarea
	Cycles: Ko and others
	Major variations among rules

	Related work

	Methodologies
	Retrograde algorithm
	Repeated forward checking with no cycles
	Loop handling—SCC
	Implementations

	Implementation of endgame databases
	Verification
	Consistency checking
	Checking previous publication data

	Level of difficulty
	Designing a formula for the easiness of positions

	Experimental results
	Experimental design
	Data analysis
	Results of initial states for different board sizes and rules used
	Time taken by KataGo to solve problems of different difficulty levels
	Correlation between and the time KataGo needs to solve b

	Discussion
	Differences in Go rules
	How well measures the level of difficulty
	Observations
	Limitations

	Concluding remarks and future work
	References
	Acknowledgements

