
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports

Multi‑objective and multi
constrained task scheduling
framework for computational grids
Sujay N. Hegde 1, D. B. Srinivas 2*, M. A. Rajan 3, Sita Rani 4, Aman Kataria 5 & Hong Min 6*

Grid computing emerged as a powerful computing domain for running large-scale parallel
applications. Scheduling computationally intensive parallel applications such as scientific, commercial
etc., computational grids is a NP-complete problem. Many researchers have proposed several task
scheduling algorithms on grids based on formulating and solving it as an optimization problem with
different objective functions such as makespan, cost, energy etc. Further to address the requirements/
demands/needs of the users (lesser cost, lower latency etc.) and grid service providers (high utilization
and high profitability), a task scheduler needs to be designed based on solving a multi-objective
optimization problem due to several trade-offs among the objective functions. In this direction, we
propose an efficient multi-objective task scheduling framework to schedule computationally intensive
tasks on heterogeneous grid networks. This framework minimizes turnaround time, communication,
and execution costs while maximizing grid utilization. We evaluated the performance of our proposed
algorithm through experiments conducted on standard, random, and scientific task graphs using the
GridSim simulator.

Keywords  Grid computing, Direct acyclic graph, Scientific graph, GridSim, TOPSIS

Applications with high computational and data demands, such as climate modelling, drug discovery, genom-
ics, bioinformatics, financial modelling, data analytics, and healthcare informatics, are fueling the demand for
computational grids1–10. Computational grids have emerged as powerful computational paradigms, facilitating
large-scale, distributed computing through the utilization of interconnected computing and storage resources.
The optimal allocation of tasks to resources in computational grids becomes increasingly intricate due to various
constraints, including resource heterogeneity, dynamic workload characteristics, system dynamics, and adher-
ence to user Quality of Service (QoS) parameters, such as latency and cost.

Grid service providers typically aim to maximize profits, while users seek to minimize execution costs,
communication costs, and turnaround time for their applications. One approach to achieve this is by designing
efficient task schedulers to schedule user applications on computational grids. Efficient task schedulers play a
crucial role in achieving these objectives, enabling intelligent decisions regarding task allocation and resource
management within specified constraints. Despite being an NP-complete problem11, designing efficient task
scheduling algorithms for computational grids is essential in meeting user-defined QoS requirements.

The design of task scheduling algorithms is based on either single or multi-objective functions. Task schedul-
ing algorithms based on a single objective function are not suitable for scheduling complex real-time applica-
tions. Single-objective task scheduling algorithms primarily focus on optimizing a specific objective (minimiz-
ing makespan, cost, energy etc) based on heuristics, metaheuristic algorithms, or mathematical optimization
techniques to find near-optimal scheduling sequences. Single objective functions will find the best solution,
which corresponds to either minimum or maximum value. However, they often fail to consider other objectives,
resulting in imbalanced resource utilization, increased energy consumption etc. These algorithms are based on
meta-heuristic algorithms12, greedy13, fuzzy model14, game theory15, bio-inspired16, and more. However, in real-
world applications, it is necessary to take into account several conflicting goals at once. For instance, maximizing
resource utilisation, minimizing turnaround time, minimizing task execution cost etc are equally crucial for
improving system efficiency. On the other hand task scheduling algorithms based on multi-objective criteria will

OPEN

1University of California USA, Irvine, CA, USA. 2Nitte Meenakshi Institute of Technology, Bengaluru,
Karnataka 560064, India. 3TCS Research and Innovation, Bengaluru, Karnataka, India. 4Guru Nanak Dev
Engineering College, Ludhiana, Punjab 141006, India. 5Amity Institute of Defence Technology, Amity University,
Noida, U.P. 201303, India. 6School of Computing, Gachon University, Seongnam, Republic of Korea. *email:
srinivas.db@nmit.ac.in; hmin@gachon.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56957-8&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

address these limitations by simultaneously optimizing multiple objectives, offering more robustness for users
to prioritize one or more criteria over other and diverse solutions.

Multi-objective function optimization involves optimizing multiple conflicting objectives simultaneously.
Common heuristic approaches for multi-objective task scheduling include the application of genetic algorithms
(NSGA, NSGA-II)17,18, particle swarm optimization (MOPSO)19, simulated annealing(MOSA)20, ant colony
optimization (MOACO)21, and other evolutionary (MOEAs)22 etc.These methods leverage principles inspired
by natural processes to explore the solution space and find trade-off solutions among conflicting objectives. In
our proposed method, heuristics are utilized as general problem-solving strategies, employing intuitive, trial-
and-error methods to quickly find effective solutions. This systematic approach is designed to identify the best
solution based on a defined objective function or set of criteria. Heuristics serve as rule-of-thumb methods,
particularly valuable when an exhaustive search or an exact solution is impractical. The objective of incorporat-
ing heuristic approaches into our framework is to strike a balance among competing objectives. This includes
minimizing turnaround time, execution cost, and communication cost while maximizing resource utilization.
The application of heuristics enables the derivation of practical and computationally efficient solutions, especially
in scenarios where finding an optimal solution proves challenging or unfeasible. In this article, we propose a task
scheduling algorithm based on multi-objective optimization formulation with different objective functions such
as minimising turnaround time (TAT), task execution cost, data communication cost between resources, and
maximising grid utilization in a heterogeneous multi-grid environment. The proposed framework is plugged
into a gridsim architecture as shown in Fig. 1(green colour). The framework contains five different schedulers
namely 1. Greedy scheduler: prioritizes minimizing turnaround time, communication cost, and execution cost
while maximizing grid utilization. 2. Greedy communication cost scheduler: minimizes communication cost by
distributing tasks across computing resources within a single Grid. 3. Greedy execution cost scheduler: aims to
minimize execution cost by scheduling each task on the most suitable subset of computing resources based on
their cost-to-performance ratio. 4. Greedy no fragmentation scheduler: task as fragmented and schedule tasks
on individual computing resources. 5. Random scheduler: schedules tasks on a random subset of computing
resources.

Figure 1.   Proposed multi-layer architecture.

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

We summarize our contributions as follows:
(1) Formulating a task scheduling framework with multiple objectives. (2) The proposed framework is inte-

grated with Grid-sim (simulator) and performance is evaluated. (3) We applied a Technique for Order Preference
by Similarity to Ideal Solution (TOPSIS) to solve the proposed multi-objective optimization for task scheduling.

The rest of this paper is organized as follows. Section "Related work" describes the related work. Section "Sys-
tem model" describes the system model. In Sect. "Formulation of multi-objective optimization for task schedul-
ing", objective functions are formulated for TAT, execution cost, communication cost and grid utilization. The
task scheduling algorithm is presented in Sect. "Proposed task scheduling algorithm" In Sect. "Demonstration
of the proposed task scheduling algorithm" demonstration of our proposed task scheduling is discussed. In Sect.
"Results and discussion" results are discussed. Multi-Objective Decision Making Problem is presented in Sect.
"Formulation of the multi-Objective-decision-making problem". Finally, in Sect. "Conclusion and future work"
we conclude the paper.

Related work
In this section, we present a brief discussion on existing multi-objective task scheduling frameworks/algorithms/
models etc. A Grid-based Evolutionary Algorithm (GrEA) is proposed in Ref.23 to tackle multi-objective optimi-
zation issues by utilising the grid-based resource capacity to boost selection pressure in the best direction while
maintaining a broad and uniform distribution of choices. A framework is designed to evaluate multi-objective
functions (makespan, cost, deadline violation rate, and resource utilization.) for scheduling tasks24 based on
the Ant Colony Algorithm in Cloud Computing. A new bio-inspired diversity metric, Pure Diversity (PD) is
proposed in Ref.25 to assess the performance of diversity of multi-objective evolutionary algorithms (MOEAs)
for solving Many-objective optimization problems(MaOPs). A MATLAB-based PlatEMO is developed to use it
for performing comparative experiments, embedding new algorithms, creating new test problems, and develop-
ing performance indicators26. This platform includes more than 50 multiobjective evolutionary algorithms and
more than 100 multi-objective test problems. Multi-objective particle swarm optimizer(NMPSO) algorithm
with a Balanceable Fitness Estimation(BFE) method was designed in Ref.27 to tackle many-objective optimiza-
tion problems(MaOPs). A multi-objective optimization method based on a non-dominated sorting genetic
algorithm (NSGA-II) is applied and tested on an IEEE 17-bus test system28, which simultaneously minimizes
two contradicting objective functions such as voltage deviation at buses and total line loss. A multi-objective
charging framework that incorporates a vehicle-to-grid (V2G) strategy to optimally manage the real power
dispatch of electric cars. The objective functions minimizing load fluctuation and charging costs related with
EVs in residential areas29. Partitional Clustering Method (PCM) and Hierarchical Clustering Method (HCM)
are used in clustering-based evolutionary algorithms for tackling MaOPs30. For determining congestion thresh-
olds in low-voltage (LV) grids, authors in Ref.31 used a multi-objective particle swarm optimisation (MOPSO)
approach paired with data analytics via affinity propagation clustering. A virtual machine migration method is
designed to maximize host release and minimize virtual machine migration is proposed in32. Task Scheduling
for Deadline and Cost Optimization (DCOTS) is presented in Ref.33. This work ensures the fulfilment of user
requirements while simultaneously aiming to maximize the profitability for cloud providers. The objective func-
tions for building a multi-objective cloud task scheduling model include34 execution time, execution cost, and
virtual machine load balancing. Subsequently, the task scheduling problem is addressed using the multi-factor
optimization (MFO) technique, and the characteristics of task scheduling are integrated with the multi-objective
multi-factor optimization (MO-MFO) algorithm to formulate an assisted optimization task. A Task Scheduling
technique35 based on a Hybrid Competitive Swarm Optimization Algorithm (HCSOA-TS) within the context
of the CC platform. The proposed HCSOA-TS efficiently schedules tasks to maximize resource utilization and
overall performance. The construction of a multi-objective task scheduling model for cloud computing36, aimed
at optimizing cloud computing tasks, utilizes the Cat Swarm Optimization (CSO) model. The task objectives for
cloud computing were scrutinized, leading to the formulation of a multi-objective task scheduling model with
execution time and system load as key scheduling objectives. Study in Ref.37 presents a parallel algorithm for
task scheduling, where both the priority assignment to tasks and the construction of the heap are concurrently
executed. Authors in Ref.38 present edge scheduling stage, tasks are arranged based on the latest start times of
their successors instead of their sub-deadlines, with the goal of mitigating lateness in subsequent tasks.

In Grid Computing, the resource optimisation problem is treated as a Multi-Objective Optimisation
problem39, and PSO is used to search the problem area for possible solutions. To find non-dominated solutions
for the multi-objective issue and to optimise and search for the best Grid resources, the Functional Code Sieve
algorithm is used. Similarly, various task scheduling algorithms40–47 based on multi-objective optimization are
studied.

Resource management and task scheduling are intricate operations in computational grids. To manage distrib-
uted resources and evaluate scheduling algorithms and their performance with different numbers of resources, a
toolkit named GridSim has been proposed. GridSim aids in the mapping of user tasks to grid resources. Several
task scheduling algorithms have been simulated using GridSim since its introduction48–55.

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) is a method used for multi-
criteria decision analysis. It was initially introduced in Refs.56–58. A-TOPSIS, presented in Ref.59, aims to compare
the performance of different algorithms based on mean and standard deviations. This technique calculates the
best and worst algorithms based on user-defined parameters. Another method, D-TOPSIS, is presented in Ref.60
and is more effective in representing uncertain information compared to other group decision support systems
based on the classical TOPSIS method. TOPSIS fuzzy61 is a multi-objective decision-making tool used to find a
scheduling algorithm that can minimize response time and maximize throughput. In Ref.62, the authors propose
a method that combines the Heterogeneous Earliest Finish Time (HEFT) algorithm with the TOPSIS method

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

to solve multi-objective problems. Thus, TOPSIS is a valuable decision-making technique because it provides
a systematic and structured approach to evaluate and rank alternatives based on multiple criteria, helping end
users to make well-justified choices in complex decision scenarios.

System model
Task model
The task scheduling framework consists of a task graph, a task scheduler and a grid network. A task graph is an
input to a task scheduler and is defined as a Weighted Directed Acyclic Graph (WDAG) WTG = (T ,E) . where
T is set of tasks and E set of edges which describes the dependency between tasks. The weight W(Ti) is assigned
to task Ti represents the size of a ith task and is expressed as Million Instructions (MI).

Grid model
Grid network consists of set of grid nodes G = {G1,G2,G3, ...,Gm} and they are interconnected by high speed
network. Each grid node contains p number of heterogeneous processing elements Gi = {ri1, ri2, ri3, ..., rip} and
these processing elements are internally connected by a high-speed communication network. Processing speed
/ CPU_speed of each processor is represented in terms of Million Instructions Per Second (MIPS). Each compu-
tational grid contains a local scheduler, The function of the local scheduler is to manage the execution of a task
on a grid resource given by the task scheduler. The local scheduler is also responsible for collecting information
about computational resources periodically and communicating with the task scheduler.

Simulation model
GridSim66

We have employed a Java-based discrete-event toolkit called GridSim to simulate our multi-objective task sched-
uling framework. This versatile toolkit offers a comprehensive suite of features for modelling and simulating
resources and network connectivity, accommodating various capabilities and configurations. Among its capa-
bilities are primitives for composing applications, information services for resource discovery, and interfaces
for task allocation to resources and managing their execution. These capabilities enable us to simulate resource
brokers or grid schedulers, facilitating the evaluation of scheduling algorithms’ performance. It’s worth noting
that GridSim does not prescribe any specific application model, but in our proposed framework, we have adopted
a Directed Acyclic Graph (DAG) as the application model. Within the GridSim environment, individual tasks
can exhibit differing processing times and input file sizes. To represent these tasks and their requirements, we
utilize Gridlet objects. Each Gridlet encapsulates comprehensive information related to a job, including execution
management details such as job length (measured in MIPS), disk I/O operations, input and output file sizes, and
the job’s originator. In the context of GridSim, a Processing Element (PE) stands as the smallest computing unit,
configurable with varying capacities denoted in Million Instructions per Second (MIPS). Multiple PEs can be
combined to construct a machine, and in a similar fashion, machines can be aggregated to form a grid. Grids can
allocate Gridlets in either a time-sharing mode (common in single-processor Grids) or a space-sharing mode
(typical for multi-processor Grids).

Existing GridSim architecture
Proposed multi-layer architecture and abstractions are shown in Fig. 1. The layered structure of this system
begins with the foundational run-time machinery, known as the JVM (Java Virtual Machine). This JVM is
versatile, catering to both single and multiprocessor systems, including clusters. Moving up to the second layer,
we encounter a fundamental discrete-event infrastructure that relies on the interfaces offered by the first layer.
This infrastructure is actualized through SimJava, a well-regarded Java library for discrete event simulation.
The third layer delves into the simulation of essential grid entities, encompassing resources and information
services, among others. Here, the GridSim toolkit employs the discrete event services provided by the underly-
ing infrastructure to simulate these core resource entities. Ascending to the fourth layer, our attention turns to
the simulation of resource aggregators, often referred to as grid resource brokers or schedulers. Finally, the fifth
and topmost layer is dedicated to application and resource modelling across various scenarios. It harnesses the
services furnished by the two lower-level layers to evaluate scheduling strategies, resource management policies,
heuristics, and algorithms.

Life cycle of a GridSim simulation
Prior to commencing a simulation, we establish the resource entities (including PEs, Machines, and Grids) that
will be available throughout the simulation. Upon GridSim’s initiation, these resource entities autonomously
enroll themselves with the Grid Information Service (GIS) entity by dispatching relevant events.

Furthermore, at the onset of the simulation, a user initiates the process by submitting their job to a Resource
Broker. The resource broker plays a pivotal role in the simulation, encompassing several responsibilities. It first
employs information services to identify accessible resources for the user. Subsequently, it performs task-to-
resource mapping (scheduling), orchestrates the staging of application components and data for processing
(deployment), initiates job execution, and ultimately aggregates the results. Beyond these tasks, the resource
broker also takes on the crucial role of monitoring and tracking the progress of application execution.

Our resource broker implementation
All the application models we have explored rely on task inter-dependencies, which are precisely defined using
Directed Acyclic Graphs (DAGs). Regrettably, GridSim does not inherently accommodate the execution of

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

tasks that are constrained by these inter-dependencies. In response to this limitation, our Resource Broker
implementation extends support for such scenarios by ensuring that the order of task execution adheres to the
specified dependency constraints. Our Resource Broker defines a versatile task Scheduler interface, offering
seamless integration with various schedulers. This interface serves as a plug-and-play mechanism, enabling the
utilization of multiple schedulers introduced in our work (GS, GCPS, GEPS, GNFS), all of which adhere to this
common interface. Furthermore, our task scheduling framework introduces an innovative concept called task
fragmentation, allowing tasks to be divided for execution across multiple computing resources. To facilitate
this, our resource broker incorporates a Gridlet Fragmentation Service. When a gridlet is scheduled to run on
more than one Processing Element, it is initially fragmented into multiple smaller virtual gridlets. These virtual
gridlets are then individually executed by the allocated Processing Elements. Upon their completion, the Gridlet
Fragmentation Service reunites them into the original single gridlet. Another novel concept introduced by our
task scheduling framework involves partial dependencies among tasks. However, GridSim does not inherently
enable the Resource Broker to monitor task progress during execution. To address this, we have implemented
a pinger service within the Resource Broker and individual Processing Elements. This pinger service allows the
Broker to stay informed about a gridlet’s execution progress, enabling it to schedule child tasks once a parent
task has reached a predefined threshold percentage of execution, as dictated by the parent-child dependency.

Lastly, we have enhanced the Resource Broker with the capability to gather performance statistics, including
Turnaround Time, Resource Utilization, Execution Price, and Communication Price. These statistics provide
valuable insights into the system’s performance.

Formulation of multi‑objective optimization for task scheduling
We propose task scheduling problem as a multi-objective optimization problem with a goal to minimize TAT,
execution price, communication price and maximize grid utilization for precedence constrained task graphs is
represented as argmin(TAT​, EP,CP, −GU).

The objective function for TAT is defined and formulated as shown in Eq. (1).

where Xijk =

{

1, if the taskTiis scheduled on the jth grid
on its kth resource

0, otherwise.
τijk = Execution time of Task Ti on k’th resource of grid j

Grid Utilization is formulated in Eq. (2).

Task execution price and communication price is defined and formulated in Eqs. (3) and (4) respectively. Rest
of the paper used price and cost interchangeably.

Where
τij =

∑p[j]
k=1Xijk ∗ τijk

and
Mi =

∑m
j=1Xij

where Xij =







1, if the task Tiis scheduled on
on any machine of GridGj

0, otherwise.

Proposed task scheduling algorithm
Proposed Multi-Objective task scheduling algorithm is described in algorithm 2. Algorithm generates an opti-
mized schedule sequence (task-id, [grid-ID, machine-ID], execution start-time and end-time) according to
multiple objectives (TAT, EC, CC and RU).

Input to the algorithm is number of tasks(n), task dependency graph (weighted adjacency matrix WTG​
[1, ..., n][1, ..., n]), task lengths ( WT [1, ..., n] ), number of grids(m), number of machines p[1, ..., m] in each grid,
processing capacity of each grid in terms of MIPS ( WG[1, ...,m]) , and the user’s objective optimization criteria
(See 2 for choices). The algorithm’s output is the optimized task schedule sequence (step 1 and 2). Step 3 gener-
ates all possible combinatorial subsets of Grid-Machines that a task can be allocated onto, depending on the
user’s objective optimization criteria, as so: If the user criteria is GS then this step generates all possible subsets
of grid-machines sets. If the user criteria is GCPS then it generates combinatorial sets of grid machines with all
the machines in each set belonging to the same grid. If the user criteria is GEPS then it generates combinatorial

(1)TAT =
∑n

i=1

∑m

j=1

∑p[j]

k=1
Xijk × τijk

(2)GU =

∑n
i=0 WTi

(

∑m
j=0

∑j
k=0 Wjk

)

× TAT

(3)EP =

n
∑

i=0

m
∑

j=0

p[j]
∑

k=0

(

Xijk × τijk × PriceEkj

)

(4)CP =
∑n

i=1

((

Mi

2

)

MAXm
j=1

(

τij
)

× PriceC

)

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

sets of grid-machines which offer the lowest task execution price (other Grid-Machines are ignored). Similarly,
if the user criteria is GNFS then it generates singleton sets of all the individual grid-machines.

The algorithm then executes in a loop (from Step 7) until all the tasks have been scheduled. On every itera-
tion of the loop, the algorithm first identifies (in Step 8) tasks whose parent task dependency constraints have
been met and are thus available for scheduling. Step 4 then uses function (5) to select the best task and Grid-
Machine combination for scheduling. Steps 11 to 13 append this Task-Grid-Machine allocation to the schedule
sequence, and update the information about available Grid Machines and unscheduled tasks. Finally, Steps 14,
15 enter into a blocking wait until one or more Grid-Machines are available, after which, the algorithm enters
into another iteration of the Step 7 loop.

Algorithm 1.   Multi-objective task scheduler.

Algorithm 2.   Generic single-objective task scheduler.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Algorithm 3.   Generate processing element combinations.
Function to determine the preference to schedule a task on a set of GridMachines

Demonstration of the proposed task scheduling algorithm
To enhance comprehension of the proposed algorithm 2, we’ll illustrate its functionality through an exam-
ple, using concise input parameters. This demonstration will cover four distinct user objective types
(GS, GEPS, GCPS, GNFS).

Consider an application with workload characterized by a task graph comprising four tasks, each task con-
tains 60 million instructions (MI). This task graph is represented as a Directed Acyclic Graph (DAG), as shown
in Fig. 2a. Similarly, a grid network, depicted in Fig. 2b, comprises two grids: G1 housing Grid-Machine G1M1
and G2 hosting Grid-Machines G2M1 and G2M2 . Each Grid-Machine possesses a processing capacity of 2 mil-
lion instructions per second (MIPS). These specifications in Table 1, serve as the inputs for Algorithm 2. In the
following subsections, we illustrate the iterations executed by the proposed scheduling algorithm and the cor-
responding helper functions for each distinct objectiveType.

Objective type: greedy scheduler
Function fg () (described in Table 2) generates 7 possible combinations of Grid-Machine subsets to allocate tasks
for the Greedy Scheduler objectiveType, as illustrated in Table 3.

(5)fs(Ti ,GjMk) =
WTi

MAXn
i=1(WTi)

×
d+(Ti)

MAXn
i=1(d

+(T))
×

WGj

MAXm
j=1(WGj)

Figure 2.   A typical scenario for a proposed scheduling algorithm demonstration.

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Function fs() (described in Eq. (5)) computes a preference matrix for scheduling each task on each of the
generated Grid-Machine subsets, as shown in Table 4. Then, Algorithm 2 computes the schedule sequence of
task allocations onto Grid-Machines, as shown in Table 5.

Objective type: greedy communication price scheduler
Function fg () (described in Table 2) generates 4 possible combination of Grid-Machine subsets to allocate tasks
for a Greedy Scheduler objectiveType, as illustrated in Table 6. Function fs() (described in Eq. (5)) computes a
preference matrix for scheduling each task on each of the generated Grid-Machine subsets, as shown in Table 7.
Then, Algorithm 2 computes the schedule sequence of task allocations onto Grid-Machines, as depicted in
Table 8.

Table 1.   Input parameters to the scheduling algorithm 2.

Input Value

n 4

m 2

p[1, ..., m] [1, 2]

WT [1, ..., n] [60, 60, 60, 60]

WG[1, ...,m] [20, 20]

WTG​[1, ...n][1, ..., n]







0 100 0

0 0 100 0

0 0 100 100

0 0 0 0







Table 2.   Function fg () to generate possible subsets of Grid machines to allocate tasks to.

ObjectiveType Function fg (WG[1, ...,m], p[1, ...,m], objectiveType)

GS Generate all possible combinatorial subset of grid-machines

GCCS Generate combinations of grid-machines with all the machines in each subset belonging
to the same grid

GECS Generate combinatorial subsets of all grid-machines that offer the lowest execution price
(Ignore other Grid-Machines)

GNFS Generate singleton subsets of all the grid-machines

Table 3.   Grid-Machine subsets generated by fg () for objectiveType=G.

GMSubset

{G1M1}

{G2M1}

{G2M2}

{G1M1,G2M1}

{G1M1,G2M2}

{G2M1,G2M2}

{G1M1,G2M1,G2M2}

Table 4.   Function fs(task, gmSubset) output for objectiveType=G.

T1 T2 T3 T4

{G1M1} 20.6 21 20.3 20.3

{G2M1} 20.6 21 20.3 20.3

{G2M2} 20.6 21 20.3 20.3

{G1M1,G2M1} 40.6 41 40.3 40.3

{G1M1,G2M2} 40.6 41 40.3 40.3

{G2M1,G2M2} 40.6 41 40.3 40.3

{G1M1,G2M1,G2M2} 60.6 61 60.3 60.3

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Objective type: greedy no fragmentation scheduler
Function fg () (described in Table 2) generates 3 possible combination of Grid-Machine subsets to allocate tasks
for the Greedy Scheduler objectiveType, as illustrated in Table 9. Function fs() (described in Eq. (5)) computes a
preference matrix for scheduling each task on each of the generated Grid-Machine subsets, as shown in Table 10.
Then, Algorithm 2 computes the schedule sequence of task allocations onto Grid-Machines, as shown in Table 11.

Table 5.   Schedule sequence of tasks allocations to grid-machines by Greedy scheduler for objectiveType=G.

Time (s) Available tasks

freeGMs

max(fs()) Generated scheduleG1M1 G2M1 G2M2

0 T1 � � � 60.6 T1 → {G1M1,G2M1,G2M2}

1 T2 � � � 61.0 T2 → {G1M1,G2M1,G2M2}

2 T3,T4 � � � 60.33 T3 → {G1M1,G2M1,G2M2}

3 T4 � � � 60.33 T4 → {G1M1,G2M1,G2M2}

4 � � � Complete; TAT = 4s

Table 6.   Grid-Machine subsets generated by fg () for objectiveType=GCP.

GMSubset

{G1M1}

{G2M1}

{G2M2}

{G2M1,G2M2}

Table 7.   Function fs(task, gmSubset) output for objectiveType=GCP.

T1 T2 T3 T4

{G1M1} 30.6 31.0 30.3 30.3

{G2M1} 30.6 31.0 30.3 30.3

{G2M2} 30.6 31.0 30.3 30.3

{G2M1,G2M2} 60.6 61.0 60.3 60.3

Table 8.   Schedule sequence of tasks allocated to Grid-machines for objectiveType=GCP.

Time (s) Available tasks

freeGMs

max(fs()) Generated scheduleG1M1 G2M1 G2M2

0 T1 � � � 60.6 T1 → ${G2M1,G2M2}

1.5 T2 � � � 61.0 T2 → {G2M1,G2M2}

3 T3,T4 � � � 60.33 T3 → {G2M1,G2M2}

3 T4 � 60.33 T4 → {G1M1}

6 Complete; TAT = 6s

Table 9.   Grid-machine subsets generated by fg () for objectiveType=GreedyNF.

GMSubset

{G1M1}

{G2M1}

{G2M2}

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Objective type: greedy execution price scheduler
Function fg () (described in Table 2) generates 4 possible combination of Grid-Machine subsets to allocate tasks
for the Greedy Scheduler objectiveType, as illustrated in Table 12. Function fs() (described in Eq. (5)) computes
a preference matrix to schedule a task on each of the generated Grid-Machine subsets, as shown in Table 13.
Then, Algorithm 2 computes the schedule sequence of task allocations onto Grid-Machines, as shown in Table 14.

Table 10.   Function fs(task, gmSubset) output for objectiveType=GNF.

T1 T2 T3 T4

{G1M1} 60.6 61.0 60.3 60.3

{G2M1} 60.6 61.0 60.3 60.3

{G2M2} 60.6 61.0 60.3 60.3

Table 11.   Schedule sequence of tasks allocated to grid-machines for objectiveType=GNF.

Time (s) Available tasks

freeGMs

max(fs()) Generated scheduleG1M1 G2M1 G2M2

0 T1 � � � 60.6 T1 → ${G1M1}

3 T2 � � � 61.0 T2 → {G1M1}

6 T3,T4 � � � 60.33 T3 → {G1M1}

6 T4 � � 60.33 T4 → {G2M2}

9 � � � Complete; TAT = 9s

Table 12.   Grid-machine subsets generated by fg () for objectiveType=GreedyEP.

GMSubset

{G1M1}

{G2M1}

{G2M2}

{G2M1,G2M2}

Table 13.   Function fs(task, gmSubset) output for objectiveType=GEP.

T1 T2 T3 T4

{G1M1} 66666.6 66666.6 66666.6 66666.6

{G2M1} 100000.0 100000.0 100000.0 100000.0

{G2M2} 100000.0 100000.0 100000.0 100000.0

{G2M1,G2M2} 200000.0 200000.0 200000.0 200000.0

Table 14.   Schedule sequence of tasks allocated to Grid-Machines for objectiveType=GEP.

Time (s) Available tasks

freeGMs

max(fs()) Generated scheduleG1M1 G2M1 G2M2

0 T1 � � � 200000 T1 → {G2M1,G2M2}

1.5 T2 � � � 200000 T2 → {G2M1,G2M2}

3 T3,T4 � � � 200000 T3 → {G2M1,G2M2}

3 T4 � 66666.6 T4 → {G1M1}

6 � � � Complete; TAT = 6s

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Results and discussion
Simulation setup
The proposed multi objective task scheduling framework is simulated using GridSim. Simulation is carried out
on three types of task graphs : standard task graphs, random task graphs and scientific task graphs on ubuntu
operating system with AMD Ryzen 5 processor.

The framework includes five distinct task schedulers, each designed to optimize different target objectives:
1. Greedy scheduler: Prioritizes minimizing turnaround time, communication cost, and execution cost while

maximizing grid utilization. 2. Greedy Communication Cost scheduler: Focused on minimizing communication
cost by distributing tasks across computing resources within a single Grid. 3. Greedy Execution Cost scheduler:
Aims to minimize execution cost by scheduling each task on the most suitable subset of computing resources
based on their cost-to-performance ratio. 4. Greedy No Fragmentation scheduler: Aims to schedule tasks on
individual computing resources, resulting in zero task fragmentation. 5. Random scheduler: Schedules tasks on
a random subset of computing resources.

Table 15 explicates the notations used in the mathematical models and algorithms. Table 16 delineates the
symbols representing various scheduling algorithms, while Table 17 furnishes a catalogue of scientific applica-
tion graphs used in the current study.

Table 15.   Key notation definitions.

Notation Description

n Number of tasks

m Number of Grids present on the grid network

WTi Length (in millions of instructions) of task Ti

WGj Processing Capacity in MIPS (millions of instructions per second) of a single machine belonging to Grid Gj

p[1, ..., m] Number of machines present on Grids G1, ...,Gm

PriceEGj Price (cost) incurred per second in executing a task on any machine belonging to Grid Gj

PriceC Price(cost) incurred per second in reserving the network link connecting any two different Grids on the Grid Network

d+(Ti) Out degree of Task Ti on the task dependency graph i.e. the number of child tasks dependent on Task Ti

GS Greedy scheduler - Minimize TAT and maximize Resource Utilization

GCPS Greedy communication price scheduler - Minimize the communication Price (Cost)

GEPS Greedy execution price scheduler - Minimize the execution Price (Cost)

GNFS Greedy No-Fragmentation scheduler - Minimize TAT and maximize Resource Utilization without
fragmenting any task across multiple Grid-Machines

R Random scheduler

Table 16.   Schedulers and symbols.

Scheduler name Symbol used

Greedy scheduler ●

Greedy communication cost scheduler ⧫

Random scheduler ■

Greedy execution cost scheduler ▲

Greedy no fragmentation scheduler ★

Table 17.   Scientific application graphs.

Scientific application workflow Brief description

Epigenomics Created by the USC Epigenome Center and the Pegasus Team to automate
various operations in genome sequence processing.

Cybershake Used by the Southern California Earthquake Center to characterize
earthquake hazards in a region.

Gausian elimination An algorithm for solving linear equations

LIGO Used to generate and analyze gravitational wave forms from data
collected during the coalescing of compact binary systems.

Montage Created by NASA/IPAC to stitch together multiple input images to
create custom mosaics of the sky

Cascade User level library allowing manual pluralization of complex C++
systems such as video game engines

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

The proposed task scheduling algorithm is evaluated using standard, random and scientific task graphs.

Standard task graphs
Our earlier research, as presented in63, demonstrated theorems for standard unit size task graphs on a homogene-
ous grid network for turnaround time. Similarly, in64, we stated theorems for grid utilization. In this article, we
have formulated mathematical models for homogeneous standard-weighted task graphs on a homogeneous grid
network for both fragmented and non-fragmented versions of the task graphs. These formulations are defined
in Tables 18 and 19 respectively.

TAT obtained from the proposed algorithm is tabulated in Table 20. The result describes both theoretical and
simulated results for various standard task graphs (with fragmentation and without fragmentation) for a given
number of tasks, grids, and processing elements. Here each task contains a uniform number of instructions
( WTi = 20000 MI) and homogeneous processing elements (WGR = 500 MIPS) in each grid. Computed TAT
is on par with our mathematical formulations. From the results, it is evident that as number of tasks increases,
TAT also increases. Similarly, The computed values of turnaround time, execution cost, communication cost,
and resource utilization using proposed schedulers for pipeline, star, ternary, independent and fully connected
task graphs with varying number of task nodes and a given number of grid resources are tabulated in Tables 21,
22 and 23 respectively. From these results, it has been found that the greedy scheduler successfully optimizes for
the fastest turnaround time along with grid utilisation, but the trade-off is that the communication cost is high.
However, the greedy communication cost scheduler with a slightly slower TAT successfully incurs the lowest
communication cost. In the absence of task fragmentation, a greedy scheduler achieves optimal grid utilization
while incurring zero communication costs. Additionally, it’s worth noting that the execution cost remains con-
sistent across different task schedulers when standard graphs are processed on a homogeneous grid network. As
the nature of the graphs becomes increasingly independent (such as star graphs or independent graphs), most
schedulers yield similar turnaround times due to the reduced dependency constraints. The Random scheduler,
inherently achieves TAT, Resource Utilization, and Communication cost in between the extremes achieved by
the other schedulers. Another interesting observation is that greedy scheduler achieves maximum resource
utilization and minimum turnaround time, albeit by incurring the highest communication and execution costs.

Random task graphs
Random task graphs with diverse levels of connectivity (0%, 25%, 50%, 75%, and 100%) is generated by using
algorithm-264. The outcomes of our proposed algorithm, encompassing TAT, resource utilization, execution
cost, and communication cost, are depicted in Fig. 3 through Fig. 4. From these results, we can conclude that
the turnaround time increases due to the increase in the number of tasks and also the increase in task depend-
ency. This is shown in Figs. 5, 6, 7 and 8. Also when tasks are scheduled without fragmentation TAT increases
as compared to tasks with fragmentation.

Resource utilization decreases when scheduling a random task graph with a higher degree of dependency
without fragmentation (as seen in Figs. 5, 6, 7, and 8), in contrast to when tasks are fragmented. Additionally, it’s

Table 18.   TAT for weighted fragmented standard task graphs.

Task graph TAT​

Pipe line WT
WG×m×M × n

Star WT
WG×m×M +

WT×(n−1)
WG×m×M

Independent WT×n
WG×m×M

Binary ∑ln (n−1)−1
i=0

2i×WT
WG×m×M

α ary ∑lnα (n(α−1)+1)−1
i=0

αi×WT
WG×m×M

Fully connected WT
WG×m×M × n

Table 19.   TAT for weighted non-fragmented standard task graphs.

Task graph TAT​

Pipe line WT
WG

× n

Star WT
WG

+

(

WT
WG

× ⌈ n−1
m×M ⌉

)

Independent n×WT
WG×m×M

Binary ≤
∑ln (n−1)−1

i=0

(

⌈ 2i

m×p ⌉ ×
WT
WG

)

α ary ≤
∑lnα n(α−1)+1−1

i=0

(

⌈ αi

m×M ⌉ ×
WT
WG

)

Fully connected WT
WG×m×M × n

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

noteworthy that all schedulers perform optimization for turnaround time and resource utilization when there is
no inter dependency among the tasks, as illustrated in Fig. 3.

As the inter dependency between tasks within a task graph increases (with connectivity’s of 0% as shown in
Fig. 9, 25% connectivity as shown in Fig. 10, 50% in Fig. 11, 75% in Fig. 12, and 100% in Fig. 13), it becomes
evident that the greedy scheduler achieves the lowest Turnaround Time (TAT). However, this comes at the cost
of higher communication expenses due to the fragmentation of tasks. Conversely, a greedy scheduler without
task fragmentation incurs zero communication costs in all cases, effectively eliminating this expense from the
scheduling process.

Figures 4, 14, 15, 16 and 17 shows that the greedy execution cost scheduler incurs the least execution cost.
The computed values of turnaround time, execution cost, communication cost, and resource utilization using
proposed schedulers for random task graphs with 25%, 50%, 75% and 100% dependency with varying number
of task nodes and a given number of grid resources are tabulated in Tables 24, 25 and 26 respectively.

Table 20.   Simulated/computed TAT for standard task graphs.

Standard task graph Number of tasks (n)

TAT with fragmentation TAT without fragmentation

TAT (Table 18) in seconds Grid sim TAT in seconds TAT (Table 19) in seconds
Grid sim TAT in
seconds

Independent task graph

40 200 200.03 200 200.03

121 605 605.1 640 640.1

363 1820 1820.03 1840 1840.04

1093 5465 5465.91 5480 5480.11

Star task Graph

40 200 200.04 240 240

121 605 605.11 640 640.01

364 1820 1820.31 1880 1880.04

1093 5465 5465.92 5520 5520.11

α − ary
Task graph (a=3)

40 200 200.04 320 280.01

121 605 605.11 760 680.01

364 1820 1820.31 2000 1880.04

1093 5465 5465.92 5680 5560.04

Pipeline task graph

40 200 200.26 1600 1600.03

121 605 605.8 4840 4840.1

364 1820 1822.42 14560 14560.3

1093 5465 5472.28 43720 43720.91

Fully connected task graph

40 200 200.26 200 200.26

121 605 605.8 605 605.8

364 1820 1822.42 1820 1822.42

1093 5465 5472.28 5465 5472.28

Figure 3.   Random task graph with 0% connectivity - TAT and resource utilization.

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Scientific task graphs
The performance of the proposed algorithm is also evaluated by using scientific graphs such as Montage, Cyber-
Shake, LIGO etc. Here all workflows are generated by Pegasus Workflow Generator65. Results shown in Figs. 18,
19, 20, 21 and 22 demonstrates the performance of proposed algorithm.

Figure 4.   Random task graph with 100% connectivity - TAT and execution cost.

Figure 5.   Random task graph with 25% connectivity - TAT and resource utilization.

Figure 6.   Random task graph with 50% connectivity - TAT and resource utilization.

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Figure 7.   Random task graph with 75% connectivity - TAT and resource utilization.

Figure 8.   Random task graph with 100% connectivity - TAT and resource utilization.

Figure 9.   Random task graph with 0% connectivity - TAT and communication cost.

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Our observation reveals that across all application task graphs, the greedy scheduler consistently generates
schedules with the most optimal TAT and resource utilization. However, it’s important to note that this optimi-
zation is achieved at the expense of incurring the highest communication and execution costs compared to the
schedules generated by the other schedulers.

Figure 10.   Random task graph with 25% connectivity - TAT and Commutation Cost.

Figure 11.   Random task graph with 50% connectivity - TAT and communication cost.

Figure 12.   Random task graph with 75% connectivity - TAT and communication cost.

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Figure 13.   Random task graph with 100% connectivity - TAT and communication cost.

Figure 14.   Random task graph with 0% connectivity - TAT and execution cost.

Figure 15.   Random task graph with 25% connectivity - TAT and execution cost.

18

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

A consistent trend that emerges across all schedulers is the inverse relationship between resource utilization
and the extent of parallel execution of tasks, which is dictated by the inter-dependency constraints among tasks.
For example, in the case of the Gaussian Elimination and Montage scientific application graphs, where tasks
exhibit a high degree of inter-dependency, the scheduling sequences result in the lowest resource utilization. This
highlights the influence of task inter-dependency on resource allocation and utilization in the scheduling process.

Similarly, computed values of turnaround time, execution cost, communication cost, and resource utilization
using proposed schedulers for different scientific task graphs is tabulated in Table 27.

Formulation of the multi‑objective‑decision‑making problem
The generic multi‑attribute‑decision‑making (MADM) problem
Scheduling tasks in a grid network can be conceptualized as a MADM problem. In the context of MADM, the
goal is to assess and prioritize various alternative solutions denoted as Ai(i = 1, 2, 3, . . . , I) , taking into account
specific criteria. These criteria, represented as Cj(j = 1, 2, 3, . . . , J) , encapsulate the factors that play a role in
influencing the ranking of the alternative solutions within the set Ai.

Each alternative solution, denoted as Ai , undergoes an evaluation against each individual criterion, repre-
sented by Cj . This evaluation process produces a performance rating matrix X = (xij)(I×J).

The user is tasked with specifying a set of weights, denoted as W = wj(j = 1, 2, . . . , J) , which serve as indicators
of the user’s individual preferences for each criterion, Cj.

X =

A1

A2

. . .

AI

C1 C2 . . . Cj






x11 x12 . . . x1J
x21 x22 . . . x2J
.

xI1 xI2 . . . xIJ







Figure 16.   Random task graph with 50% connectivity - TAT and execution cost.

Figure 17.   Random task graph with 75% connectivity - TAT and execution cost.

19

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Modeling task scheduling as an MADM problem
We model task scheduling problem as an MADM problem by:

1.	 Considering the schedule sequence output by each scheduler as the set of alternative solutions i.e.
A = {a|a ⊂ {GS,GCCS,GECS,GNFS}}.

2.	 Considering the performance metrics of a schedule sequence as the set of criteria i.e.
C = {c|c ⊂ {TAT ,RU ,CC,EC}}.

3.	 Computing the performance rating of each scheduler (GS, GCCS, GECS, GNFS) against every criteria (TAT​
, RU, CC, EC).

	  i.e.

Table 21.   Performance of standard task graphs on AWS EC2 Type-1, Type- 2, 2 Grids and 11 CPUs.

Number of
gridlets (n) Scheduler

Standard task graphs

Pipeline task graph Star task graph

Turn around
time (seconds)

Resource
utilization (%)

Execution
cost ($)

Communication
cost ($)

Turn around
time (seconds)

Resource
utilization (%)

Execution
cost ($)

Communication
cost ($)

40

Greedy (with
fragmentation)
scheduler

89.24 99.61 16.54 88.88 84.47 105.23 15.71 64.44

Greedy com-
munication cost
scheduler

114.51 77.63 15.87 0 92.87 95.71 16.55 0

Random sched-
uler 380.68 23.35 17.66 88.29 99.22 89.59 16.53 12.21

Greedy execution
cost scheduler 800.03 11.11 15.87 0 120 74.07 16.48 0

Greedy (without-
fragmentation)
scheduler

800.03 11.11 15.87 0 120 74.07 16.48 0

121

Greedy (with
fragmentation)
scheduler

269.96 99.6 50.04 268.86 234.48 114.67 43.25 64.44

Greedy com-
munication cost
scheduler

346.4 77.62 48.01 0 272.88 98.54 50.04 0

Random sched-
uler 1335.94 20.13 53.73 272.51 294.01 91.46 50.16 44

Greedy execution
cost scheduler 2420.1 11.11 48.02 0 300.01 89.63 50.13 0

Greedy (without-
fragmentation)
scheduler

2420.1 11.11 48.02 0 300.01 89.63 50.13 0

364

Greedy (with
fragmentation)
scheduler

812.14 99.6 150.53 808.81 675.89 119.68 125.69 64.44

Greedy com-
munication cost
scheduler

1042.07 77.62 144.44 0 812.93 99.5 150.52 0

Random sched-
uler 3683.09 21.96 161.88 892.11 844.34 95.8 150.68 18.33

Greedy execution
cost scheduler 7280.3 11.11 144.44 0 840.02 96.29 150.48 0

Greedy(without-
Fragmentation)
scheduler

7280.3 11.11 144.44 0 840.02 96.29 150.48 0

1039

Greedy (with
fragmentation)
scheduler

2318.17 99.6 429.67 2308.66 1904.62 121.23 354.34 64.44

Greedy com-
munication cost
scheduler

2974.48 77.62 412.28 0 2313.05 99.82 429.63 0

Random sched-
uler 11322.52 20.39 462.72 2492.34 2350.67 98.22 429.77 71.66

Greedy execution
cost scheduler 20780.86 11.11 412.3 0 2340.05 98.67 429.79 0

Greedy (without-
Fragmentation)
scheduler

20780.86 11.11 412.3 0 2340.05 98.67 429.79 0

20

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

X =

GS
GCCS
GECS
GNFS

TAT RU CC EC






y11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44







Table 22.   Performance of standard task graphs on AWS EC2 Type-1, Type- 2, 2 Grids and 11 CPUs.

Number of
gridlets (n) Scheduler

Standard task graphs

Independent task graph Ternary task graph

Turn around
time (seconds)

Resource
utilization (%)

Execution
cost ($)

Communication
cost ($)

Turn around
time (seconds)

Resource
utilization (%)

Execution
cost ($)

Communication
cost ($)

40

Greedy (with
fragmentation)
scheduler

84.45 105.25 15.61 62.22 84.47 105.23 15.71 64.44

Greedy com-
munication cost
scheduler

90.01 98.76 16.55 0 92.87 95.71 16.55 0

Random
scheduler 109 81.55 16.67 25.67 106.67 83.33 16.58 43.11

Greedy
execution cost
scheduler

100 88.89 16.48 0 140 63.49 16.48 0

Greedy
(without-
fragmentation)
scheduler

100 88.89 16.48 0 140 63.49 16.48 0

121

Greedy (with
fragmentation)
scheduler

232.25 115.77 43.15 62.22 234.48 114.67 43.25 64.44

Greedy com-
munication cost
scheduler

270.02 99.58 50.04 0 272.88 98.54 50.04 0

Random
scheduler 284 94.68 50.08 4 294.34 91.35 50.09 15.08

Greedy
execution cost
scheduler

280.01 96.03 50.13 0 320 84.03 49.98 0

Greedy
(without-
fragmentation)
scheduler

280.01 96.03 50.13 0 320 84.03 49.98 0

364

Greedy (with
fragmentation)
scheduler

682.29 118.56 125.75 62.22 675.89 119.68 125.69 64.44

Greedy com-
munication cost
scheduler

810.06 99.86 150.52 0 812.93 99.5 150.52 0

Random
scheduler 821 98.52 150.54 21.33 835.01 96.87 150.58 5

Greedy
execution cost
scheduler

820.02 98.64 150.48 0 860 94.06 150.48 0

Greedy
(without-
fragmentation)
scheduler

820.02 98.64 150.48 0 860 94.06 150.48 0

1039

Greedy (with
fragmentation)
scheduler

1904.46 121.24 354.24 62.22 1904.62 121.23 354.34 64.44

Greedy com-
munication cost
scheduler

2310.19 99.94 429.63 0 2313.05 99.82 429.63 0

Random
scheduler 2332.78 98.98 429.74 17.78 2368.68 97.48 429.8 15.67

Greedy
execution cost
scheduler

2320.05 99.52 429.79 0 2360 97.83 429.64 0

Greedy
(without-
fragmentation)
scheduler

2320.05 99.52 429.79 0 2360 97.83 429.64 0

21

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

4.	 Collecting a user’s preferences for each criterion involves ranking these criteria in descending order of
importance. Weights are then allocated using a Geometric Progression, with greater weights being assigned
to criteria ranked higher in importance by the user.

Solving the MADM problem
The task scheduling MADM problem is addressed using a well-regarded technique within the MADM field
known as TOPSIS. TOPSIS operates on the principle that the optimal solution is the one closest to the positive-
ideal solution while simultaneously being the farthest from the negative-ideal solution. Alternatives are ranked
by computing an overall index based on their proximity to these ideal solutions.

The TOPSIS method comprises a series of steps, as follows:

1.	 Normalize the performance rating matrix.
	  i.e. yij =

xij
√

∑I
i=1 x

2
ij

	  Y =







y11 y12 . . . y1J
y21 y22 . . . y2J
.

yI1 yI2 . . . yIJ







2.	 Determine the weighted, normalized performance rating matrix.
	  i.e.

	  V =







y11 v12 . . . v1J
v21 v22 . . . v2J
.

vI1 vI2 . . . vIJ







	  Where vij = Wj ∗ yij; (i = 1, 2, . . . , I; j = 1, 2, . . . , J)
3.	 Compute the positive and negative ideal solutions, A+ and A− , respectively.
	  A+ = [v+1 , v

+
2 , . . . , v

+
J] A+ = [v−1 , v

−
2 , . . . , v

−
J]

	  where,
	  v+j =

{

maxIi=1(vij) if j is a benefit attribute,minIi=1(vij) if j is a cost attribute

	  v−j =
{

minIi=1(vij) if j is a benefit attribute,maxIi=1(vij) if j is a cost attribute

4.	 Calculate the Euclidean distance from the positive and negative ideal solutions.
	  S+i =

√

∑j
j=1(vij − v+j)

2

Table 23.   Perform acne of fully connected task graphs on AWS EC2 Type-1, Type- 2, 2 Grids and 11 CPUs.

Number of gridlets (n) Scheduler

Standard task graphs

Fully connected task graph

Turn around time (seconds) Resource utilization (%) Execution cost ($) Communication cost ($)

40

Greedy (with fragmentation) scheduler) 89.24 99.61 16.54 88.88

Greedy communication cost scheduler 114.51 77.63 15.87 0

Random scheduler 341.24 26.05 17.59 98.41

Greedy execution cost scheduler 800.03 11.11 15.87 0

Greedy (without-fragmentation)
scheduler 800.03 11.11 15.87 0

121

Greedy (with fragmentation) scheduler 269.96 99.6 50.04 268.86

Greedy communication cost scheduler 346.4 77.62 48.01 0

Random scheduler 1332.88 20.17 53.97 259.55

Greedy execution cost scheduler 2420.1 11.11 48.02 0

Greedy (without-fragmentation)
scheduler 2420.1 11.11 48.02 0

364

Greedy (with fragmentation) scheduler 812.14 99.6 150.53 808.81

Greedy communication cost scheduler 1042.07 77.62 144.44 0

Random scheduler 3872.95 20.89 161.64 874.12

Greedy execution cost scheduler 7280.3 11.11 144.44 0

Greedy (without-fragmentation)
scheduler 7280.3 11.11 144.44 0

1039

Greedy (with fragmentation) scheduler 2318.17 99.6 429.67 2308.66

Greedy communication cost scheduler 2974.48 77.62 412.28 0

Random scheduler 11190.07 20.63 461.31 2516.51

Greedy execution cost scheduler 20780.86 11.11 412.3 0

Greedy (without-fragmentation)
scheduler 20780.86 11.11 412.3 0

22

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

	  S−i =

√

∑j
j=1(vij − v−j)

2

5.	 Calculate the closeness of each alternative solution to the ideal solution. Vi =
S−i

S−i +S+i
6.	 Determining the rank order of all alternatives on the basis of their relative closeness to the ideal solutions.

The larger the Vi is, the better the alternative solution Ai is. The best alternative solution is the one with the
largest closeness to the ideal solution.

TOPSIS results and discussion
To rank the task schedule sequences produced by various schedulers, the TOPSIS method is employed. This
method optimizes the selection of schedules according to the user’s prioritized objectives, which include Turna-
round Time, Resource Utilization, Communication Price, and Execution Price, in terms of their desirability.
Tables 28, 29, and 30 presents the result of the TOPSIS algorithm when applied to standard, random, and
scientific task graphs, respectively. We explore different possible priority orders that users may assign to each
criterion. Notably, we find a consistent ranking pattern for schedule sequences across all types of graphs, includ-
ing Standard, Random, and Scientific graphs, which encompass Fully Connected, Pipeline, Star, Ternary, and
Independent graph categories. Additionally, this ranking consistency persists even when the number of tasks
varies (40, 121, 364, and 1039).

Table 24.   Performance of scheduling algorithms on random task graphs on AWS EC2 Type-1, Type- 2, 2
Grids and 11 CPUs.

Number of
gridlets (n) Scheduler

Task graph

A task graph with 0% connectivity A task graph with 25% connectivity

TAT (seconds)
Resource
utilization (%)

Execution cost
($)

Communication
cost ($) TAT (seconds)

Resource
utilization (%)

Execution
cost ($)

Communication
cost ($)

100

Greedy (with
fragmentation)
scheduler

193.97 99.56 36.01 62.22 224.56 98.96 38.51 84.44

Greedy com-
munication
cost scheduler

222.87 98 41.33 0 248.6 89.39 41.86 0

Random
scheduler 246 90.33 41.37 6.67 550.5 40.47 41.86 194.24

Greedy execu-
tion cost
scheduler

240 92.59 41.42 0 680.03 32.68 39.68 0

Greedy
(without-frag-
mentation)
scheduler

240 92.59 41.42 0 779.01 28.53 39.66 0

300

Greedy (with
fragmentation)
scheduler

562.28 118.57 103.95 62.22 651.03 102.4 115.09 217.76

Greedy com-
munication
cost scheduler

670.05 99.49 124.08 0 781.51 85.31 124.63 0

Random
scheduler 690 96.62 124.14 23.33 1794.81 37.14 126.11 493.82

Greedy Execu-
tion cost
scheduler

680.01 98.04 124.17 0 2037.06 32.73 118.98 0

Greedy
(without-Frag-
mentation)
scheduler

680.01 98.04 124.17 0 2113.01 31.55 118.9 0

500

Greedy (with
fragmentation)
scheduler

922.55 120.44 171.64 62.22 1133.6 98.02 196.05 275.53

Greedy com-
munication
cost scheduler

1111.46 99.97 206.74 0 1224.37 90.75 207.21 0

Random
scheduler 1119 99.29 206.76 16.67 2860.33 38.85 210.25 902.54

Greedy execu-
tion cost
scheduler

1120.02 99.2 206.86 0 3652.14 30.42 198.25 0

Greedy
(without-frag-
mentation)
scheduler

1120.02 99.2 206.86 0 3329.08 33.38 198.19 0

23

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Weightage types 1, 2, 3, 4, as well as 7, 8, 9, and 10, exemplify situations where the user places the highest
importance on turnaround time and resource utilization as criteria, while assigning less significance to commu-
nication cost and execution cost. In these scenarios, TOPSIS consistently ranks the greedy scheduler as the top
solution. The second-best alternative solution is the greedy communication cost scheduler, which outperforms
the other schedulers in terms of TAT and resource utilization.

However, in cases corresponding to weightage types 5, 6, 10, and 11, where the user’s preference primarily
focuses on achieving an optimal communication cost, TOPSIS identifies the schedule generated by the greedy
communication scheduler as the best solution. This scheduler minimizes communication costs to zero while
maintaining TAT and resource utilization levels that are nearly on par with those achieved by the greedy sched-
uler. In this context, the output schedule sequence of the greedy scheduler is ranked last by TOPSIS, as it incurs
the highest communication cost, contradicting the user’s prioritization of criteria desirability.

Conclusion and future work
In this paper, we presented a multi-objective task scheduling framework for scheduling different types of work-
flows on computational grids. The main objective of our proposed framework is to minimize the overall execu-
tion cost, including application turnaround time and communication cost, while maximizing grid utilization.
The proposed scheduling framework is integrated with GridSim and validated through experiments conducted
on weighted standard task graphs, weighted random task graphs, and scientific task graphs. Furthermore, we
envisaged a multi-criteria decision method called Technique for Order of Preference by Similarity to Ideal

Table 25.   Performance of scheduling algorithms on random task graphs on AWS EC2 Type-1, Type- 2, 2
Grids and 11 CPUs.

Number of
gridlets (n) Scheduler

Task graph

A task graph
with 50% connectivity A task graph with 5% connectivity

TAT (seconds)
Resource
utilization (%)

Execution
cost ($)

Communication
cost ($) TAT (seconds)

Resource
utilization (%)

Execution
cost ($)

Communication
cost ($)

100

Greedy (with
fragmentation)
scheduler

242.96 91.46 41 159.98 226.63 98.06 41.35 211.09

Greedy commu-
nication
cost scheduler

320.13 69.42 41.61 0 337.34 65.88 41.33 0

Random sched-
uler 854.68 26 42.78 189.18 874.23 25.42 43.3 193.28

Greedy execution
cost
scheduler

1039.06 21.39 39.66 0 1600.08 13.89 39.68 0

Greedy(without-
fragmentation)
scheduler

1099.05 20.22 39.66 0 1660.08 13.39 39.68 0

300

Greedy (with
fragmentation)
scheduler

747.19 89.22 121.54 453.29 708.43 94.1 123.34 597.72

Greedy commu-
nication
cost scheduler

946.2 70.46 124.72 0 966.73 68.96 122.79 0

Random sched-
uler 2574.16 25.9 129 638.88 2951.95 22.58 130.79 633.81

Greedy execution
cost
scheduler

3491.15 19.1 118.87 0 4720.23 14.12 119.05 0

Greedy (without-
fragmentation)
scheduler

3453.12 19.31 118.91 0 4800.23 13.89 119.05 0

500

Greedy (with
fragmentation)
scheduler

1240.61 89.56 203.32 759.92 1158.96 95.87 205.88 1026.56

Greedy commu-
nication
cost scheduler

1536.23 72.33 207.32 0 1634.52 67.98 204.31 0

Random sched-
uler 3821.02 29.08 214.51 1003.02 5088.05 21.84 218.14 1091.33

Greedy execution
cost
scheduler

5820.31 19.09 198.41 0 7960.38 13.96 198.41 0

Greedy(without-
Fragmentation)
scheduler

5872.29 18.92 198.25 0 7920.38 14.03 198.41 0

24

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Table 26.   Performance of scheduling algorithms on random task graphs on AWS EC2 Type-1, Type- 2, 2
Grids and 11 CPUs.

Number of gridlets (n) Scheduler

A task graph with 100% connectivity

TAT (seconds) Resource utilization (%) Execution cost ($)
Communication
cost ($)

100

Greedy (with fragmentation)
scheduler 223.11 99.6 41.35 222.2

Greedy communication
cost scheduler 286.28 77.62 39.68 0

Random scheduler 1098 20.24 44.44 243.75

Greedy execution cost
scheduler 2000.08 11.11 39.68 0

Greedy (without-Fragmen-
tation)
scheduler

2000.08 11.11 39.68 0

300

Greedy (with fragmentation)
scheduler 669.34 99.6 124.06 666.6

Greedy communication
cost scheduler 858.84 77.62 119.04 0

Random scheduler 3232.57 20.62 133.75 728.72

Greedy execution cost
scheduler 6000.25 11.11 119.05 0

Greedy (without-fragmenta-
tion)
scheduler

6000.25 11.11 119.05 0

500

Greedy (with fragmentation)
scheduler 1115.57 99.6 206.77 1111

Greedy communication
cost scheduler 1431.41 77.62 198.4 0

Random scheduler 5536.25 20.07 222.33 1176.6

Greedy execution cost
scheduler 10000.42 11.11 198.41 0

Greedy (without-fragmenta-
tion)
scheduler

10000.42 11.11 198.41 0

Figure 18.   Scientific task graphs with resource utilization and communication cost.

25

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Figure 19.   Scientific task graphs with resource utilization and execution cost.

Figure 20.   Scientific task graphs with resource utilization and TAT.

Figure 21.   Scientific task graphs with resource utilization and communication cost.

26

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Solution (TOPSIS) to rank the output of the scheduling sequence based on different objective functions and the
requirements of both users and service providers.

As part of future work, we plan to design a multi-objective task scheduling framework based on Large
Language Models (LLMs) and compare the performance with NSGA-II in a computational cloud computing
environment.

Figure 22.   Scientific task graphs with TAT and execution cost.

27

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Table 27.   Performance of scheduling algorithms on scientific task graphs on AWS EC2 Type-1, Type- 2, 2
Grids and 11 CPUs.

Scientific task graph Scheduler TAT (seconds) Resource utilization (%) Execution cost ($)
Communication
cost ($)

Cascade

Greedy (with fragmentation)
scheduler 44.49 99.9 8.27 44.44

Greedy communication cost
schedule 51.46 86.37 8.24 0

Random scheduler 157.33 28.25 8.49 34.68

Greedy execution cost schedule 160 27.78 7.94 0

Greedy (without-fragmenta-
tion) scheduler 160 27.78 7.94 0

Montage

Greedy (with fragmentation)
scheduler 44.51 99.84 8.27 44.44

Greedy Communication cost
schedule 57.18 77.73 8.24 0

Random scheduler 196.53 22.61 8.43 33.37

Greedy Execution cost schedule 180.01 24.69 7.94 0

Greedy (without-fragmenta-
tion) scheduler 180.01 24.69 7.94 0

Ligo

Greedy (with fragmentation)
scheduler 84.47 105.24 15.71 64.44

Greedy communication cost
schedule 92.87 95.71 16.55 0

Random scheduler 177.12 50.19 16.76 43

Greedy execution cost schedule 140.01 63.49 16.17 0

Greedy (without-fragmenta-
tion) scheduler 140.01 63.49 16.17 0

Gausian elimination

Greedy (with fragmentation)
scheduler 66.73 99.9 12.41 66.66

Greedy communication cost
scheduler 78.62 84.79 12.36 0

Random scheduler 169.69 39.29 12.85 96.21

Greedy execution cost schedule 300.01 22.22 11.9 0

Greedy (without-Fragmenta-
tion) scheduler 300.01 22.22 11.9 0

Cybershake

Greedy (with fragmentation)
scheduler 44.46 99.97 8.27 44.44

Greedy communication cost
scheduler 50 88.88 8.31 0

Random scheduler 93.67 47.45 8.42 6.67

Greedy execution cost
scheduler 100 44.44 8.01 0

Greedy (without-fragmenta-
tion) scheduler 100 44.44 8.01 0

Epigenomics

Greedy (with fragmentation)
scheduler 44.49 99.9 8.27 44.44

Greedy communication cost
scheduler 51.45 86.38 8.24 0

Random scheduler 106.8 41.61 8.59 48.44

Greedy execution cost
scheduler 159 27.95 7.92 0

Greedy (without-Fragmenta-
tion) scheduler 159 27.95 7.92 0

28

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Table 28.   TOPSIS ranking of scheduling algorithms on standard task graphs.

Standard task graph Number of gridlets Weightage type TOPSIS solution rank Scheduler

Fully connected, pipeline, ternary, star and independent
40,
121,
364 and
1039

1.TAT > RU > EP > CP
2.TAT > RU > CP > EP
3. TAT > EP > RU > CP
4. TAT > EP > CP > RU

1 Greedy (with fragmentation) scheduler

2 Greedy Communication cost scheduler

3 Greedy Execution cost scheduler

4 Greedy (without-Fragmentation) scheduler

5. TAT > CP > RU > EP
6. TAT > CP > EP > RU

1 Greedy Communication cost scheduler

2 Greedy Execution cost scheduler

3 Greedy (without-Fragmentation) scheduler

4 Greedy (with fragmentation) scheduler

7. RU > TAT > EP > CP
8. RU > TAT > CP > EP
9. RU > EP > TAT > CP
10. RU > EP > CP > TAT​

1 Greedy (with fragmentation) scheduler

2 Greedy Communication cost scheduler

3 Greedy Execution cost scheduler

4 Greedy (without-Fragmentation) scheduler

11. RU > CP > TAT > EP
12. RU > CP > EP > TAT​

1 Greedy Communication cost scheduler

2 Greedy Execution cost scheduler

3 Greedy (without-Fragmentation) scheduler

4 Greedy (with fragmentation) scheduler

Table 29.   TOPSIS ranking of scheduling algorithms on random task graphs.

Number of gridlets Connectivity percentage Weightage type TOPSIS scheduler ranking

100, 250, 500,750 and 1000 25%, 50%, 75% and 100%

1. TAT >RU >EC >CC
2. TAT >RU >CC >EC
3. TAT >EC >RU >CC
4. TAT >EC >CC >RU
5. TAT >CC >RU >EC
6. TAT >CC >EC >RU
7. RU >TAT >EC >CP
8. RU >TAT >CC >EP
9. RU >EC >TAT >CP
10. RU >EC >CC >TAT​
11. RU >CC >TAT >EP
12. RU >CC >EC >TAT​

1. Greedy (with fragmentation) scheduler
2. Greedy Execution Cost scheduler
3. Greedy Communication cost scheduler
4. Greedy (without-Fragmentation) scheduler

13.CC >TAT >RU >EC
14.CC >TAT >EC >RU
15.CC >RU >TAT >EC
16.CC >RU >EC >TAT​
17.CC >EC >TAT >RU
18.CC >EC >RU >TAT​

1. Greedy Communication cost scheduler
2. Greedy (without-Fragmentation) scheduler
3. Greedy Execution cost scheduler
4. Greedy (with fragmentation) scheduler

19.EC >TAT >RU >CC
20. EC >TAT >CC >RU

1. Greedy Execution cost scheduler
2. Greedy (with fragmentation) scheduler
3. Greedy Communication cost scheduler
4. Greedy (without-Fragmentation) scheduler

29

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

Data availibility
The data that supports the findings of this study are available from the corresponding author on request.

Received: 8 December 2023; Accepted: 13 March 2024

References
	 1.	 Casanova, H. & Dongarra, J. Network enabled solvers for scientific computing using the NetSolve system. In Proc. of 3rd Inter-

national Conference on Algorithms and Architectures for Parallel Processing, Melbourne, VIC, Australia, pp. 17-33 (1998).
	 2.	 Goux, J.P., Kulkarni, S., Linderoth, J. & Yoder, M. An enabling framework for master_worker applications on the computational

grid. In 9th IEEE Int. Symposium on High Performance Distributed Computing, HPDC’00 (2000).
	 3.	 Chervenak, A., Foster, I., Kesselman, C., Salisbury, C. & Tuecke, S. The data grid: Toward an architecture for the distributed man-

agement and analysis of large scientific datasets. J. Netw. Comput. Appl. 23, 187–200 (2000).
	 4.	 Beynon, M. D., Sussman, A., Catalyurek, U., Kurc, T. & Saltz, J. Performance optimization for data intensive grid applications. In

Proc. Third Annual International Workshop on Active Middleware Services, USA, 97–105 (2001).
	 5.	 Linderoth, L. & Wright, S. J. Decomposition algorithms for stochastic programming on a computational grid. Comput. Optim.

Appl. 24, 207–250 (2003).
	 6.	 Newman, H. B., Ellisman, M. H. & Orcutt, J. A. Data-intensive e-Science frontier research. Commun. ACM 46(11), 68–77 (2003).
	 7.	 Buyya, R., Abramson, D. & Venugopal, S. The grid economy. Proc. IEEE 93(3), 698–714 (2005).
	 8.	 Paniagua, C., Xhafa, F., Caballé, S. & Daradoumis, T. A parallel grid-based implementation for real time processing of event log

data in collaborative applications. In Parallel and Distributed Processing Techniques, PDPT2005, Las Vegas, USA, pp. 1177–1183
(2005).

	 9.	 Arbona, A. et al. A service-oriented grid infrastructure for biomedical data and compute services. IEEE Trans. NanoBiosci. 6(2),
136–141 (2007).

	10.	 Alonso, J. M. et al. A grid computing-based approach for the acceleration of simulations in cardiology. IEEE Trans. Inf. Technol.
Biomed. 12(2), 138–144 (2008).

	11.	 Mishra, Manoj Kumar, Patel, Yashwant Singh, Rout, Yajnaseni & Mund, G.B. A survey on scheduling heuristics in grid computing
environment, I.J. Modern Education and Computer Science, pp. 57-83 (2014).

	12.	 Tsai, C. & Rodrigues, J. Meta heuristic scheduling for cloud: A survey. IEEE Syst. J. 8(1), 279–291 (2014).
	13.	 Zhou, Zhou & Zhigang, Hu. Task scheduling algorithm based on greedy strategy in cloud computing. Open Cybern. Syst. J. 8,

111–114 (2014).
	14.	 Kong, X., Lin, C., Jiang, Y., Yan, W. & Chu, X. Efficient dynamic task scheduling in virtualized data centers with fuzzy prediction.

J. Netw. Comput. Appl. 34(4), 1068–1077 (2011).
	15.	 Sun, W. et al. A game theoretic resource allocation model based on extended second price sealed auction in grid computing. J.

Comput. 7(1), 65–75 (2012).
	16.	 Grover, R. & Chabbra, A. Bio-inspired optimization techniques for job scheduling in grid computing. In 2016 IEEE International

Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), pp. 1902-1906 (2016).
	17.	 Bagchi, T. P. The nondominated sorting genetic algorithm: NSGA. In Multiobjective Scheduling by Genetic Algorithms (ed. Bagchi,

T. P.) (Springer, 1999).
	18.	 Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolut.

Comput. 6(2), 182–197 (2002).
	19.	 Coello Coello, C. A. & Lechuga, M. S. MOPSO: a proposal for multiple objective particle swarm optimization Proceedings of the

2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), Honolulu, HI, USA, pp. 1051-1056 (2002).
	20.	 Li, H. and Landa-Silva, D., An Adaptive Evolutionary Multi-Objective Approach Based on Simulated Annealing, Evolutionary

Computation, pp. 561-595, (2011).
	21.	 Lopez-Ibanez, M. & Stutzle, T. The automatic design of multiobjective ant colony optimization algorithms. IEEE Trans. Evolut.

Comput. 16(6), 861–875 (2012).
	22.	 Zhou, Aimin, Bo-Yang, Qu., Li, Hui & Zhao, Shi-Zheng. Multiobjective evolutionary algorithms: A survey of the state of the art.

Swarm Evolut. Comput. 1(1), 32–49 (2011).

Table 30.   TOPSIS ranking of scheduling algorithms on scientific task graphs.

Scientific task graph Number of gridlets Weightage type TOPSIS solution rank Scheduler

Cascade, montage, ligo, cybershake, epigenomics and
Gaussian elimination 40, 121, 364 and 1039

1.TAT > RU > EC > CC
2.TAT > RU > CC > Ec
3. TAT > EC > RU > CC
4. TAT > EC > CC > RU

1 Greedy (with fragmentation) scheduler

2 Greedy Communication cost scheduler

3 Greedy Execution cost scheduler

4 Greedy (without-Fragmentation) scheduler

5. TAT > CC > RU > EC
6. TAT > CC > EC > RU

1 Greedy Communication cost scheduler

2 Greedy Execution cost scheduler

3 Greedy (without-Fragmentation) scheduler

4 Greedy (with fragmentation) scheduler

7. RU > TAT > EC > CC
8. RU > TAT > CC > EC
9. RU > EC > TAT > CC
10. RU > EC > CC > TAT​

1 Greedy (with fragmentation) scheduler

2 Greedy Communication cost scheduler

3 Greedy Execution cost scheduler

4 Greedy (without-Fragmentation) scheduler

11. RU > CC > TAT > EC
12. RU > CC > EC > TAT​

1 Greedy Communication cost scheduler

2 Greedy Execution cost scheduler

3 Greedy (without-Fragmentation) scheduler

4 Greedy (with fragmentation) scheduler

30

Vol:.(1234567890)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

	23.	 Yang, S. et al. A grid-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evolut. Comput. 17(5), 721–736
(2013).

	24.	 Zuo, L., Shu, L., Dong, S., Zhu, C. & Hara, T. A multi-objective optimization scheduling method based on the ant colony algorithm
in cloud computing. IEEE Access 3, 2687–2699 (2015).

	25.	 Wang, H., Jin, Y. & Yao, X. Diversity assessment in many-objective optimization. IEEE Trans. Cybern. 47(6), 1510–1522 (2017).
	26.	 Tian, Y., Cheng, R., Zhang, X. & Jin, Y. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization. IEEE Comput.

Intell. Mag. 12(4), 73–87 (2017).
	27.	 Lin, Q. et al. Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems. IEEE

Trans. Evol. Comput. 22(1), 32–46 (2018).
	28.	 Sadhukhan, Arindam, & Sivasubramani, S. Multi-objective load scheduling in a smart grid environment. In 20th National Power

Systems Conference (NPSC), IEEE (2018).
	29.	 Singh, J. & Tiwari, R. Multi-Objective Optimal Scheduling of Electric Vehicles in Distribution System, 20th National Power Systems

Conference (NPSC), 1–6 (2018).
	30.	 Lin, Q. et al. A clustering-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput.

23(3), 391–405 (2019).
	31.	 Leiva, J., Pardo, R. C. & Aguado, J. Data analytics-based multi-objective particle swarm optimization for determination of conges-

tion thresholds in lv networks. Energies 12(7), 1295 (2019).
	32.	 Yuping, L. Optimization of multi-objective virtual machine based on ant colony intelligent algorithm. Int. J. Perform. Eng. 15(9),

2494 (2019).
	33.	 Grewal, S. K. & Mangla, N. Deadline and Cost Optimization based Task Scheduling (DCOTS) in Cloud Computing

Environment,4th International Conference on Intelligent Engineering and Management (ICIEM), London, United Kingdom, pp.
1-6 (2023).

	34.	 Cui, Z., Zhao, T., Wu, L., Qin, A. K. & Li, J. Multi-objective cloud task scheduling optimization based on evolutionary multi-factor
algorithm. IEEE Trans. Cloud Comput. 11(4), 3685–3699 (2023).

	35.	 Shrichandran, G., Tinnaluri, V. S. N., Murugan, J. S., Meeradevi, T., Dwivedi, V. K. & Christal Mary, S. S. Hybrid Competitive
Swarm Optimization Algorithm Based Scheduling in the Cloud Computing Environment. In 5th International Conference on
Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, pp. 1013-1018 (2023).

	36.	 Zhang, H. & Jia, R. Application of chaotic cat swarm optimization in cloud computing multi objective task scheduling. IEEE Access
11, 95443–95454 (2023).

	37.	 Lipsa, S., Dash, R. K., Ivković, N. & Cengiz, K. Task scheduling in cloud computing: A priority-based heuristic approach. IEEE
Access 11, 27111–27126 (2023).

	38.	 Lou, J. et al. Cost-effective scheduling for dependent tasks with tight deadline constraints in mobile edge computing. IEEE Trans.
Mobile Comput. 22(10), 5829–5845 (2023).

	39.	 Ajinkya Wagaskar, K. & Chowdhary, G. V. Optimal Resource Search in Grid Computing as a Multi-Objective Problem with Particle
Swarm Technique. In International Conference for Emerging Technology (INCET), Belgaum, India, pp. 1-6 (2020).

	40.	 Alsadie, D. TSMGWO: Optimizing task schedule using multi-objectives grey wolf optimizer for cloud data centers. IEEE Access
9, 37707–37725 (2021).

	41.	 Ni, L., Sun, X., Li, X. & Zhang, J. Gcwoas2: Multiobjective task scheduling strategy based on gaussian cloud-whale optimization
in cloud computing. Comput. Intell. Neurosci. 2021, 1–17 (2021).

	42.	 Abualigah, L. & Diabat, A. A novel hybrid antlion optimization algorithm for multiobjective task scheduling problems in cloud
computing environments. Clust. Comput. 24(1), 205–223 (2021).

	43.	 Dutta, Debashis. Subhabrata rath job scheduling on computational grids using multi-objective fuzzy particle swarm optimization.
Soft Comput. Theor. Appl. 1380, 333–3347 (2022).

	44.	 Kaur, K., Garg, S., Aujla, G. S., Kumar, N. & Zomaya, A. Y. A multi-objective optimization scheme for job scheduling in sustainable
cloud data centers. IEEE Trans. Cloud Comput. 10(1), 172–186 (2022).

	45.	 Akbar, M. I. et al. A novel hybrid optimization-based algorithm for the single and multi-objective achievement with optimal DG
allocations in distribution networks’. IEEE Access 10, 25669–25687 (2022).

	46.	 Moazeni, A., Khorsand, R. & Ramezanpour, M. dynamic resource allocation using an adaptive multi-objective teaching-learning
based optimization algorithm in cloud. IEEE Access 11, 23407–23419 (2023).

	47.	 Reddy, B. P. V. & Reddy, K. G. A multi-objective based scheduling framework for effective resource utilization in cloud computing.
IEEE Access 11, 37178–37193 (2023).

	48.	 Dakkak, O., Suki, A., Arif, M. & Shahrudin, A. N. A critical analysis of simulators in grid. J. Teknol. 77(4), 111–117. https://​doi.​
org/​10.​11113/​jt.​v77.​6050 (2015).

	49.	 Wu, R., Wu, M., Mi, X. & An, Q. Task Scheduling Algorithm Based on Triangle Module in Grid Computing. In 8th International
Conference on Wireless Communications, Networking and Mobile Computing, 2012, pp. 1-4 (2012).

	50.	 Patel, D. K. & Tripathy, C. R. An efficient load balancing mechanism with cost estimation on GridSim. Int. Conf. Inf. Technol. (ICIT)
2016, 75–80 (2016).

	51.	 Eng, K., Muhammed, A., Mohamed, M. A. & Hasan, S. Incorporating the range-based method into GridSim for modeling task
and resource heterogeneity. IEEE Access 5, 19457–19462 (2017).

	52.	 Nukarapu, D., Tang, B., Wang, L. & Lu, S. Data replication in data intensive scientific applications with [32]performance guarantee.
IEEE Trans. Parallel Distrib. Syst. 22(8), 1299–1306 (2011).

	53.	 Haider, S. & Nazir, B. Dynamic and adaptive fault tolerant scheduling with QoS consideration in computational grid. IEEE Access
5, 7853–7873 (2017).

	54.	 Patel, D. K. & Tripathy, C. R. An Effective Selection Method for Scheduling of Gridlets among Heterogeneous Resources with Load
Balancing on GridSim. In 2017 3rd International Conference on Computational Intelligence and Networks (CINE), pp. 68-72
(2017).

	55.	 Sheikh, S., Shahid, M. & Nagaraju, A. “A novel dynamic task scheduling strategy for computational grid. In 2017 International
Conference on Intelligent Communication and Computational Techniques (ICCT), 2017, pp. 102-107 (2017).

	56.	 Hwang, C. L. & Yoon, K. Multiple Attribute Decision Making: Methods and Applications (Springer-Verlag, 1981).
	57.	 Yoon, K. A reconciliation among discrete compromise situations. J. Oper. Res. Soc. 38(3), 277–286 (1987).
	58.	 Hwang, C. L., Lai, Y. J. & Liu, T. Y. A new approach for multiple objective decision making. Comput. Oper. Res. 20(8), 889–899

(1993).
	59.	 Krohling, R. A. & Pacheco, A. G. C. A-TOPSIS - An approach based on TOPSIS for ranking evolutionary algorithms. Procedia

Comput. Sci. 55, 308–317 (2015).
	60.	 Fei, Liguo, Yong, Hu., Xiao, Fuyuan, Chen, Luyuan & Deng, Yong. Modified TOPSIS method based on numbers and its applica-

tions in human resources selection. Math. Probl. Eng. 2016(3), 1–14 (2016).
	61.	 Shirvani, M. H., Amirsoleimani, N., Salimpour, S. & Azab, A. Multi-criteria task scheduling in distributed systems based on fuzzy

TOPSIS. In IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1-4 (2017).
	62.	 Liu, L., Fan, Q. & Buyya, R. A deadline-constrained multi-objective task scheduling algorithm in mobile cloud environments.

IEEE Access 6, 52982–52996 (2018).

https://doi.org/10.11113/jt.v77.6050
https://doi.org/10.11113/jt.v77.6050

31

Vol.:(0123456789)

Scientific Reports | (2024) 14:6521 | https://doi.org/10.1038/s41598-024-56957-8

www.nature.com/scientificreports/

	63.	 Srinivas, D.B., Hegde, S. N., Rajan, M. A. & Krishnappa, H. K. A Novel Task Scheduling Scheme for Computational Grids - Greedy
Approach. In 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA), 2018,
pp. 1026-1033 (2018).

	64.	 Srinivas, D. B., Hegde, Sujay N., Rajan, M. A. & Krishnappa, H. K. An efficient greedy task scheduling algorithm for heterogeneous
inter-dependent tasks on computational grids. Int. J. Grid Util. Comput. 11(5), 587–601 (2020).

	65.	 Pegasus workflow generator: https://confluence.pegasus.isi.edu.
	66.	 Buyya, Rajkumar & Murshed, Manzur. Gridsim: A toolkit for the modeling and simulation of distributed resource management

and scheduling for grid computing. Concurr. Comput. Pract. Exp. 14(13–15), 1175–1220 (2002).

Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education(No.2021R1F1A1055408).

 Author contributions
Sujay N. Hegde plays role of conceived and designed the experiments, analyzed and interpreted the data, and
wrote the paper. D B Srinivas plays role of conceived and designed the experiments, contributed reagents, mate-
rials, analysis tools or data, wrote the paper, and supervised the project. M A Rajan plays role of performed the
experiments, analyzed and interpreted the data, and contributed reagents, materials, analysis tools or data. Sita
Rani plays role of analyzed and interpreted the data, contributed reagents, materials, analysis tools or data, and
wrote the paper. Aman Kataria plays role of conceived and designed the experiments, performed the experiments,
and wrote the paper. Hong Min plays role of conceived and designed the experiments, contributed reagents,
materials, analysis tools or data, wrote the paper, supervised the project, and funding.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to D.B.S. or H.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Multi-objective and multi constrained task scheduling framework for computational grids
	Related work
	System model
	Task model
	Grid model
	Simulation model
	GridSim66
	Existing GridSim architecture

	Life cycle of a GridSim simulation
	Our resource broker implementation

	Formulation of multi-objective optimization for task scheduling
	Proposed task scheduling algorithm
	Demonstration of the proposed task scheduling algorithm
	Objective type: greedy scheduler
	Objective type: greedy communication price scheduler
	Objective type: greedy no fragmentation scheduler
	Objective type: greedy execution price scheduler

	Results and discussion
	Simulation setup
	Standard task graphs
	Random task graphs
	Scientific task graphs

	Formulation of the multi-objective-decision-making problem
	The generic multi-attribute-decision-making (MADM) problem
	Modeling task scheduling as an MADM problem
	Solving the MADM problem
	TOPSIS results and discussion

	Conclusion and future work
	References
	Acknowledgements

