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Hierarchical organization of human 
physical activity
András Búzás 1, András Makai 1, Géza I. Groma 1, Zsolt Dancsházy 1,5, István Szendi 2, 
Laszlo B. Kish 3, Ana Raquel Santa‑Maria 1,4* & András Dér 1*

Human physical activity (HPA), a fundamental physiological signal characteristic of bodily motion 
is of rapidly growing interest in multidisciplinary research. Here we report the existence of hitherto 
unidentified hierarchical levels in the temporal organization of HPA on the ultradian scale: on the 
minute’s scale, passive periods are followed by activity bursts of similar intensity (‘quanta’) that 
are organized into superstructures on the hours- and on the daily scale. The time course of HPA can 
be considered a stochastic, quasi-binary process, where quanta, assigned to task-oriented actions 
are organized into work packages on higher levels of hierarchy. In order to grasp the essence of this 
complex dynamic behaviour, we established a stochastic mathematical model which could reproduce 
the main statistical features of real activity time series. The results are expected to provide important 
data for developing novel behavioural models and advancing the diagnostics of neurological or 
psychiatric diseases.

Actigraphy, a non-invasive tool based on the detection of forearm acceleration by a wristwatch-size recorder, has 
recently been introduced for measuring the time course of Human physical activity (HPA)1–4. Activity signals 
carry information about the biological rhythms, daily routine, jet lag, and various psychiatric disorders5. While 
some of their characteristics on the circadian scale are already routinely used in medical therapy, the complex 
structure of the activity patterns on different time scales remains unexplored.

Rhythmic dynamism in time is a fundamental feature of cell and tissue organization maintained against 
entropy increase, according to the laws of thermodynamics. Living organisms are thermodynamically open, 
almost always operating near equilibrium, and naturally subject to disturbance. At the same time, they exhibit 
complex spatial and temporal regularities, including coordinated automatic behaviour. Chronobiology science 
also tries to reveal, on the one hand, the molecular processes within the cells that cause rhythmic behaviour in 
time, and also the mechanisms that ensure the spatial spread of communication between cells. In the background 
of rhythm generation, the role of opposing activation and inhibition can be significant6, moreover, activation 
can prevail in the short term, while inhibition can prevail in the longer term7.

Concerning the role of environmental factors in biological rhythms, there are firm experimental evidences 
that there is a physicochemical connection between rhythms in the geosphere and the biosphere8. It is assumed 
that geological oscillations synchronize biological ones: low-frequencies impact on population dynamics, while 
higher frequencies on individuals, as the latter is evidenced, e.g., by the most well-studied circadian rhythms. 
The ultradian band was the only frequency range where the correlation between the geological and biological 
frequencies was not obvious9.

Rhythms shorter than 24 h are called ultradian10, and more often we mean activities lasting from a few 
minutes to 6 h11,12. Oscillations shorter than a second are characteristic of the periodicity of the electrical activ-
ity of the brain and heart. Living tissues and cell cultures show ultradian rhythmicity in the size of cells, the 
activity of protein synthesis and enzymes, the production of ATP and many hormones, and the activity of cel-
lular respiration13. At the level of the organism, the temperature of the body and organs, CO2 production, O2 
consumption, blood pressure, hormone secretion, digestion, urine and stool excretion, and sleep phases13,14 also 
follow ultradian rhythms.

Since these phenomena are actually often aperiodic, it is often referred to them with the terms ’episodic 
ultradian events’9. This is also manifested in the fuzzy appearance of human physical activity signals. Diurnal 
activity recordings appear as a fluctuating time series showing strong stochastic features (see, e.g., Fig. 1A). In 

OPEN

1Institute of Biophysics, HUN-REN Biological Research Centre, Temesvári Krt. 62, P.O.B. 521, Szeged  6701, 
Hungary. 2Department of Psychiatry, Kiskunhalas Semmelweis Hospital, 1 Dr. Monszpart László Street, 
Kiskunhalas 6400, Hungary. 3Department of Electrical and Computer Engineering, Texas A&M University, TAMUS 
3128, College Station, TX  77843‑3128, USA. 4Wyss Institute for Biologically Inspired Engineering, Harvard 
University, Boston, MA, USA. 5Zsolt Dancsházy is deceased. *email: anaraquel.santamaria@wyss.harvard.edu; 
der.andras@brc.hu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-56185-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:5981  | https://doi.org/10.1038/s41598-024-56185-0

www.nature.com/scientificreports/

principle, fluctuations may arise both from exogenous and endogenous origins: the fluctuating environment 
on the one hand, and nonlinear, possibly chaotic mechanisms on the other. It is a key open question in life and 
behavioural sciences, whether the stochastic dynamics of physiological rhythms is an essential feature for their 
function, or it is merely a consequence of environmental fluctuations15. Former reports suggest an intrinsic origin 
of fluctuations in HPA recordings of healthy subjects and demonstrated fractal characteristics in the short-time 
behaviour of actograms16,17.

Back to the early ‘90 s, Rossi et al., established that an 80–90/110–120 min periodicity of active phases was 
accompanied by rest periods of ca. 20 min, either in the sleep phases, or in active behaviour (see for instance18). 
Physiological data did accumulate too, pointing to crucial periodicities that evidently influence activity: in addi-
tion to a 24-h circadian rhythm in the HPA axis hormones, ultradian rhythms of ACTH and cortisol have been 
identified, most frequently 90–110 min (for instance19).

Similarly, the investigation of human infants, coupled with the recognition of the REM (rapid eye move-
ment) sleep cycle, prompted Kleitman to develop the concept of the basic rest activity cycle (BRAC). This theory 
suggests that the REM sleep pattern persists throughout the entire 24-h day, and it is reflected in other physi-
ological and mental functions20. Blessing and Ootsuka9 measured several physiological factors, such as body 
and brain temperature, actigraphy signals, or the temperature of brown adipose tissue (BAT) at the same time 
in Sprague–Dawley rats that were awake and moving freely. They proved the non-stationary, stochastic nature 
of ultradian events, and at the same time established that the different measured parameters were synchronized 
to each other. The latter phenomenon implied a central-nervous-system control of ultradian events, probably 
distinct from the suprachiasmatic nucleus responsible for the circadian rhythms9. In fact, Gerkema et al.21 showed 
that in the hypothalamus, rhythmic patterns of GnRH (gonadotropin-releasing hormone) can be identified in 
both the preoptic area and the arcuate nucleus. Additionally, in voles, the ultradian feeding oscillator relies on 
the retrochiasmatic area10,22. At the network level, it was identified that midbrain dopaminergic neurons play 
a key role in the ultradian oscillatory operation of the locomotor periodontium. However, it is not yet known 
whether these are global generators, what their relationship is with other parameters of the ultradian rhythm at 
the organizational level (e.g. body temperature and hormone secretion), and what cellular and network mecha-
nisms play a role in generating fluctuations in dopamine activity23.

On the other hand, purely internal—however stochastic—pacemakers cannot explain ultradian events, but 
obviously, external environmental and social factors should also have prominent effects. Note, e.g., that in animal 
models a fluctuations of weak magnetic field had a modulatory effect on body temperature8,24,25, or, in the absence 
of relevant geophysical cycles, interaction with conspecifics can lead to synchronization of physical activity10.

Concerning the physiological role of ultradian events, one might conclude that, contrary to longer, circadian 
and infradian, rhythms that serve to adapt to predictable changes in the environment, they are believed to ensure 
readiness for unpredictable changes in adaptation. On these grounds, we assume that the interplay between 
internal and external driving forces controlling human daily physical activities is manifested in a non-random, 
hidden structure of ultradian actigraphy signals. However, the main tool used nowadays for evaluating actograms 
is still Fourier analysis, which—though effective in revealing periodic components26—normally fails to identify 
stochastic structures that seem to be prevalent on the ultradian scale.

In order to reveal the presumed, but hitherto unexplored, non-periodic structure of the organisation of human 
daily activities, in our analysis, two more adequate statistical methods were used: the probability density function 

Figure 1.   (A) A typical daily activity recording taken by an actigraph. Acceleration values were recorded by 
40 Hz sampling frequency, and the integration time was 1 min. for each depicted data point. (B) The running 
integral function (cumulative sum) of the time series in (A).
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(PDF) and the continuous wavelet (CW) transformation tools. Our PDF analysis clearly showed that diurnal 
HPA time series have non-random features, attributed to the appearance of activity bursts of similar average 
intensity (“quanta”), followed by resting phases on the minutes scale, associated with task-oriented actions of 
the daily routine. The time distributions of active and passive periods are different, the former follows a lognor-
mal, while the latter a power-law distribution. Our CW-analysis, on the other hand, revealed that quanta are 
organized into superstructures on the hours’ scale, indicating a hierarchical organization of the diurnal human 
physical activity. To interpret these findings, we developed an integrate-and-fire type stochastic model that 
could decently reproduce all the main features of the HPA signals recorded during daily routine activities. The 
results are discussed in the context of former behavioural studies, and their possible implications to psychiatric 
diagnostics are envisioned.

Results and discussion
Statistical analysis of experimental results
A typical daily activity recording is shown in Fig. 1A, demonstrating the most obvious feature of actograms, 
namely their „fuzzy” appearance due to strong fluctuations.

In order to elucidate whether the activity signals have a kind of internal stochastic structure, we applied a 
simple PDF analysis. Data collected from 4 volunteers for an average of 3 weeks all agree in their main features 
(see also Figs. S1–S3). The basic concepts are presented via a case study, using the analysis of a data set recorded 
on a single subject for 600 days. Our main focus was on the daytime actograms associated with daily routine 
activities, so the nights were cut out from the recordings, and analysed later separately. The frequency distribution 
of the activity values is depicted in Fig. 2A, at different time resolutions. The cut-off in the PDF curves between 
102 and 103 counts shows that such high-activity spikes are rare. In Fig. 2B, as a control, we show the same analysis 
of a virtual time series obtained by randomly mixing the original recording data in time (“scrambling”). The 
uppermost curves in Fig. 2A,B, corresponding to the shortest (1 min) box length, naturally coincide. However, 
at longer time intervals the differences become obvious, which indicates the existence of non-random structures 
in the original HPA signals.

The shapes of the first few traces from the top in Fig. 2A are very similar, in agreement with a previous work16 
reporting a scale-invariant behaviour of HPA signals for the 30-s to a 6-min time range, as a possible indicator for 
their chaotic origin. Our results indicate, however, that starting at time windows of a few minutes, the original 
shape of the PDF is gradually distorted, showing the violation of scale invariance in this time regime. An explicit 
depression, separating two peaks, is built up in the middle of the curve by increasing the box size, persisting for 
box lengths of several hours. The meaning of this feature becomes obvious by inspecting the integral function 
of the daytime activity trace of an average day, where a definite stairway-like structure is observable (Fig. 1B). 
Apparently, there are two characteristic slopes on this function, which can be associated to the two separate 
peaks in the PDFs in Fig. 2, located above and below ca. 20 counts/min, respectively. During the higher-activity 
periods, the average activities are similar, and centred to a higher value (right peak in Fig. 2A, or the higher slope 
in Fig. 1B). However, it is easy to distinguish resting periods with activities close to zero (left peak in Fig. 2A, or 
plateaus in Fig. 1B). In other words, on this time scale HPA is quantized: it is distributed such that distinct active 
periods (“quanta”) are followed by passive ones, and it is quasi-binary, this means that it approximately operates 
as a “two-gear” machine, either with resting or with a traveling pace.

Figure 2.   Probability density functions of activity spikes recorded under conditions described in Fig. 1. 
Curves in (A) and (B) are obtained from the original daytime activity recordings and the scrambled control, 
respectively. The time scale of the daily recordings was divided into equal intervals (“boxes”), and activity values 
were averaged within each box, respectively. PDF functions were calculated from these averaged values. Data 
are shown for some characteristic, quasi-exponentially distributed box lengths (1, 2, 5, 11, 22, 45, 90, 180, 360, 
and 720 min) distinguished by different colours (blue, green, red cyan, magenta, yellow, black, blue-green, red), 
respectively.
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Figure 3 shows the PDF of the lengths of active and passive periods during the daily routine. The maximum 
can be found at small values (a few minutes), this means that short intervals are in majority, and the probability of 
longer ones gradually decreases. The average length of active periods is considerably greater than that of passive 
ones, however, periods longer than 50 min are rare for both cases. The probability of periods longer than 4 h is 
less than 10−3. Since the few-minutes to approximately 1-h scale is the typical time scale of perceptually salient 
activities of everyday life (e.g., making a bed, doing the dishes, etc.)27, we associate the activity quanta revealed 
by our analysis with such task-oriented actions.

PDFs of the lengths of the active periods can be asymptotically well-approximated with lognormal dis-
tribution, showing that they are determined by a product of many small independent factors. The lognormal 
distribution is commonly used to model, e.g., the lifetime of mechanical units whose failure occurs when the 
impact of subsequent elementary stress effects reaches a certain threshold (fatigue limit)28. Analogously, we 
infer that complex human activities (related to task-oriented actions) can also be considered because of chains 
of elementary processes, representing a critical amount of physical and mental effort, required to accomplish a 
task. This conclusion strongly supports a new, central workspace hypothesis on cognitive actions29, implying that 
for complex tasks, conscious processing consists of multiple serial stages of stochastic accumulation of evidence, 
until a decision threshold is attained30.

On a lower level of the hierarchy of human physiological signals, the lognormal distribution is also observed 
in the firing rate of a single neuron, which has recently been shown to be the consequence of fluctuations in the 
charging ion current31. On the other hand, the wide occurrence of lognormal distribution of firing rates of neural 
populations has also been interpreted as a consequence of the highly complex nature of nervous systems32 and 
a Hebbian mechanism of intrinsic learning33.

Contrary to the lognormal distribution observed for the lengths of the active periods of human physical activ-
ity, the resting times follow a power-law distribution, another typical dynamic feature of complex, hierarchical 
network structures34 (Fig. 3). Note that a similar observation has been made earlier for the statistics using an 
ad-hoc threshold for raw actigraphy signals, as well35.

In order to get a deeper insight into this behaviour and reveal any possible hierarchical structure of the 
actigraphy signals, we applied a continuous-wavelet analysis to the activity recordings. Wavelets are useful tools 
for analysing periodic or stochastic time series, carrying information both about their time and frequency 
characteristics36. Figure 4A shows the 2D colour plot of a continuous-wavelet (CW) decomposition of daytime 
activity recordings of 10 successive days (for details, see “Methods”). The x and y axes measure the running time 
and the scale parameter of the wavelet, respectively, while colours represent correlation coefficients between the 
wavelet and activity records. In this representation, zones of alternating red and blue colours are related to high 
structuredness of the activity signal. In accordance with the result of our PDF analysis, one can easily see the 
main differences between the characteristic features of the wavelet analysis of the activity recording (Fig. 3A) 
and its scrambled control (Fig. 3C).

Based on the comparison of the power plots of the recording and the control (Fig. 4B), one can distinguish 
four-time windows (Range 1–4). At time windows of ca. 10 min, the power plots of the original recordings and 
the control cross each other, while at time windows between ca. 50 min and 4 h, there is an explicit depression in 
the curve representing the original recording (Fig. 4B, blue line). The corresponding three bifurcations are appar-
ent from the colour pattern of the CW activity graphs (Fig. 4A,C), as well. For scales of less than 10 min (Range 1) 
we can find a well-distinguished fine structure in the CW graphs of both the original recording and the control. 
While, in the control these high-frequency patterns are predominant, in the CW plot of the recording structural 
features are shifted to lower frequencies (higher scales, Fig. 4A,C). In the scale window between14 10 min and 
50 min (Range 2), a structure of vertical stripes appears, correlated to the emergence of active and passive periods 
found in the PDF analysis in the corresponding time regime. Since we know from our PDF-analysis, that active 

Figure 3.   Log–log plots of probability density functions of the lengths of active and passive periods the original 
daytime recordings were divided into (orange and blue symbols, respectively). A period was considered active if 
its average activity was higher than 20 counts/min, and passive otherwise. Active PDFs were fitted by lognormal 
distributions defined by the conventional μ and σ parameters (μact = 3.5, σact = 1.3), while the linear decay of the 
passive PDF values in log–log representation clearly indicates a power-law function (slope ≈ − 2.67).
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and passive periods longer than 50 min are very rare (Fig. 3), the different structural patterns appearing between 
50 min and 4 h in the CW-analysis (Range 3, Fig. 4) must represent another level of hierarchical organization. 
This should correspond to superstructures into which the activity bursts of Range 2 are organized. Similarly, 
Range 4 represents the natural, circadian superstructures wherein the bunches of bursts of Range 3 are organized.

In conclusion of the PDF and CW analyses, activity bursts in the daytime recordings seem to be organized into 
several hierarchical levels. The characteristic activity patterns in the above ranges indicate different underlying 
physiological processes. In Range 1 (less than 10 min), elementary wrist motions take place. Considering that 
the time resolution of our measurements (1 min) is considerably longer than the estimated reaction times for 
preconscious or conscious actions (several 100 ms)37 we infer that already these elementary spikes are under, 
at least partial, voluntary control, nevertheless, their temporal distribution still shows chaotic features16. The 
activity quanta appearing in Range 2 (between ca. 10 min and 50 min) shows that the human actions on this 
time scale are organized into well-defined work packages that we assigned to task-oriented actions. Because of 
their stochastic distribution, up to now, this quantum-like behaviour has remained hidden for the conventional 
evaluation tools used in actigraphy, seeking periodic (e.g. circadian or ultradian) patterns synchronized to the 
calendar time. At the same time, it indicates that characterization of HPA simply with the familiar total daily 
count of activity38 could easily lead to misinterpretation of the data. Unlike what is generally expected, a higher 
total daily count does not mainly correspond to an increased amplitude of activity, but rather to a higher duty 

Figure 4.   Multiscale representation of the daytime activity recordings. (A) Continuous wavelet decomposition 
of the motion activity signal corresponding to the concatenated wakeful periods of three subsequent days based 
on the Morlet wavelet. For a better visual demonstration, the wavelet coefficients were divided by  

√

s , where  s 
is the scale parameter to ensure the scale-independent weight of the different patterns36. Deep red and deep blue 
patches correspond to domains of maximal positive and minimal negative coefficients (1 and − 1, respectively), 
while green colour corresponds to values close to zero. (C) The result of the same wavelet decomposition if 
the individual data points within each period were randomly scrambled to remove temporal correlations. 
(B) Distribution of the square power of the wavelet coefficients over the scale dimension, calculated from 
the data of 10 subsequent days (blue: original, red: scrambled data). The three horizontal lines separate four 
well-distinct time-window ranges (Ranges 1–4, corresponding to intervals of ca. 1–20 min, 20 min–3 h, 3–10 h 
and > 10 h, respectively) of the most typical activity patterns, distinguished via the comparison of the two 
curves in (B). Inserts (D), (E) and (F), respectively, show the results of an analogous evaluation procedure of 
the corresponding sleep data comprising a concatenated nocturnal time series of 10 successive days. (D and F 
are the CW-maps of the original and scrambled data, while E shows the distribution of the square power of the 
wavelet-coefficients: blue: original, red: scrambled control).
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cycle of bursts of essentially equal amplitudes. The appearance of superstructures in Range 3 (the hours’ scale) 
indicates an even higher hierarchical level of organization in the daily HPA, since uninterrupted active or pas-
sive periods—making up patterns in Range 2—on this time scale are rare (see Fig. 3). As it is expected, on the 
long end of the investigated time window regime (Range 4), periodic structures occur when approaching the 
circadian scale, as a limiting frame for the intrinsic and extrinsic rhythms of strong stochastic nature appearing 
on the shorter time scales.

To reveal whether the sleep data show similar characteristics, as well, we analyzed them separately. The use 
of actigraphy in sleep medicine is prevalent5,39, and it is considered a valuable tool, e.g., in polysomnography40. 
However, unlike most of the related studies, here we were focusing rather on the possible existence of nocturnal 
rhythms than on other usual measures like the sleep length or fragmentation index41. Hence, an evaluation of 
the nocturnal time series analogous to that of the corresponding daytime data was performed by CW-analysis 
(for more details, see “Methods”). Although, the data series showed rather sparse and stochastic features, being 
the average nocturnal activity smaller than the daytime one by more than an order of magnitude, the wavelet-
analysis produced decent results: the difference between the maps of the original data and the scrambled control 
revealed the existence of non-random patterns in the former (Fig. 4D–F).

For better comparability with the daytime results, maps of the sleep data are depicted on the same time-
window scale. It is conspicuous that non-random features prevalently appear in Range 2 (between ca. 20 and 
100 min), in agreement with our former results established for a different set of subjects41. Although the appear-
ance of these events is fuzzy, they might well obey the “20 min—100 min rule”18. Contrary to the daytime maps, 
however, there are no marked structures found in Ranges 3 and 4, implying the lack of higher hierarchical 
organization. Corresponding CW-maps of the other volunteers show rather similar features (along with that at 
one of them, the structured part is somewhat upshifted) (Fig. S4).

Altogether, we found distinct non-random patterns in both the daytime and sleep activities, however, their 
stochastic appearance dominates over their rhythmic features on the ultradian scale.

Stochastic model
Stochastic models often give important clues for the interpretation of the dynamic behaviour of complex 
systems31,34,42. However, a simple stochastic model that could account for the main observed features of human 
daily activity patterns until the moment has not been elaborated. We attempted to fill this gap by applying a 
modified noisy integrate-and-fire model, like the one applied for the simulation of stochastic features of other 
typical physiological signals, such as neuron firing or heart rhythms, as described in31,43. In a schematic, electronic 
representation of the model, a random noise (δ) is superimposed to a constant drift current (It) that is charging 
a capacitance (C), whose potential is short-cut by a discharge device (Fig. 5A), if it exceeds a threshold level. 
Here, the drift current represents the “inner drive” leading to an elementary action (wrist motion), while the 
noise accounts for natural fluctuations, mainly due to the variable internal and external conditions. Since the 
original models using reflective boundary conditions31,43 at the starting (“zero-current”) level were not able to 
reproduce the statistical properties of the measured actigraphy signals, we released the lower-bound conditions 
and allowed negative values for the driving current, as well, which may correspond to a sort of inhibition, similar 
to the hyperpolarization in nerve cells, in a lower level of hierarchy. Figure 5B demonstrates the model-generated 
time series of spikes, while the results of a PDF analysis of the simulated signals, carried out as described under 
section 1 for the real HPA recordings, are shown in Fig. 6A,B. The distribution of the corresponding active and 
passive periods is depicted in Fig. 6C.

A notable result is that a proper parameter set (drift current, noise, upper threshold level) of the independent 
variables of the model could qualitatively reproduce the main statistic features describing the temporal organi-
zation of activity and rest periods. Note that the main difference between the models for nerve31 or pacemaker 

Figure 5.   Demonstration of the occurrence of elementary activity bursts by an integrate-and-fire electric-
circuit model. (A) Capacitor (C) is charged by a constant current (It) superimposed to a Gaussian white noise 
of half-width δ, and a discharge takes place when the cumulative voltage on C (UC) exceeds an upper threshold, 
taken as unity. (B) Simulated UC voltage (blue line), and the corresponding burst events (grey bars). Please be 
aware that in panel (B), the scale of the positive y-axis has been magnified by a factor of 25 to enhance visibility.
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heart cells43 and HPA is that the ratio of the charging current and the noise is considerably smaller in the latter 
case, responsible for the strongly stochastic appearance of actograms: While It/σ ≈ 20 in the heart-rate variability 
model, it is about 0.025 in this case.

The wavelet analysis of the simulated time series of bursts also yielded similar structures at the narrow time-
window ranges (Range 1 and 2 for time windows between 1 to 10 min, and 10 min to 50 min, respectively) to 
those of the measured actigraphy signals (Fig. 4), but the superstructure at broader time windows (Range 3 for 
the hours’ scale) was not reproduced by this stochastic model (not shown). When, however, the so-called “mid-
day pause”, a well-known feature of typical daily actigraphy signals was considered by incorporating a moderate 
“afternoon dip” in the drift current (Fig. S4), the higher-order hierarchy of the typical, real-life actigraphy signals 
could be procreated (Fig. 7A–C), implying that the superstructure represented by the wavelet-map in Range 3 
is a consequence of an “external” schedule-forming factor (not inherent in the simple stochastic model). The 
circadian pattern reflected in the superstructure of Range 4 is arguably another manifestation of external con-
straints, due to the circadian rhythm.

It is interesting to note that a fluctuation analysis of the New York Stock Exchange data revealed a similar 
transition from internal to external control between the time scale of minutes and the daily scale44, which may 
be a manifestation of general laws determining the dynamics of various complex systems45.

Conclusions and outlook
The above findings imply an intrinsically stochastic and hierarchical structure of the organization of human 
daytime psychomotor activity on the time scale of minutes to hours, and beyond. The results are perfectly in 
line with the conclusions of the study of Barabási et al.34, where a statistical analysis of the timing of e-mail 

Figure 6.   PDF-analysis of the simulated time series (A), and the randomized control (B), in a log–log 
representation, analogous to Fig. 2. (C) Distribution of active (orange symbols) and passive (blue symbols) 
periods in a log–log representation analogous to Fig. 3. A period was considered active if its average amplitude 
for a 5-min time window exceeded 20 counts/min, and passive if the time window did not exceed the 20 counts/
min.

Figure 7.   Wavelet analysis of the simulated time-series data provided by the stochastic model in Fig. 5, with 
considering the “mid-day pause”, as a moderate modulation of the charge current, following Fig. S4. (A) The 
colour-coded continuous-wavelet maps of the simulated activity bursts are shown, (C) is the same for the 
randomized time series. (B) Shows the corresponding structuredness parameter as a function of the time 
window (i.e., the distribution of the square-power of the wavelet coefficients over the scale dimension).
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communications has revealed a similar ‘bursty’ nature, suggested to be a general feature of human actions, and 
interpreted as a fundamental consequence of decision-making. Later studies provided evidence for the bursty 
nature of other human actions, as well, like letter-based communications, web browsing, library visits and stock 
trading42. Our study contextualizes these conclusions within a broader framework, and extends their applicability 
to significantly shorter time scales. Benchmark behavioural studies have assumed that in the sequential structure 
of routine, everyday tasks there must be a pyramidal hierarchy of structural units of increasing duration and 
complexity, serving a corresponding hierarchy of purposes46,47. The hierarchical levels revealed by our analysis 
strongly support these hypotheses and are considered to provide important clues together with quantitative data 
for neurophysiologists developing novel brain and behavioural models47,48.

One might suspect, on the other hand, that the described features are not restricted to HPA, but also appear 
in other physiological time series. In fact, the time course of heartbeat frequency of healthy human subjects 
also shows a hierarchical (multifractal) structure, that is lost in case of severe heart diseases49, and it has been 
assigned to an intrinsic multiscale regulatory mechanism16. Analogously, the stochastic nature and hierarchical 
structure of HPA signals are also expected to have an adaptive function for optimizing human performance in 
a complex, dynamically varying environment14. However, an essential difference in these two time series is that 
the rhythmic appearance of heart-rate signals is much more emphasized than that of daytime activity signals, 
which appear to be much more stochastic, and it is reflected by the different ratio of the charging and the noise 
currents in the respective integrate-and-fire models. Also, while heart rhythms are mainly controlled by the 
autonomic (involuntary) nervous system, daytime activities on this time scale are expected to be dominated by 
conscious control50,51. For a deeper understanding of the effects of autonomic nervous system and voluntary 
actions in human motion analysis, a combined ECG-actigraphy study is in progress.

Nevertheless, already at the present state of knowledge, it is reasonable to assume that malfunctions of the 
cognitive mechanism should cause alterations of HPA. In fact, in case of mental disorders, like schizophrenia, 
bipolar psychosis, or action disorganization syndrome, characteristic anomalies in the activity patterns have 
been reported41,47,52–54. Stress has also been shown to disorganize rhythms on the ultradian scale and beyond, 
in various organisms including humans55,56. Given these premises, the utilization of the sophisticated statistical 
methods employed in our analysis is anticipated to markedly enhance the diagnostic methodology for psychiatric 
and neurological disorders41.

Methods
Data collection
For monitoring human physical activity, a MicroMini Motionlogger actigraph (Ambulatory Monitoring Inc., 
Ardsley NY) was used in proportional integrating mode, with 1 min/epoch time.

Subjects
Data collected from 4 Caucasian male volunteers under daily and nightly routine conditions for an average of 
3 weeks all agree on their main features. Their age was 21, 43, 49 and 51 years in ascending order, all graduated 
from high school or university. Occupation-wise, intellectual freelancers with no strict work time schedule 
were selected so as to minimize external constraints. The basic concepts are shown via the analysis of a data set 
recorded on a single subject (one of the above 4, from age of 51 to 52 years) for 600 days. The study was approved 
by the Ethics Committee of the Medical Research Council (ETT-TUKEB) operating as a board of the Ministry 
of Human Capacities of Hungary (approval identification No.: 15239–5/2023/EÜIG). All subjects gave prior 
written informed consent to participate. The study was carried out according to the Declarations of Helsinki 
and the standards set forth by the journal for ethical human research57.

PDF analysis
For probability density function analysis, successive daytime (awake) activity recordings were concatenated into 
one time series, whose time scale was divided into equal intervals (“boxes”), and activity values were averaged 
within each box, respectively. PDF functions were calculated from these averaged values for some characteristic 
box lengths between 1 and 720 min (Fig. S1). In order to calculate the lengths of active and passive periods, the 
average activity of the original recordings was determined over a 5-min, shifting time window. A period was 
considered active if its average activity was higher than 20 counts/min, and passive otherwise. Both PDFs were 
fitted by lognormal distribution of the positive random variable, x, defined by the conventional μ and σ param-
eters (mean and square root of variance, respectively):

All the numerical calculations were carried out by the MATLAB program (MathWorks Inc., Natick, MA).

Wavelet transform
To visualize the typical multiscale pattern structure of the actograms we calculated the continuous wavelet 
transform (CWT) of the actograms. In order to investigate the awake and sleep data separately, daily awake 
and sleep periods were identified by applying a common ad-hoc threshold (10 counts/min for a 20-min sliding 
window), and then 10 successive awake or sleep activity recordings were concatenated into one daytime and one 
nocturnal time series, respectively.

The CWT of a time-dependent signal f(t) is defined by Mallat36

y = f (x|µ, σ) =
1

xσ
√

2π
e
−(ln x−µ)2

2σ2
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where �(t) is the wavelet function, the transform is based on and * denotes complex conjugate. The resulting 
wavelet coefficients c(u, s) define a 2-dimensional function depending on the translation parameter u, mapped 
to the original time variable t, and a scale parameter s. The particular transform applied to the actogram was 
based on the Morlet wavelet57

where ωc/2π  corresponds to the center frequency and γb  to the bandwidth of the transform. With a time unit 
of 1 min, we found that the parameter values of ωc = 10 and γb = 2 resulted in a good tradeoff between the time 
and scale resolution of the characteristic patterns occurring in the actograms, hence we applied these values in 
all calculations. In the presented figures and Fig. S3 the images created from the real part of the complex coef-
ficients are shown (the imaginary part yields very similar pictures). This representation visualizes better the 
pattern structure of the data than the corresponding absolute values and phases. To avoid the dominance of the 
day-night periodicity in the activity signals, the CWT was calculated on a dataset built up by concatenation of the 
802-min wakeful periods of 3 subsequent days. The scale variable s spanned logarithmically the range of 100.8 to 
103.15. Expressed in the term of harmonics, with the value of ωc = 10 , the corresponding limits in time of period 
units are ~ 4 min and ~ 888 min, respectively. The higher limit safely exceeds the length of a single wakeful period.

In the definition of CWT the factor of 1/
√

s was introduced for normalization purposes. However, this is 
resulted in lower weights to the pattern components corresponding to lower scales, since an equal weight would 
require a factor of 1/s . For this reason, to achieve a more balanced visual presentation, in Fig. 4 and Fig. S3 the 
calculated wavelet coefficients were additionally divided by 

√

s.
We introduced a ‘structuredness’ parameter, P(s), for the distribution of the power of the CWT coefficients 

on the scale variable, calculated according to

To obtain smooth curves, P(s) was determined from the concatenated wakeful periods of 10 subsequent days.
The numerical calculation of the wavelet transforms was carried out in the Wavelet Toolbox of the MATLAB 

program (MathWorks Inc., Natick, MA).

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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