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The present research investigates the double-chain deoxyribonucleic acid model, which is important
for the transfer and retention of genetic material in biological domains. This model is composed

of two lengthy uniformly elastic filaments, that stand in for a pair of polynucleotide chains of

the deoxyribonucleic acid molecule joined by hydrogen bonds among the bottom combination,
demonstrating the hydrogen bonds formed within the chain’s base pairs. The modified extended Fan
sub equation method effectively used to explain the exact travelling wave solutions for the double-
chain deoxyribonucleic acid model. Compared to the earlier, now in use methods, the previously
described modified extended Fan sub equation method provide more innovative, comprehensive
solutions and are relatively straightforward to implement. This method transforms a non-linear
partial differential equation into an ODE by using a travelling wave transformation. Additionally,

the study yields both single and mixed non-degenerate Jacobi elliptic function type solutions. The
complexiton, kink wave, dark or anti-bell, V, anti-Z and singular wave shapes soliton solutions are a
few of the creative solutions that have been constructed utilizing modified extended Fan sub equation
method that can offer details on the transversal and longitudinal moves inside the DNA helix by freely
chosen parameters. Solitons propagate at a consistent rate and retain their original shape. They are
widely used in nonlinear models and can be found everywhere in nature. To help in understanding the
physical significance of the double-chain deoxyribonucleic acid model, several solutions are shown
with graphics in the form of contour, 2D and 3D graphs using computer software Mathematica 13.2.
All of the requisite constraint factors that are required for the completed solutions to exist appear

to be met. Therefore, our method of strengthening symbolic computations offers a powerful and
effective mathematical tool for resolving various moderate nonlinear wave problems. The findings
demonstrate the system’s potentially very rich precise wave forms with biological significance.

The fundamentals of double-chain deoxyribonucleic acid model diffusion and processing are
demonstrated by this work, which marks a substantial development in our knowledge of double-chain
deoxyribonucleic acid model movements.

Keywords Modified extended Fan sub equation approach, Double-chain deoxyribonucleic acid model, Exact
traveling wave solutions, 3D graph, 2D line graph, Contour plot

Each cell’s primary means of storing data is deoxyribonucleic acid. It resembles a very significant straight mol-
ecule that holds the inherited instructions that distinguish one species from the others in the sort of structure
of a nucleotide chain. Because its significance with the origins of existence, the structure and function of DNA
molecules have become one of the foremost fascinating issues in the discipline of contemporary biophysics.
Because it consists of two complimentary chains or strands, DNA is dual-stranded. Since both of these chains
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are joined by bonds of hydrogen and operate counter to one another, they are referred to as oppositely strands.
In DNA, the term “nucleic acid” speaks to the phosphate particles, whereas “deoxyribo” defines the sugar.

The field of genetics evolved in 1953 when Watson and Crick identified the framework of the double-chain
deoxyribonucleic acid (D-CDNA) model. More significantly, the double helix concept contributes to the under-
standing of the recurrence DNA process in addition to indicating the known layout of DNA. Nonlinear (NL)
science is being applied to analyzing D-CDNA frameworks in order to understand further about their charac-
teristics. This is why the characteristics of D-CDNA can be examined using NL models that combine biological
tools and scientific methodologies. When attempting to investigate the configuration of D-CDNA from a NL
science perspective, the appropriate NL mathematical models must be identified. The intricate layout of the
D-CDNA mechanism and the existence of distinct motions make it challenging to imitate at first using a par-
ticular mathematical model.

Since strands of DNA are the building blocks of life, their structure and function represent one of the most
interesting biophysical mysteries of our day. Over the years, researchers have examined the makeup of DNA.
Predicting the emergence of significant NL structures has proved effective in the study of DNA dynamics. It has
been demonstrated that nonlinearity causes confined waves. The capacity of these confined waves to transfer
energy with no dissipating makes them intriguing. Numerous scientists have attempted to create mathematical
representations of the mathematical biology. Indeed, this is the one of the main reasons to take this model into
consideration. Numerous scholars have created and employed a wide range of approaches in the literature for
resolving these mathematical structures. As an illustration, F-expansion approach!, Hirota bilinear method*?,
Kudryashov technique?, translation method?, inverse scattering scheme®, homogeneous balance approach’, %
-expansion approach®, tanh-function approach’, fractional dual-function scheme?, exp-function approach'?,
sine cosine approach'?, ®°-model expansion approach'?, improved sardar sub-equation method'*, generalized
exponential rational function method", direct algebraic technique'®.

Numerous mathematicians and scientists have examined the dynamics of the D-CDNA model in
-model expansion technique utilized in?® to analyze mathematical dynamics in the D-CDNA model. A helicoi-
dal D-CDNA model’s semi-discrete breather is examined in**. A DNA structure is supplied in®® using both the
wormlike-chain and bead models. The D-CDNA dynamical structure within the context of a pandemic is ana-
lyzed in*. The DNA model’s precise closed and solitonic structures can be reviewed in%. In order to calculate the
circuitry of a D-CDNA, a tight-binding framework has been developed and provided in*®. For the development
of D-CDNA loops, a self-avoiding wormlike chain model is provided in*. In*, an unpredictable genome evolu-
tion in a D-CDNA system has been investigated using lie symmetry. The exact travelling wave (TW) solutions
for NLDEs in a D-CDNA Model is demonstrated in®'. In*, the behavior of soliton solutions in the D-CDNA
model can be observed via two analytical techniques. The D-CDNA model has many accurate solutions that are
closed-form utilising GERF provided in*. The exact analytical solution for PDE that can be achieved through
the bilinear residual network and bilinear neural network methods**~ is considerably better compared to the
traditional neural network numerical method.

The research presented here used modified extended Fan sub equation method (MEFSEM) to construct the
D-CDNA model’s exact TW solutions, which are crucial for biologically linked research. After reading through
the literature, it is discovered that MEFSEM has not yet been used in the construction of exact TW solutions of
the D-CDNA model. Consequently, with this navigate, we're going to effectively employ the suggested technique
and generate exact TW solutions for the D-CDNA model in this work. The come upon solutions are innovative
and have prospective uses in NL sciences. Solitons have been utilized to investigate several significant real-
world problems across domains including fluid dynamics, plasma, nonlinear optics, astrophysics, and molecular
biology.

As an illustration, the conceptual framework of solitons has been specifically used in fiber optics to the
long-range transfer of digital information. In addition to their implementation in communication, solitons are
employed in optical converters. Despite its significant potential applications in technological innovation, optical
solitons continue to be among the foremost study areas in soliton theory today. Numerous types of solitary waves
have been employed in biology to explain low frequency collective motion in proteins and DNA, the nervous
system, and the transmission of signals and energy in biomembranes. Additionally, as plasmas are made up of
considerably highly charged particles, soliton research is important in this field as well. For instance, NL oscil-
lator chains that permit a variety of solitary wave solutions have been utilized to describe dusty plasmas, which
are composed of micro charged dust particles.

Analytical techniques and numerical methods are the primary areas of investigation for soliton solutions of
various types for tackling NLPDEs. The MEFSEM, an inexpensive and effective analytical technique, is employed
in this work. The foundation of this technique is a widely recognized approximation. By using MEFSEM, one
can acquire well-formed solutions that provide immediate insight. Heavy computing, which naturally requires
alot of time and resources, is not necessary with this technique. But there are also drawbacks to adopting MEF-
SEM in biotechnology, such as time and expense, particularly when working with complicated products, mas-
sive manufacturing, and rapidly evolving markets. The first-order derivatives problems arise in many technical
domains, including fluid dynamics, biological sciences, physics, and mechanics are also extremely challenging
to solve employing MEFSEM.

The subsequent format demonstrates how this study is designed: A description of the suggested MEFSEM is
provided in section “Algorithm of the MEFSEM”. Section “Mathematical formulation and implementation of the
MEFSEM” explains the construction of the DNA model mathematically and the implementation of MEFSEM
to it. Section “Graphical Findings and discussion” analyzes the visual behaviors of the exact TW solutions of the
D-CDNA model using MEFSEM. A few endure observations are presented in section “Conclusion”.
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Algorithm of the MEFSEM
The procedure for the MEFSEM utilizing the generalized elliptic equation is provided in the this section. Below
is an outline of the key steps of our methodology.

Examine the subsequent non-linear partial differential equation (NLPDE), which has two independent spatial
and temporal variables: s and ¢.

A(®> ®S>®t> ®SS) ®l’13 ®St>~- ) =0, (1)

where in above Eq. (1) O(s, t) is unknown function, A is the polynomial with © (s, t) and its partial derivatives
indicated by the subscripts, which comprise NL factors and derivatives of the greatest order. In the following
steps the contexts of the MEFSEM are described.

Step 1 The creation of a single variable ¢ from the separate spatial and temporal variables such that:

O@,t) =T(), o=E&s+t. (2)

To determine the TW solutions, interpret Eq. (1) to the succeeding ODE by employing the wave transformation
provided in Eq. (2)

B(Y,Y,Y",Y",..) =0, 3)

where B is a polynomial in Y (0) combine with derivatives of Y (¢0) and prime signifies the derivative in terms of
2
o which means Y’ (o) = ‘%, Y (o) = % and so on.
Step 2 In the subsequent finite series format, the solution to ODE (3) is presumed

M
T =Y mx' (), (4)
1=0

where M is a numerical value which needs to be determined, and 7s are real constants with 7y # 0 to be identi-
fied. The function Y (o) is the following elliptic equation

x20) = o+ ax(@ + ax*©) +ax e + axt), (5)

where ¢y, c1, ¢2, c3 and ¢4 are constants that need to be established. Under certain situations, there can be three
parameters o, [, p if ¢, ¢1, €2, c3 and ¢4 # 0 such that

x4 = +ax(@ +eax*e) +ax’©) +axte = (o +ux@ + px*©)*. (6)
Equation (6) is solely satisfied in the scenario that subsequent relations hold.
=0 =200 ©=200+u’ c3=2up, cs=p° 7)

In certain instances, if ¢, ¢1, c3and ¢4 # 0 and ¢; = 0, three factors o, i, p could possibly be present such that

X2(@) = o+ c1x(0) + e3x°(@) + cax’ (@) = (0 + px(0) + px* (@)’ (8)
Equation (8) is solely satisfied in the scenario that subsequent relations hold.
co=0% ¢ =201 c3=2up, c4=p 9)
Among o, i and p parameters, the following constraint is needed to be present
w? = —=20p, op <DO. (10)

Therefore the generalized Riccati equation (GRE) is obtained by simplifying the general elliptic equation (GEE)
using Egs. (6) and (8). This auxiliary equation is produced from the GEE forc¢y = ¢; = 0

17©@) = ax’(©@) +ax’ @ +axt (o). (11)
The GEE generates the elliptic equation whenc¢; = ¢3 =0

x2(0) = co + c2x* (@) + cax (@), (12)
where in above Eq. (12) there is the Riccati equation.
X2 = D+ x@) (13)

The GEE takes on its subsequent form whenc; = ¢4 =0

x20) =+ ax@) +cx’). (14)

Step 3 Through considering the homogeneous balance method between the linear and NL factors of the highest
order given in Eq. (3), the positive integer M observe in solution (4) can easily obtained.

Step 4 A polynomial in x () can be initiated through swapping the solution (4) into Eq. (3) with the support
of Eq. (5). Next, combine each term that have the same x (o) powers. Thus, through applying the same powers
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of x (0) equal to zero, a system of algebraic equations can be generated. Mathematica 13.2 is used to solve these
equations consequently, it is feasible to discover the crucial constant values 7;s. The exact TW solutions of Eq. (1)

can be retrieved by inserting all constants and Egs. (4)-(5) into Eq. (3).

Special cases

e Casel

Type 1 4> — 4pc > 0, up # Oand po # 0:

xi(o) =

xi) =

xi(0) =

x4 = 55(

X3(0) = 55 (—n —

I —
X1()(Q) - \/}LZ —4p0 sinh (\//42 —4pag) —( p cosh (\/}LZ —4pag) :|:L\//,L2—4p0) ’
20 sinh ( 4/ p? —4png)

X1I1 (o) = ;

(\/;LZ —4po cosh (\/;1,2—4/)09) + (\/M2—4p0) ) —psinh ( u? —4/)0@)
40 cosh iw—tpog sinh ( iw—tpoe
I I I
X12(0) =

1

where E and F are non-zero constants that fulfill F2

xi) =

x4(0) =

ut+/ 12 4patanh< £ 74”“’)
Xxi(o) = ,

;H—./ 2_4po coth < _4"09)

x30) = o ;

;4+«/ ur—4po (tanh( ;42—4pag)iLsech( u2—4prrg))

2p
/H—V 2 4pa(c0th( 2 4pag)j:csch( u? 4pag>)

>

o) 2
2;L+/\//l.2 —4po <tanh < B 74"" )+coth (“%4’”@>>

4p

E sinh(\/u2—4pcrg)+F

J<E2+F2><u2—4pa>—E<J;L2—4pa>cosh(du2—4pag>)

Ecosh(«/;ﬂ—4pog)+F

2_
20 cosh (’Lfm)

2_ J2— ’
«/u2—4pasinh<7“ 24p”0>—ucosh( S Z4p"0>

2
—20 sinh <”%4p°g>

2_ 2_. ’
1 sinh <“f4pag)7«/uzf4pacosh< L 24p°g>

20 cosh ( u? —4pag)

N (FP—E?) (1 —4p0)+E(y/ 11> —4pa) sinh (/11> —4p0 0) ):

—E2>0.

/12— /12— 2_
72/4cosh< K 44mg>sinh< L 44pag>+2«/,u274pacosh2 (/‘f‘m’>7(\/uzf4po)

Type 2 u* — 4po < 0, up # 0and po # 0:

X1I5(Q) =

Xlle(é?) =

X1[7 (o) =

— Ut/ 4po—p? tan< 4‘” K g)

X1[3(Q) 2 >
I —ju—+/4po —u? cot (M)
X14(0) = 2 )

—p+aS4po—? (tan (\/4/)(77“29) +sec («/ 4,00'7#2,9))

>

>

2p
—;L—\/4,()G'—H.2 (cot (\/4,00—;L2Q)icsc («/4,00—;129))
2p
/ / 2
—2u+AS4po—p (tan( 4’"’ L g>7cot< 4*7;'7” Q))
4p

)

>

(15)

(16)

(17)

(19)

(22)
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xlg(0) = &= (—p +

Xo(0) = 25 (—p —

£/ (B2—F2) (4p0 — )~ E(+/4po —i2) cos(+/4po — 120y
Esm(\/4ptr w?Q)+F

£/ (B2—F2) (4p0 —p2)—E(+/4po— u2>s1n<J4pa—uzg)),
Ecos(/4po—p20)+F ’

2p

1

where E and F are non-zero constants that fulfill E> — F? > 0.

20 cos <7Wg)
1 —
XZO (Q) - . «/4pa—;L2 «/4;)(7—#2 >
V/4po —p? sin | YL o ) 4 cos =0
/ 2
20 sin <74/“277" Q>

1
x21(0) = — —
2 —usin <74/“2’_"2 Q) +A/4po—u? cos( 4/“27_”2 g)

() = - —
X221@ \/4;)0'—“2 sin (\/4,00—;1 o -HI.COS( 4p¢7—u29)i 4p0 —p?

I
X23

x&(

x2(

N—

ZUsm( 4po—u2o
+

(\/4pa—uz cos (\/4/0(7—;429) (\/4,0(7—;42))—” sin ( 4pa—/¢29) :

2 . —u2
4(TCOS( 4”‘1 “Q>sm< 4’)”4 L g)

(0) =

1
X24(0) = i > P .
—241 cos ( 4’"17“ Q) sin ( 4’"2;“ Q>+2«/;L274p0 cos? (W) - («/4/)07“2)

e (Case2

Type 1po < 0and po # 0:

imwwmnh ( =epde )

X1 ) = ,
I +/—2pc+./ 76,0(7 coth ( v _62”09)
X2 (Q) = - 2p 5

X§U (0) = _ £J/=2po+/=6pa (tanh (W@)imech(@g))
XZII (0) = _ £/=2po++/=6pa (coth (Wg)itcsch(mg))
im—&-m(tanh ( ¥ 6mg)+coth (7%7)) )

X:’{I(Q) = 4p
! / (E2+F2)(—6p0)—E(/=6p0c ) cosh (/=6p0)
Q) =5, | Fv—2p0+ Esinh (/—6po0)+F ’
! / (F2—E2)(—6p0)+E(/—6p0 ) sinh (v/—6pa0)
o) = 20\ TV —2po — E cosh (v/=6poo)+F
where E and F are non-zero constants that fulfill F> — E? > 0.
H( ) 20 cosh (7V762m7)
X3 (@)= /—6p0 sinh ( v 762‘709 )$mcosh (7%7) ’
1 —20 sinh (@)
° (Q) - +4/—2po sinh ( Y 762‘7”9)7«/76,00 cosh (#) ’
20 cosh (/=6pog)
Xl() (@ = /—6p0 sinh (/=6p0 @) F+/—2p0 cosh (/—6po0)+i/—6p0c )’

(0) = 20 sinh (/=600 0)
XH 0 F+/—2po sinh (\/—6p00)++/—6p0 cosh (/—6po o)+t —6pzr)

( ) 40 cosh (7‘/737g ) sinh (7‘/7‘:"7‘2 )
X12 @ +2./=2p0o cosh (7V7f,‘w") sinh (7V73”“g)+24/—6pa cosh? (7V73‘wg)—(«/—6pa) ’
® (Case3
2_ 2
Type 1 Whency = 1,¢c3 = — %Lf, 4 = a3a2‘12, listed below is the solution to Eq. (11)
1

11 _ _ousech(o)
{ X1 (Q) T axtaszsech(p) *

(24)

(25)

27)

(28)

(29)

(30)

(31

(32)
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2 2
Type2Whenc; = 1,¢c3 = — 20%3, 4 = %, listed below is the solution to Eq. (11)
1
Jiss _ _ ocesch(o)
{110 = et
2 2
Type 3Whenc; = 4,¢c3 = — 4(20‘;?"“) o= 8 +4a;;r4a2a4, listed below is the solution to Eq. (11)
1
Iy aysech?(Q)
{ X3 (@) = aysech?(0)+as tanh(o)+ay *
2 2
Type4 Whenc; =4,¢c3 = — 4(0“‘;12“2) =23 +4a;2 4a2a4, listed below is the solution to Eq. (11)
1
I,y _ aycsch® ()
{ X4 (@) = a; coth?(0)+a3 tanh(o) 4oy
Type 5 When ¢; = a%, 3 = 20100, C4 = oz%, listed below is the solution to Eq. (11)
11 _ o
X5 (Q) - _az(cosh(alg)isi;h(a19)+a3)’
HI( )= — «j (sinh(ay 0)+cosh(x10))
Xe (©) = a; (sinh(a; 0)+cosh(a0)+a3) *
22
Type 6 Whenc; = —1,¢c3 = %3, 4 =— 0!30[2012, listed below is the solution to Eq. (11)
1
111 _ _ o sec(o)
{ X7 (@) = ax+o3 sgcgg)’
Iy _ _arcsco
X3 (Q) T axtaszcsc(o)”
2 2
Type 7Whenc; = —4,¢3 = 4(2“;714'“4), 4= — w, listed below is the solution to Eq. (11)
1
ey — a; sec(0)
X9 (@) = a SCCZ(Q)JrOt% tan(o)+ay’
Jiig _ a1 csc”(0)
X10 (@ = a; csc2(0)+as cot(o)+ay

where the constants «;, 2, @3 and a4 are arbitrary.

(35)

(37)

(38)

(39)

® Case 4 In the present scenario, the common solutions to Eq. (12) are the single and combination non-
degenerative Jacobi elliptic functions (JEFs). The association among the parameters of ¢y, ¢; and ¢4 in regard
of solution of JEF given in NLODE Eq. (12), are depicted in a subsequent Table 1. Tables 1, 2, and 3 listed
below, accordingly, describe the categories.
® (Case 5 By way of illustration, in the case where Eq. (14) is gruntled the answer is Weierstrass elliptic doubly
periodic type solution.

x/ @ =r <?Q, 6461 , 4CO> ¢ > 0.

3 3

co 53 s 1 (@

1 -1-) |¢ xi" (©) = cno, x3¥ (@) = cdo = 2

1-¢° 29° -1 | ¢ x4V (0) = cng

7 -1 2-¢ |-l xi" (@) = dno

T —-(1+q") |1 %2 (0) = nro = (mo) ™", x{" (0) = dco = 2

- 28 -1 |1-¢ 7" (@) = ncg = (en)™!

-1 2—¢ 7 -1 x3" () = ndo = (dng)™"

1 2-¢  |1-¢ x5 @ =re= 32

1 2 -1 |- —q) |xiy () =rdo = 72

1-¢ 2-¢ 1 xiy (@) = cro = 52

-3 |242-1 |1 XY (0) = drg = 42

1 s fract4 XY (o) = nro £ crg

=7 1g’ =g xi{ (@) = nco £ reo

T -2 i xi¥ (@) = nro £ dro

q; q2;2 % 1Y (0) = rno £ wero

(40)

Table 1. The association among the parameters of ¢y, ¢; and ¢4 in regard of solution of JEF given in Eq. (12)
where0 < g < 1L
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JEF | HF JEF | HF
rmo |tanh ¢ |nro |coth o

cno |sechp |nco |cosho

dno |sechp |ndo |cosho

rco sinh o |cro |escho

rdo |sinh o |dro |cscho
cdo |1 dco |1

Table 2. The JEFs become hyperbolic functions if g — 1

JEF | HF JEF | HF

rno |sinpo |nro |csco

cno |cospo |nco |seco

dno |1 ndo |1

rco tan o |cro |coto

rdo |sing |dro |csco

cdo |cosp |dco |seco

Table 3. The JEFs become trigonometric functions if g — 0.

Mathematical formulation and implementation of the MEFSEM
In current portion, A D-CDNA model fabricated from elastic rods is laid out. NL equations demonstrate the
dynamics of this model, that can be expressed as

On — AjOgx =A20 + A3OE + A40° + AsOE?, (41)

B — AgBs =A7E + As®® + Ag®’E + A1 B’ + Ay, (42)

where the function ©, reflects the disparity between the longitudinal displacements of the foremost and bot-
tom conductors in Egs. (41) and (42), whereas the variation between the highest and lowest strands’ transverse
displacements is represented by E. The constants A1, A, ... A are written as

z —2w(y — 22
Amtlp, g T200 =) L Wes
s STh ATH2 @)
—2wayg 4way g V20 — ag)
Ag=Ag= — 0 A= App= o A= Ay = TR
EER T AR T T RO T A e T A AT

where, ag, h,w,g,Z,T and A demonstrate the membrane’s height, separation of the two strands, the elastic
membrane’s rigidity, density of stress in every thread, Young modulus, cross-sectional area and mass density
respectively.

Assume the subsequent transformation

E =bo® + by, (44)
where by and b are constants. Equations (41) and (42) are streamlined into the two subsequent forms because
of (44).

O — MOy = O (Ag + Asb}) + O2(2Asboby + Asby) + O(Az + b1 Az + Asby), (45)
8 951 Azby  Awbi  An

A Aob? L
™ )+ O(A7 +3A10b7) + ho bo b

(46)
Equations (45) and (46) can be compared with Eq. (44) to determine that b; = % and Z = g. At this point,

Ou — A2Oy = ©3(Ag + A1obd) + O*(3A10boby + —

Eqgs. (45) and (46) can be expressed as

Ou — AjOy = 910’ + 0,07 + 930, (47)
2
where ®; = ”(zhif“’),% 6‘€b°" ®; = ;2" + h K= ’”“0 andA1 = :I:f.
Applying the wave transformations spec1ﬁed below
@, 1) =T(0), o=§&s+it (48)
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Input: NLPDE
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Creation of a single
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the help of wave
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Consider a finite

series format
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of above ODE

Use the homo-

geneous balance
method to find
the value of M in

finite series format

System of algebraic equations
can be generated through
swapping the finite series

format solution into ODE

End

Figure 1. Algorithm flowchart of the MEFSEM.

Equation (47) reduce to the listed below system of ODE as a result of replacing Eq. (48) into Eq. (47)
(2= EADY — 017 — D72 — D3 T =0, 2 —E*A2#0, (49)

where prime stands for derivative with respect to 9. Employing the homogeneous balancing technique on the
highest order derivative linear term Y” and the highest power non-linear term Y given in Eq. (49) provides
3M = M + 2 which gives M = 1.

Accordingly, Eq. (4) translates to
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T (@) =no+ nx(e). (50)

The polynomial equation in the shape of x (0) for Eq. (49) can be uncovered in the following manner with the
help of the Egs. (50) and (5)

(4¢%cam — 482 cam AT — 21 ®1) (x (0))* + (3¢%cam — 32 csm AT — 610n] @1 — 2] @2) (x (0))*
+ (2% = 28%m AT = 2m @5 — 6ngm @1 — 4nom P2) (x(0)) (51)
+ Cam — EamA] — 2@ — 250, — 29 ®3 = 0.
In order to get the set of algebraic equations, the coefficient of comparable power of x (¢) in Eq. (51) equal to zero.
(x(0))% : 4¢%cam — 4E%cam AT — 203Dy = 0,
(x ()% : 3¢%c3m — 3&2c3m AT — 6noni @ — 203D, = 0,

(x (@) : 28%cam — 2E%cm AT — 21 D3 — 60 @1 — 4noni P2 = 0,
(x(0)° : ¢*ermy — EXeim AT — 23 Dy — 2nf P, — 2n9 D3 = 0.

Solve above system of algebraic equations with the aid of Mathematica 13.2 gives

3{263 — 3%‘2631\% — 21, 2({264 — €2C4A%)
no = M =F —— (52)
611 Py @,

The TW solutions of Egs. (41)-(42) that result from replacing Eqgs. (52) and (15)-(40) into Eq. (50) are formu-
lated as follows:

Special cases

Casel
Typel:,u,2 —4p0 >0, up #0,p0 #0

3C2C3 - 3§263A2 - 21}1@2 2 {264 - 52641\2
O1,1,1(s1) = ! ¥ ( 1)

6119, by
w4+ /12 —4po (tanh (\/,u,2 - 4pa@) + tsech< ur— 4,009)) (53)
_ oy i

3¢%c3 — 382c3A% — 2 D5 2(22¢cs — E2c4A?
Ot = ! ¥ ( )

6m @1 O3
/12 _
w+ /1?2 —4po coth (“fw) (54)
_ oy ,

3§2C3 — 3%‘263/\% —2m P, + 2({264 - 52641\%)

O1,1,3(s,1) = o o,
w4+ 1u?—4po (tanh ( u?— 4pag) + tsech( u? — 4,009)) (55)
_ > i

3{'263 — 3%‘2631\2 —2md, 2(¢%cq — %'264[\2
O1,1,4(s, 1) = ! T ( 1)

611, ®,
w+ /1t —4po (coth < u?— 4,00@) + csch( n? — 4,009)) (56)
_ oy )
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3{263 — 3%’2631\2 —2md, 2(¢%¢cy — $2C4A2
O1,1,5(5,1) = ! ¥ ( )

67]1@1 b,
2+ \/ u? — 4po (tanh (7V“t4pag) + coth (@g)) (57)
_ " ,

3¢%c3 — 382c3A — 21 D 2(¢%cy — E2c4A?
O1e(s 1) = ! ¥ ( )

611D @
1 \/(E2 + F?) (u? — 4po) — E( n?— 4,oa> cosh < ut— 4,009)
- —u J’_ >
2p Esinh ( u? — 4pcrg) +F
(58)
3¢%c; — 382¢3A2 — 211 D, 2(¢2cs — E2cyA?)
O1,1,7(s, 1) = F
6771<I>1 d,
1 \/(F2 — E?)(u® — 4po) +E<\/u2 - 4,00) sinh < u?— 4,00Q)
— | —u- ,
2p E cosh ( u?— 4pUQ> +F
(59)
3¢2c3 — 36%c3A1 — 2m D, 2(¢2%cy — E2cyA})
O1,1,8(s,1) = ¥
6m Py @,
20 cosh (%) (60)
/ 4? — 4po sinh (M) — ucosh (7”&;4'”9)
3§2C3 - 352631\2 — 27]1@2 2 ;264 - §2C4A2
O1,1,9(s,1) = ! F ( )
6m @,
—20 sinh (M) (61)
1 sinh (M) — /12 — 4po cosh (M)
3{263 —35263[\%—27]1@2 2(§2C4 —§264A%)
O1,1,10(s 1) = F
61m P @,
20 cosh ( u?— 4,0(7@)
V12 — 4po sinh (\//LZ - 4pag) - (M cosh ( n2— 4,00@) + i/ — 4,00‘)
(62)
3(2(,’3 - 352C3A% — 21D, 2(C2C4 - $2C4A%)
O11,11(5 1) = F
6m P, D,
20 sinh ( u2— 4,00@)
(\//LZ — 4po cosh < u?— 4,009) + <\//L2 - 4,00)) — wsinh < u?— 4,009)
(63)
3¢%c; — 382c3A% — 21, @ 2(¢2cs — E2cs A2)
o) ) =
11,1208, 1) o ¥ o,
40 cosh < v “2;4'00@) sinh ( v “2;4/”@)
—2 cosh (M) sinh (M) +2v/u? — 4po cosh? <m> - (\/}LZ — 4pc)
(64)
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Type 2: u?> — 4po < 0, up # 0, po # 0

2
—u + \/4po — p? tan <7V4'wz”g)

3¢2¢3 — 38%2c3A2 — 21 @ 2(¢2¢cy — E2c4A?
Orans(s,b) = §%c3 — 36 AT — 2D, + (¢2cs — E2c4A3) ,
6119, D, 2p
(65)
S ) A/ 4po—po
@ ( t) 3{263 — 3.’;—'263[\% — 27]1<I)2 2(§2C4 — §2C4A%) w 4[)0’ w cot ( 2 )
s, t) = ,
bt 6m @ ®, 2p
(66)
3(2(53 - 3“;:2(53/\% - 2)’]1@2 2((264 - 52C4A%>
O12,15(5 1) = F
6119, D,
67
—u+ \/4po — p? (tan <\/4p0 — u29> =+ sec <\/4pa — ,u%))) (67)
20 ’
303 — 387G AT —2m @y [2(8%cs — E2aAT)
O12,16(s, 1) = ¥
6119, b
68
— — \/4po — u? (cot <\/4pa — ,LLZQ> =+ csc <\/4pcf — Mzg)> (68)
20 ’
322¢3 — 382c3A% — 2 @ 2(g2cy — E2c4 A2
Ora17(s, 1) = {73 — 38°c3 AT — 21 D, + (¢2cs — E2cur})
6119 b,
—2u + \/Apo — 2 (tan (7\/@2%@) — cot (7WQ>) (69)
4p ’
3%c3 — 387G AT —2m @y [2(8%cs — §2cuh])
O1,2,18(s,1) = F
6119 d,
1 :I:\/(E2 —F?)(4po — pn?) — E( 4po — ,u,2> cos ( 4po — M2Q>
- —u + >
2p Esin < 4p0 — /ﬂg) +F
(70)
O1210(5.1) 3¢%c; — 382¢3A2 — 21, @, - 2(¢%cs — E2csA2)
12,1905, 1) =
611Dy @,
1 :I:\/(E2 — F?)(4po — p?) — E( 4p0 — ,LLZ) sin < 4po — [,LZQ>
—n = >
2p E cos ( 4po — /,LZQ) +F
(71)
3¢%c3 — 3E2c3A2 — 2 @ 2(¢2cy — E2c4 A2
Or220(5, 1) = {73 —38%c AT — 2 2 2 (¢2cs — E2cyA})
6m P @y
20 cos (7‘4‘);_“29) (72)

>

/ 12 / — 2
\/4po — pu?sin (yg) + L cos (#9)
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3§2C3 — 3%‘2C3A% —2m P, + 2({264 — %'264[\%)
6119, @y

20 sin (7WQ) (73)
Yry— Yy ’
— sin <#Q) + \/4po — u? cos <4’%”29>

O1221(5,t) =

3{2C3 - 3§2C3A% —2m®, - 2(§2C4 — $2C4A%)

® s, t) =
12,22(5, 1) 611®, o

20 cos ( 4po — u29> (74)
- V/4po — u? sin < 4po — uzg) + 1 cos <\/4pa - Mzg) + \/4po — u?
OLan(.f) :35%3 —382c3A% — 211 @, - 2(¢2cs — E2cyA})
” 6m @ Dy
20 sin ( 4p0 — ,u29>
(mcos < 4po — p.zg> + ( 4po — ;/.2>) — wsin ( 4p0 — M2Q> ,
(75)

3§2C3 — 3%'2631\% — 27]1@2 = 2(§2C4 - §2C4A%>
611 P1 ?,

40 cos ( v 4‘)6—“2‘7) sin ( Y 4p0—“29)
1 1

O12.24(s,t) =

I
x24(0) =
—2L cos < 4pi_“29) sin < 4pi_ﬂzg) +2y/u? — 4po cos? <7\,4ch—#29) - < 4po — M2>
(76)
Case 2
Type 1: po < 0and po # 0
0512565, 0 302 — 38 AT — 2D, 2(¢2cs — E2cyA})
2,1,25(8, 1) = 671 P, + @,
/—600, 77
+V—2po + /—6po tanh ( 62’)‘7@) (77)
_ 2 ,
0r 1265, _3¢%c3 — 3% AT —2m D, 2(£2c4 — E2c4 A7)
2,1,26(8, ) = on1 D, + @,
/—600, 78
+V—2po + /—6p0c coth ( 62’"’9) (78)
_ 2 ,
) 3¢2c3 — 382c3A% — 2171 D, 2(22¢q — E2c4A?
©2,127(s, 1) = 6 1 ¥ ( 1)
6m Py @y (79)
( +/—2p0 + /—6p0 (tanh (4/—6,009) + Lsech(./—6pag)) )
2p ’
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3¢2c3 — 3E%2c3A1 — 2m D, - 2(¢%cs — E2cyAD)

® s, ) =
2,1,28(s, 1) om o,

<_ +/=2pc + /=6p0 (coth (/=6p0c @) + csch(y/=6pog)) )

2p

3§2C3 - 3§2C3A% —-2m®, - 2({2C4 — $2C4A%)

O2,129(s, 1) =

6119, oY)
/=20 + y/=6p0 (tanh (Y2 + coth (<722
_ . |
Or10(s, 1) =5 TN —am Py 2(5%cs — 24 A})
2,1,305> 6r]1d>1 q>1

1 : (E + F2) (~6p0) — E(v/—6p7) cosh (v/=6p00)

5 —2po +

2p + po Esinh (/=6pog) + F

3¢%c; — 382c3A% — 211 @, - 2(¢2cs — E2c4A})

® 1) =
2,1,31(5,1) o o

(F? — E?)(—6p0) + E(y/=6p0)

sinh (\/—6/)09)

1
— ;1/_2pa_

20 Ecosh (/=6pog) + F

where E and F are non-zero constants that fulfill F2 — E2 > 0.

3{263 — 3%‘2631\% —2md, 2({2C4 — %'264[\%)

® s, ) =
2,1,32(5, £) om F o,

20 cosh ( Y _62"69)

v/=6pa sinh (@) F /—2po cosh <*/_6279>

® s, t) =
2,1,33(s5, 1) s o,

—20 sinh <7*/7627Q>

3¢%c; — 3862¢3A2 — 21 @, - 2(¢%cs — E2csA2)

+./—2p0o sinh (@) — /—6p0 cosh <

3¢2c3 — 3623 A — 2m D, - 2(¢2%cq — E2cyAY)

«/ft’éwg)

©2,1,34(s, 1) = o, o,
20 cosh (./—6,00@)
/—6p0 sinh («/—6,00@) F /—2p0o cosh (\/—GpUQ) + L(\/—Gptf) ’

3¢%c; — 382¢3A% — 217, D, - 2(¢2%cy — E2cyAD)

® 1) =
2,1,35(5, 1) 6, o,

( 20 sinh (,/—6p00)

F/—2p0 sinh (/—6p050) + /—6p0 cosh (\/—6p00) % t/—6p0) >’

(80)

(82)

(83)

(85)

(86)
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3¢%c3 — 382c3A% — 211 @,

2(C2C4 — $2C4A%)

® 1) =
2,1,36(5, ) 671 ®) o,
40 cosh ( v —3/;0@) sinh (7V_ipa9>
+2./—2p0 cosh (7V_ipgg) sinh ( v _ipog) + 2./=6p0 cosh? <7V_im) — («/—6,0(7)
(88)
Case 3 .
_ _ 20 . _ 9G-a
Type I: Whency = 1,¢3 = —0713,64 = %
3c2c3 — 3623 A% — 2 @ 2(22¢s — E2c4 A2 aysech
O 19705, 1) = $7c3 — 383 AT — 2P - (C%cs — E2c4A) ( 15ech(o) ) (89)
6119, D ay + azsech(o)
2
Type 2: Whency = 1,¢3 = —2(%,64 = a3+2a2
1 o
3¢2c3 — 382c3A7 — 2 @ 2(¢2cq — E2c4 A2 h
Os238(5, 1) = $7c3 — 36%c3 AT — 21 D, + (¢2cs — E2c4A}) ( aycsch(o) ) (90)
611 Py ol as + ascsch(o)
2 2
Type 3: When ¢, = 4, ¢3 = _4(2a02l;i-a4)’c4 — a3+4a;;i-4aza4
1
3¢%c; — 387 c3AT — 2m @ 2(82cs — E2aA}) aysech? (o)
O3339(s, 1) = F 5 )
611D o, azsech?(0) + a3 tanh(g) + oy
(91)
20402
Type 4: When ¢, = 4, ¢3 = _4(a4a—12az)’c4 — 013—&-401;2 4oz
1
® 6.5 3¢%c; — 382¢3A2 — 217, D, 2(¢2%cy — E2cyAD) ( aycsch?(0) )
s, t) = .
440 611D D, o3 coth?(0) + a3 tanh(p) + g
(92)

Type 5: When ¢, = a%, €3 = 2a10,04 = Ol%

3% = 3% Al —2m @y [2(¢%a — §2aA]) a3
O3541(5, 1) = F _ : )
611D (o} ay(cosh (a1 0) — sinh («10) + @3)
(93)
3¢%c3 — 38%2c3 A% — 21, @, 2(¢%¢cy — §2C4A%) a1 (sinh(a10) + cosh(a;0))
O3542(s,t) = F - - .
6m ®, a3 (sinh(a10) + cosh(a10) + @3)
(94)
203 0(%70(%
Type 6: Whency = —1,c3 = =T
1
2. 2 2 2. _ &2 2
O3 643(5 1) _3¢%c 38%c3 AT — 21 P, 2(g%cs — ey AY) ( a1 sec(Q) )) (95)
6m D1 @, a; + a3 sec(o)
2. 2 2 _ 2. _ g2 2
Os6as(s: 1) _ 3% =38 G AT —2m Py 2(¢2%cq — E%cy AY) ( a csc() ) (96)
6119, ®, oy + a3 csc(o)
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4Qoptay) o oitdajtdasay
o1 >4 — Ot%

Type 7: Whency = —4,c3 =

3¢%c; — 382¢3A% — 211 D, - 2(¢2cy — E2cyAD)

O3745(s, 1) =

6P 0]
mea 1 97)
< ay sec?(Q) ay sec’(0) )
oy sec2(0) + as tan(p) + a4 oy sec2(0) + a3 tan(o) + ay )’
3¢2c3 — 382c3A7 — 2 @ 2(¢2cy — E2c4A? 2
Os7.46(5, 1) = {73 —38°c AT — 2mDs - (G2cs — &%¢q 1)( ! ay csc(0) > (98)
6119, D, o csc(0) + a3 cot(o) + ay
where the constants o, &2, 3 and a4 are arbitrary.
Case 4
Type 1I: Whency = 1,¢p = —(1 — qz),C4 = q2
3¢2c3 — 3823 A2 — 2 @ 2(2%cq — E2c4 A2
Oy1,47(5,8) = $h6 Z 3T AT~ 2P F ($2es = Eeay) (cno), (99)
6n1 9 @,
6 .0 3¢2c3 — 382c3A% — 21 @ 2(¢2cy — E2c4A?) [ cno (100)
s, 1) = — .
4,1,48 671D, + ) cdg
T . 12 52 _ 2
ype2: Whenco =1 —q,c =29 — 1,¢c4 = —q
3¢2c3 — 382c3A%2 — 2 @ 2(82¢cy — E2c4A?
Ouras(s,t) = {%c3 —38%c3 AT —2m D, - (§%ca — &%ca 1)(CnQ). (101)
' 611 d,
Type 3: When cg = q2 —l,=2-— q2,64 =-1
3¢%c; — 38° AT —2m Py 2(¢%cs — E2csAD)
O4350(s,1) = F (dno). (102)
6n1 P D,
Type 4: When ¢y = qz,cz =—-01+ qz),C4 =1
3¢2¢3 — 382c3A% — 2 @ 2(C%cy — E2¢4 A?
Onasi (56) = t%c3 —38%c AT — 2m D, + (% — &%cy 1)(rng)‘1, (103)
611D &,
3¢2¢3 — 382c3A% — 2 @ 2(L2¢cy — E2¢4A?) [ d
O44,5(5, 1) = 76— 30 - 2m P + e seln (ﬂ) (104)
6119 ®, cno
T . 2 52 12
ype 5: Whencyp = —q~, ¢, = 2q Leca=1—¢q
30%c3 — 3823 A2 — 2 @ 2(c2cy — E2c4 A?
Oussa(st) = §%c3 —36°c AT — 2m D - (% — &%cy 1)(CnQ)_1. (105)
6119 b,
Type 6: Whenco = —1,cp = 2 — qZ,C4 = q2 —1
3¢%c; — 38°G A7 —2m Py 2(¢%cs — E2csAD) 1
Ou654(5, 1) = F (dno)™". (106)
61D D
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Type 7: Whencop = 1,¢5 = 2—q2,64 =1 —q2

2. 2g2 A2 _ 2 g2 A2
Ourss(s,f) = o @O Zam®s | [2(Ea — Eahi) (%) (107)
6m®; @, cno
T . — — 2 _ 201 _ 2
ype 8: Whency = 1,¢1 = 2q lLea =—q°(1 —q°)
3% —38%c3AT —2m Py [2(5%c — E2c4AD) (1m0
€] s, 1) = — . (108)
4,8,56(S, £) 61 F 5 o
Type 9: Whencg = 1 — q2,62 =2- qz,c4 =1
2. 2g2 A2 20, _ £20, A2
Ousr(st) = 2 @O Z 2P J2Ee — Ealy) (%) (109)
6m1 Py D, rno
. 201 2 52 _
Type 10: Whencg = —q“(1 — q°),c2 = 2q Ley=1
2. g2 A2 _ 20, _ £20, A2
Out0s(s8) = 3¢%c3 — 38%c3A1 — 211 D2 - 2(8%cy — E2c4AY) (@) (110)
6119 (o} rno
_1 . _ 12
Type 11: Whency = 7,00 = —5—, €4 = fracl4
30%c — 3823 AT —2m Py [2(4%c — §2cuA})
O411,50(s, 1) = ¥ (nro £ cro). (111)
6119 D,
_ 2 2 2
Type 12: Whenco = 51, ¢ = B4 ¢y = 150
3¢%¢3 — 382c3A% — 2 @ 2(8%cy — E2¢4A?
O41260(5, ) = o oA —am®, F i 1)(nc.g:i:ch). (112)
61194 ®,
2 2_, 1
Type 13: When cg = %,Cz = q2 4= g
3¢2¢3 — 382c3A% — 2 @ 2(8%cy — E2¢4A?
O1361(51) = §70s = 367cs A = 2m Py T (§%¢s — §7cshy) (nro % dro). (113)
611 P D,
2 2 2
Type 14: When ¢y = %,cz =1 5 2,c4 = %
3¢%c; — 382c3A% — 217, D, 2(8%cy — E2cyA?)
O4,14,62(5, 1) = F (rno =+ wcro), (114)

6n1 P D,

where g is the JEF satisfying 0 < q < 1. Equations (99)-(114) can be stated as follows when g — 1, JEFs degener-
ate into hyperbolic functions, which is illustrated in Table 2.

30%c3 — 38%c3 A — 21 @ - 2(8%cs — 52c4A%)(

sechp), (115)
61194 ®, °

Oy1,63(5, 1) =

30%c3 — 38%c3 A — 21 D - 2(L%cs — E2csAD)

(secho), (116)
611Dy @,

Oy1,64(5, 1) =
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3¢2c3 — 382c3A7 — 2 @ 2(L2¢cy — E2¢4A?
Oy65(s,t) = 76 =3 oAy —2m®, F (§7es — &es 1)(SechQ), (117)
6n1 P D,

30%c3 — 3623 A2 — 2 @ 2(C%¢cy — E2¢c4 A
Oy3,66(s,t) = {76 — 38 oAy — 2m P F (§%cs — §7cah (sechg) (118)
6119, D,

3¢2¢c3 — 3823A% — 2 D, 2(0%cs — E2c4 AT

Os4,67(s,1) = F (tanh Yy L (119)
44,67 o, o, 0
3¢%c; — 3823 A3 — 21 @, 2(¢2cq — E2c4 A3) [ secho
® b)) = 120
4,4,68(5, 1) 61101 F o, wecho (120)
3¢%c3 — 382c3A2 — 2 @ 2(3%cy — £2
Oy569(s,t) = {7y = Heshy — 2m &, F (§%eq — $%cuh (sechQ) n (121)
. 6119 ®,
3¢%c3 — 382c3A2 — 2m @ 2(¢%cy — £2
Oy,70(s, 1) = {7y = Heshy — 2m &, F (§%eq — $%cuh (sechg) n (122)
” 6119 ®,
2. 2g2 A2 _ 20, _ £20, A2
Ouryi (s ) =0 =38 M —2m®s (2@ 5 cAy) (tanho (123)
” 6119, secho
2. 2g2 A2 _ 20, _ £20, A2
Ous72(5: 1) _3¢c 8% AT —2m D, + 2(¢%cy 5 csA?) (sinho , (124)
” 6119, secho
3¢%c3 — 362c3A2 — 2 @ 2(¢2cq — E2c4A2) h
Ouo7(s, 1) = {%c3 —36°c A7 — 2m P, + (&2¢cq E C4 sech \ (125)
” 6119, tanh o
3¢%c; — 3823 A3 — 21 @, 2({264 - (:4A2 secho
O4,10,74(s, 1) = F 1 , (126)
6119, tanh o
3¢%c3 — 382c3A2 — 2 @ 2(¢%cy — £2
O411,75(s, ) = £ LY n=2 F (§%cs — §7cah (cothgﬂ:cschg) (127)
6119, ®,
3¢2¢c3 — 382c3A2 — 2 @ 2(c2¢, — E2
O412,76(s, 1) = £76 = 3 o n=2 F (e — sl (coshgﬂ:smhg) (128)
6n1 D D
3¢%c3 — 382c3A2 — 2m @ 2(¢%cy — E2cy A2
O4,13,77(s, ) = £les = ey n>2 F (¢7es — e 1)(cothgﬂ:cschg), (129)
6119, ®,
3¢2c3 — 3823 A% — 2 @ 2(¢2cy — &2
O4,1478(s, 1) = 76 = 3ol — 2m®, F (e — §7cah (tanhg + wescho), (130)

6771(1:‘1 [N

likewise, when g — 0, JEFs degenerate into trigonometric functions, as shown in Table 3, Egs. (99)-(114) can
be expressed as subsequently

3¢2¢3 — 382c3A% — 2 @ 2(¢2¢y — E2cy A3
O41,79(s,t) = §7cs =357 Ay —2m 2 - Ca—8a )(cosg) (131)
611 P D,

3¢%¢3 — 382c3A% — 2 @ 2(C2cy — E2c4 N?
O4,1,80(s, 1) = 70— 3ol —2m®, F (§es — §eshi) (132)
611 D,
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3{'263 — 3.‘;’263/\% — 21,

2(8%cy — E2c4AY)

Oy81(5t) = 6, ®
19,

3{2133 — 3EZC3A% — 219,

o, (cos0),

2(8%cs — E2cy AD)

O4382(s, 1) = o, ®
191

Oy483(s,t) =

3{'2(23 — 3€263A% — 2P, +

®,

2 _ 2
2(%cy — &%y A (SmQ) s

6119

3§2C3 — 3§2C3A% —-2m®,

@,

O4484(s,t) = o ®
191

3{'263 — 3.‘;’263/\2 — 2P,
Oy585(s,t) = L

2(¢%cs — E2cyA}) ( dno
[oJ] cosp )’

2(8%cs — E2caAY

6119,

O4686(s, 1) =

3{2133 — 3EZC3A% — 219, +

1
o, (cos o)

2(8%cs — E2cy AD)

6n1 9,

3§2C3 — 3§2C3A% —-2m®,

®,

O4787(s,t) = o ®
191

Oyg888(s, 1) =

30%c3 — 38%c3 A — 21 @ -

2({2C4—$2C4A%) sin o
[OJ] cosp )’

2(¢2%cy — E2cyAD)

6119

O4989(s,t) =

3§2C3 — 3§2C3A% —2md, +

sin
o, (sino),

6n1 D

3{2C3 — 352C3A% —-2m 9,

2(¢2%cy — EZC4A2 <cosg)

sin o

®4,1090(s, 1) = o ®
191

3{'263 — 35263[\2 — 21,
Og1191(5 1) = L

2(gZC4—gZC4A2 < 1 >

sin o

2(8%cs — E2c4AY)

61194

=+ cot
ES (csc o £ cot o),

2(8%cs — E2caAY

3{'263 — 3.‘;’263/\% — 2P, +

O41292(s,t) = 6, ®
19,

3§2C3 — 3§2C3A% —2md,

+t
o, (secg an o),

2(8%cs — E2caAY)

©41393(s, 1) = o ®
191

3{'263 — 352631\2 — 21,
O41494(s,t) = L

+
o, (csc o £ csc o),

2(8%cs — E2csAY)

61194

wherep = &s+ ¢t
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(133)

(134)

(135)

(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)

(145)

(146)

The visual representations of the D-CDNA model is examined in this section. When trying to construct the exact
TW solutions, the visual behavior related to the D-CDNA model is developed using the MEFSEM for various
parametric assumptions. To evaluate the structural design of D-CDNA model with manipulating the parameters
set, the Mathematica 13.2 computer software is utilized. By adjusting the settings of the parameter, the graphs
appearance of D-CDNA can be modified. Along with adding to the 3D plots and related 2D line graphs, we
additionally provided contour plots for straightforward understanding. Distinct wave patterns can be developed
via assigning distinct values for the parameters. By implementing MEFSEM into practice, numerous solutions,
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such as complexiton, kink wave, dark or anti-bell, V, anti-Z and singular wave shapes soliton solutions can be
encountered.

Figure 2 exhibits the 3D, 2D at multiple values of t and contour plots of the solution ®1,1,1(s, t) given in
Eq. (53) while considering parametric values{ =4,p = 0.0, A1 =1L =10, =1, =1L, 0 =landpu =1,
which displays a kink wave soliton. Figure 3 exhibits the 3D, 2D at multiple values of t and contour plots of the
solution ®1,1»(s, t) given in Eq. (54) while considering parametric values { = 0.5, p = 0.1, A; = 1,§ = 0.01,
d, =10,P; = 10,0 = 0and p = 1.5, which displays a singular shape soliton. Figure 4 exhibits the 3D, 2D at
multiple values of t and contour plots of the solution ®1,; 3(s, t) given in Eq. (60) while considering parametric
values{ = 1.5,0 =2,A1 = 1,§ = 1,®, = 1,$; = 5,0 = land u = 3.5, which displays a complexitons shape
soliton. Figure 5 exhibits the 3D, 2D at multiple values of t and contour plots of the solution ©1,1,19(s, ) given in
Eq. (62) while considering parametric values¢ =3, p =2,A1 =1L =1, P, =1, =50 = landu =3,
which displays a anti-Z shape soliton. Figure 6 exhibits the 3D, 2D at multiple values of t and contour plots of
the solution ©713(s, t) given in Eq. (65) while considering parametric values¢ =4, 0 =10, A; =2, =1,
®, =1,P; = 1,0 = land u = 1, which displays a anti-bell shape or dark soliton soliton. Figure 7 exhibits the
3D, 2D at multiple values of ¢ and contour plots of the solution ©1,,15(s, t) given in Eq. (67) while considering
parametric values{ = 3.5, p = 0.01,A; =5, = 1,0, = 1,$; = 1,0 = land u = 3.5, which displays a kink
wave soliton. Figure 8 exhibits the 3D, 2D at multiple values of t and contour plots of the solution ©3,125(s, t)
given in Eq. (77) while considering parametric values¢ = 5,0 =01,A1 =1, =2,0, =1,®; = 10,0 =1
and ¢ = 10, which displays a kink wave soliton. Figure 9 exhibits the 3D, 2D at multiple values of t and contour
plots of the solution ©,,1 32 (s, t) given in Eq. (84) while considering parametric values¢ = 5, 0 = 0.01, A = 3.5,
& =250, =1,9; = 5,0 = land u = 3, which displays a V-shape soliton.

Conclusion

In the present research, by utilizing the MEFSEM to find exact TW solutions to D-CDNA model, that, due to
its biological basis, constitutes one of the many intriguing issues in contemporary biophysics. This technique
frequently produces deeper, original, general solutions and accurate findings than rival methods, which is its main
advantage. Several soliton solutions have been developed for a range of parametric factors. Using MEFSEM, a vast
array of novel solutions have been created, such as the complexiton, kink wave, dark or anti-bell, V, anti-Z and
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(a) 3D Plot (b) 2D Plot (c) contour Plot

Figure 2. (a) A 3D plot of ®1,1,1 (s, ) given in Eq. (53) is kink wave soliton, (b) analogous 2D line graphs for
numerous values of ¢ and (c) associated contour plot when¢ =4,0 =0.0LA; =1, =1$, =19, =1,
o=1landu =1
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(a) 3D Plot (b) 2D Plot (c) contour Plot

Figure 3. (a) A 3D plot of ®1,12(s, t) given in Eq. (54) is singular wave soliton, (b) analogous 2D line graphs
for numerous values of ¢ and (c) associated contour plot when¢{ = 0.5, 0 = 0.1, A; = 1,§ = 0.01, $, = 10,
®; =10,0 =0and u = 1.5.
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Figure 4. (a) A 3D plot of ®,;3(s, t) given in Eq. (60) is complexiton shape soliton, (b) analogous 2D line
graphs for numerous values of t and (c) associated contour plot when¢ = 1.5,0 =2,A1 =1, =1, =1,
®; =50 =1landu = 3.5

oo
N 2o

©1,1,10(s)

(a) 3D Plot (b) 2D Plot (c) contour Plot

Figure 5. (a) A 3D plot of ®,1,10(s, t) given in Eq. (62) is anti-Z shape soliton, (b) analogous 2D line graphs for
numerous values of ¢ and (c) associated contour plot when¢ =3,p =2,A; = 1,§ =1,®, =1, =5,0 =1
and u = 3.

(a) 3D Plot (b) 2D Plot (c) contour Plot

Figure 6. (a) A 3D plot of ®;5,13(s, t) given in Eq. (65) is anti-bell shape or dark soliton soliton, (b) analogous
2D line graphs for numerous values of ¢ and (c) associated contour plot when¢ = 4,0 =10,A1 =2, =1,
O, =19 =1,0 =1landpu =1

singular wave shapes soliton solutions. Numerous examples of soliton solutions can be seen visually. In pure and
applied mathematics, soliton solution are widely used especially in disciplines like differential equations, algebraic
and differential geometry, Lie groups, and Lie algebras. Soliton-admitting models possess extensive mathemati-
cal architecture and characteristics. An infinite number of conservation laws and related symmetries especially
are closely linked to the integrability of the these models, became one of their fundamental characteristics. An
further characteristic is the presence of a Hamiltonian or bi-Hamiltonian form, which enables the analysis and
description of a system without adequately the need for explicit solution of the related models. In contrast to
bright or bell shape solitons, dark or anti-bell shape solitons in fiber lasers exhibit greater stability and resistance
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Figure 7. (a) A 3D plot of ®,215(s, t) given in Eq. (67) is kink wave soliton, (b) analogous 2D line graphs for
numerous values of ¢ and (c) associated contour plot when¢ = 3.5,0 = 0.0LA; =5, =19, =1,P; =1,
o =1land u = 3.5.

5 0 5
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Figure 8. (a) A 3D plot of ®31 25(s, t) given in Eq. (77) is kink wave soliton, (b) analogous 2D line graphs for
numerous values of ¢ and (c) associated contour plot when¢ = 5,0 =0.1,A; = 1,§ =2,9, = 1,9, =10,
o = land u = 10.
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(a) 3D Plot (b) 2D Plot (c) contour Plot

Figure 9. (a) A 3D plot of ®,,1,3,(s, t) given in Eq. (84) is V-shape soliton, (b) analogous 2D line graphs for
numerous values of ¢ and (c) associated contour plot when¢{ = 5,p = 0.01, Ay =3.5,£ =2.5$;, =1,$; =5,
o =1landu = 3.

to distortion in noise-filled environments. Therefore, dark or anti-bell shape solitons are frequently employed in
the disciplines of nonlinear optics, optic exchanges, and optic sensor. The kink soliton is a semi-local NL pattern
that shows a steep curve in the spectrum across an unchanged bottom height and numerous fading oscillation
tails, comparable to other soliton forms. Intensive short-pulse characteristics are influenced by the waveform
structure because kink solitons cause self-steepness or NL impacts in NL fibers. Kink solitons have real-world
applications as optical logic devices or as polarized switches among two distinct domains. Mathematica 13.2,
a straightforward mathematical software, is employed to validate the reliability of the aforementioned soliton
solutions findings. Additionally, there are 2D and 3D visualizations that show how the noticed soliton solutions
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behave dynamically. Because the contour plots enable in comprehending the dynamical characteristics and trends
presented by these soliton solutions, they also feature in this paper. The findings rendered it obvious that some
of the soliton solutions listed are distinct and had never been seen before. Furthermore, the MEFSEM could
potentially be utilized for NLPDEs in diverse areas, hence boosting its practicality as an instrument for further
research endeavors. The results of the present research will provide ideas and impetus for future discussions in
the NL sciences, particularly those with biological applications. The method’s ease of use render it a significant
addition for the study of NLPDEs and could unlock the door to further advances in this discipline. Since, there
exists no single method for resolving the analytical solution of the NLPDE in the domain of integrable systems.
A general symbolic computing approach for the analytical solution of a nonlinear partial differential equation
is made possible by the implied neural network-based symbol calculation method, which also establishes the
groundwork for a universal symbolic calculation method for analytical expressions. This might deliver some
novel insights into how the model examined in this publication could be resolved in further research employing
this method.
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