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Reactive oxygen species reacts with numerous molecules in the body system causing oxidative 
damage, which requires antioxidants to ameliorate. Pleurotus ostreatus, a highly nutritious 
edible mushroom, has been reported to be rich in bioactive compounds. This study evaluated 
the comparative antioxidant activity and phytochemical contents of five extracts of P. ostreatus: 
aqueous (AE), chloroform (CE), ethanol (EE), methanol (ME) and n-hexane (HE). The phytochemical 
composition and antioxidant activity of the extracts were determined using standard in-vitro 
antioxidant assay methods. Results showed that the extracts contained alkaloids, tannins, saponins, 
flavonoids, terpenoids, phenolics, cardiac glycosides, carbohydrates, anthrocyanins, and betacyanins 
in varied amounts. CE had the highest flavonoid content (104.83 ± 29.46 mg/100 g); AE gave the 
highest phenol content of 24.14 ± 0.02 mg/100 g; tannin was highest in EE (25.12 ± 0.06 mg/100 g); 
HE had highest amounts of alkaloids (187.60 ± 0.28 mg/100 g) and saponins (0.16 ± 0.00 mg/100 g). 
Antioxidant analyses revealed that CE had the best hydroxyl radical activity of 250% at 100 µg/ml 
and ferric cyanide reducing power of 8495 µg/ml; ME gave the maximum DPPH activity (87.67%) 
and hydrogen peroxide scavenging activity (65.58%) at 500 µg/ml; EE had the highest nitric oxide 
radical inhibition of 65.81% at 500 µg/ml and ascorbate peroxidase activity of 1.60 (iU/l). AE had 
the best total antioxidant capacity (5.27 µg/ml GAE at 500 µg/ml) and ferrous iron chelating activity 
(99.23% at 100 µg/ml) while HE gave the highest guaiacol peroxidase activity of 0.20(iU/l). The 
comparative phytochemical and antioxidant characteristics (IC50) of the extracts followed the order: 
CE > AE > EE > ME > HE. Overall, chloroform was the best extraction solvent for P. ostreatus. The high 
content of phenolic compounds, flavonoids, and alkaloids in P. ostreatus makes it a rich source of 
antioxidants and potential candidate for the development of new therapies for a variety of oxidative 
stress-related disorders.
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Natural antioxidants are steadily gaining attention as potent antidote to free radicals generated by rapidly evolv-
ing environmental pollutants and unhealthy lifestyles, which disrupt the body’s system1. The body system has 
well-designed antioxidant defense mechanisms that prevent oxidative stress2. These include enzymatic defenses 
such as glutathione peroxidase, superoxide dismutase, and catalase3 and non-enzymatic defenses, for example, 
vitamins (A, C, and E, carotenoids, phenols, natural flavonoids, and other antioxidant compounds4. However, 
when the free radicals accumulate, they overwhelmed the body’s defensive mechanism and consequently induce 
oxidative stress5.

Recent studies have focused on discovering new exogenous, non-enzymatic, antioxidant sources because 
of the important role they play in enhancing the body’s antioxidant capacity to withstand the influx of reactive 
oxygen species, thereby preventing oxidative stress6–8. Their suggested mechanisms of action, include inhibition 
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of expression or activities of free radical-generating enzymes, increasing the activities or expression of antioxi-
dant enzymes9, or directly reacting with ROS to terminate their chain reactions. These effects help to prevent 
diseases associated with oxidative stress such as inflammation, cancer, aging, cardiovascular diseases, diabetes, 
and a variety of others10.

Edible mushrooms are widely consumed for their therapeutic and nutritional benefits11, and have been 
reported to contain significant levels of minerals in addition to bioactive compounds that exert antioxidant 
effects12. Among the edible mushroom species is Pleurotus species. It is an aromatic mushroom, extremely nutri-
tious, widespread, readily available and inexpensive13–15. The fungus grows on lingo-cellulosic wastes and could 
be cultivated without difficulty16. Its utilization has been directly linked to improved human health as well as 
social, cultural, and environmental effects17.

The oyster mushroom, Pleurotus ostreatus, is an important Pleurotus species known for its distinct charac-
teristics, particularly, in terms of its phytochemical contents and antioxidant activities18. Different values of 
phytochemical contents and antioxidant activities have been reported for P. ostreatus. These variations could 
partly be attributable to the variety of chemicals used to extract the fungus, ranging from polar to nonpolar 
solvents. This comparative study was designed to evaluate the relative capacities of some common solvents to 
extract phytochemicals from P. ostreatus and the overall nutritional and medicinal value of the fungus for pos-
sible product development.

Materials and methods
All chemicals and reagents used in this study were of analytical grade. The chemicals were obtained from Sigma-
Aldrich, Germany and Solarbio Life Science, Beijing, China.

Sample collection
Twenty-five kilogram (25 kg) of fresh P. ostreatus (oyster mushroom) were purchased from a local farm in Agbara, 
Ogun state, Southwest, Nigeria (within the co-ordinates of 6.5114° N, 3.1115° E). The mushroom was identified 
and authenticated by the Botany department, University of Ibadan, Ibadan, Oyo State, Nigeria (Fig. 1).

Sample preparation
The P. ostreatus sample was thoroughly washed to remove impurities and water residues were removed from 
its surface with a sterile towel. The sample was then dried in an oven with hot air at 55–65 °C and pulverised 
with a blender. The resulting powder was weighed at room temperature and stored in airtight containers for 
subsequent use19.

Sample extraction
The P. ostreatus samples were separately extracted with five solvents (distilled water, chloroform, n-hexane, 
ethanol, and methanol) using the methods described by Zhang et al.20 and Mishra et al.21. Percentage yield was 
calculated for each extract. The dried extracts were stored at 4 °C for subsequent tests.

Qualitative phytochemical analysis
Standard protocols were used to evaluate the various phytochemicals present in the P. ostreatus extracts. The 
secondary metabolites, alkaloids, anthraquinones and betacyanins, anthrocyanins and betacyanins, coumarins, 
flavonoids, glycosides, tannins, steroids, saponins, terpenoids, phenols, quinones, cardiac glycosides, acids, phlo-
batannins, and carbohydrates, were assayed using the procedures described by Rahimah et al.22, Jiang et al.23, 
Bristy et al.24, Hossen et al.25, Kaur et al.26 and Mishra et al.21.

Figure 1.   Pleurotus ostreatus (oyster mushroom). (a) P. ostreatus growing on its substrate. (b) P. ostreatus freshly 
harvested15.
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Quantitative phytochemical analysis
Quantitative phytochemical analysis of saponins, tannins, phenols, flavonoids and alkaloids in the P. ostreatus 
extracts were performed using the methods described by Roghini and Vijayalakshmi19 and Mishra et al.23.

In‑vitro antioxidant assays
The total antioxidant capacity of P. ostreatus extracts was measured by the method described by Adebanke et al.27. 
Free radical scavenging activity (antioxidant capacity) on 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) was 
determined using the method described by Mishra et al.28 while hydrogen peroxide scavenging capacity was 
tested by the method described by Salemcity et al.29. The’ nitric oxide (NO) scavenging activity was determined 
as described by Awah and Verla30 while hydroxyl radical (OH) scavenging activity was measured using the 
method described by Gulcin et al.31 and Adnan et al.32. The ferric reducing antioxidant power assay was carried 
out according to the method reported by Adebanke et al.27 while ferrous iron chelating activity was assessed 
using the method of Vamanu33. The ascorbate and guaiacol peroxidase activity of the five P. ostreatus extracts 
were evaluated and compared to quercetin as the assay standard, using the techniques reported by Kumar34 and 
Lepeduš et al.35.

Statistical analysis
Analysis were performed in triplicates and expressed as mean ± SD. Statistical analysis was performed using 
one-way analysis of variance (ANOVA) to compare the experimental groups and Bonferroni’s test was used to 
find significantly different groups (SPSS for Windows, version 17, SPSS Inc., Chicago, IL). p 0.05 was considered 
statistically significant.

Results
Qualitative phytochemical composition of the five extracts of P. ostreatus
The qualitative phytochemical screening of five P. ostreatus extracts is shown in Table 1. All the extracts con-
tained carbohydrates, tannins, saponins, flavonoids, alkaloids, anthrocyanins and betacyanins, quinones, car-
diac glycosides, phenols, coumarins, and terpenoids while phlobatannins and comarins was found only in the 
ethanol, methanol, and aqueous extracts. None of the five P. ostreatus extracts contained glycosides or acid 
phytochemicals.

Quantitative phytochemical composition of the five extracts of P. ostreatus
Figure 2 shows a plot of the concentrations of saponins, phenols, flavonoids, alkaloids, and tannins in the P. 
ostreatus extracts. The saponin content did not differ significantly (*p < 0.05) across extracts. The n-hexane 
and methanol extracts contained highest amounts of saponin (0.16 ± 0.00 mg/100 g), while chloroform extract 
had the least (0.10 ± 0.00 mg/100 g). Both ethanol and methanol extracts contained 0.13 ± 0.00 mg/100 g of 
saponin. The aqueous extract had significantly higher phenol concentration (*p < 0.05) than the other extracts. 
The aqueous extract contained the highest amount of phenol (24.14 ± 0.02 mg/100 g), followed by the methanol 
extract (8.87 ± 0.06 mg/100 g), chloroform extract (6.75 ± 0.08 mg/100 g), n-hexane extract (6.61 ± 0.11 mg/100 g), 
and ethanol extract (3.71 ± 0.02 mg/100 g). The chloroform extract contained significantly more flavonoids 
(*p < 0.05) than the other extracts; its flavonoids content of 104.83 ± 29.46 mg/100 g was the highest. This was 
followed by the aqueous extract (64.17 ± 0.24 mg/100 g), ethanol extract (52.83 ± 0.24 mg/100 g), methanol 
extract (21.83 ± 0.26 mg/100 g), and n-hexane extract (16.00 ± 4.24 mg/100 g). All the extracts had substantial 
quantities of alkaloids, with no significant difference (*p < 0.05). The alkaloid content was highest in n-hexane 
(187.60 ± 0.28 mg/100 g), followed by chloroform (186.50 ± 0.14 mg/100 g), ethanol (182.50 ± 0.14 mg/100 g), 
methanol (177.20 ± 0.28 mg/100 g), and aqueous extract (172.70 ± 0.14 mg/100 g). Tannin content was highest 

Table 1.   Qualitative phytochemical composition of P. ostreatus extracts. Present (+) and absent (−).

Extracts Ethanol Methanol Aqueous Chloroform n-Hexane

Carbohydrates + + + + +

Tannins + + + + +

Phlobatannins + + + − −

Saponins + + + + +

Flavanoids + + + + +

Alkaloids + + + + +

Anthrocyannins and betacyanins + + + + +

Quinones + + + + +

Glycosides − − − − −

Cardiac glycosides + + + + +

Phenols + + + + +

Coumarins + + + − −

Terpenoids + + + + +

Acids − − − − −
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in the ethanol extract (25.12 ± 0.06 mg/100 g), followed by the methanol extract (14.47 ± 0.01 mg/100 g), n-hex-
ane extract (7.38 ± 0.01 mg/100 g), and lowest in the aqueous (6.31 ± 0.02 mg/100 g) and chloroform extracts 
(6.31 ± 0.03 mg/100 g). The tannin concentration of ethanol and methanol was significantly greater (*p < 0.05) 
the content in the other three extracts.

Antioxidant activities of P. ostreatus extracts
1,1‑Diphenyl‑2‑picryl‑drazyl (DPPH) radical scavenging activity
Figure 3 compares the DPPH radical scavenging activity of P. ostreatus extracts (aqueous, methanol, ethanol, 
chloroform, and n-hexane) to the standard (ascorbic acid) at concentrations of 100–500 µg/ml. The DPPH radical 
scavenging activity increased with concentration. Methanol had the highest DPPH radical scavenging activity 
(87.67%) at 500 µg/ml compared to other extracts. This was followed by chloroform (86.99%), n-hexane (84.65%), 
aqueous (79.53%), and ethanol (79.30%). However, across all concentrations, none of the extracts demonstrated 
as much DPPH scavenging activity as ascorbic acid (93.92%).

Total antioxidant capacity (TAC)
Figure 4 compares the total antioxidant capacity of P. ostreatus extracts (aqueous, methanol, ethanol, chloroform, 
and n-hexane) to the standard (rutin) at concentrations of 100–500 µg/ml. The TAC of the standard (rutin) 
increased in a concentration-dependent manner, whereas the TAC of the extracts was concentration independ-
ent. Among the extracts, aqueous had the highest TAC of 5.27 µg/ml GAE at 500 µg/ml. The methanol extract 
of 1.90 µg/ml GAE at 400 µg/ml, the ethanol extract of 1.68 µg/ml GAE at 400 µg/ml, the n-hexane extract of 
1.41 µg/ml GAE at 100 and 400 µg/ml, and the chloroform extract of 1.39 µg/ml GAE at 100 µg/ml had the low-
est TAC value. Across all concentrations, only the aqueous extract had a higher TAC of 5.27 µg/ml GAE when 
compared to the rutin standard of 3.75 µg/ml GAE at 500 µg/ml.

Hydroxyl radical scavenging activity
Figure 5 compares the hydroxyl radical scavenging capacity of P. ostreatus extracts (aqueous, methanol, ethanol, 
chloroform, and n-hexane) to the standard (ascorbic acid) at concentrations of 100–500 µg/ml. The hydroxyl 
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radical scavenging activity of the standard (ascorbic acid) increased in a concentration-dependent manner 
except at 500 µg/ml, while the extracts declined with increasing concentration. Chloroform showed the high-
est hydroxyl radical scavenging activity (250% at 100 µg/ml) compared to other extracts. This was followed by 
the n-hexane extract with 83.93%, the methanol extract with 76.79%, the aqueous extract with 49.40%, and the 
ethanol extract with only 42.86%.

Ferric (Fe3+) cyanide reducing potential
Figure 6 shows the ferric (Fe3+) cyanide reducing potential of the aqueous, methanol, ethanol, chloroform and 
n-hexane extracts of P. ostreatus in comparison with the standard (gallic acid) of the same concentration of 
100–500 µg/ml. The ferric cyanide reducing potential of the standard (ascorbic acid) increased in a concentra-
tion-dependent manner, but that of the extracts declined with increasing concentration. Chloroform showed 
the highest ferric cyanide reduction potential (8495 µg/ml) and antioxidant activity (100 µg/ml) among the 
extracts tested. This was followed by n-hexane (7065 µg/ml), ethanol (6490 µg/ml), and methanol (6470 µg/ml). 
The aqueous extract has the lowest antioxidant levels. Across all concentrations, none of the extracts showed as 
much ferric cyanide reduction potential as gallic acid with 36,829 µg/ml antioxidant at 500 µg/ml. There was a 
significant difference (*p < 0.05) between the ferric cyanide reducing potential of the extracts and the standard 
at all concentrations.
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Ferrous iron (Fe2+) chelating ability
Figure 7 compares the ferrous iron (Fe2+) chelating activity of P. ostreatus extracts (aqueous, methanol, ethanol, 
chloroform, and n-hexane) to the standard (ascorbic acid) at concentrations of 100–500 µg/ml. The ferrous iron 
chelating activity of the standard (ascorbic acid) increased in a concentration-dependent manner, whereas the 
extracts decreased with increasing concentration. Compared to other extracts, aqueous had the highest ferrous 
iron chelating activity (99.23% at 100 µg/ml). This was followed by the methanol extract (99.02%), the ethanol 
extract (98.87%), the n-hexane extract (98.69%), and the chloroform extract (98.59%). Across all concentrations, 
the extracts were more effective at chelating ferrous iron than ascorbic acid. The extracts showed no significant 
difference (*p < 0.05) in ferrous iron chelating activity compared to the standard at all concentrations.

Hydrogen peroxide scavenging activity
Figure 8 compares the hydrogen peroxide scavenging activity of P. ostreatus extracts (aqueous, methanol, ethanol, 
chloroform, and n-hexane) to the standard (ascorbic acid) at concentrations of 100–500 µg/ml. The standard 
(ascorbic acid) and extracts’ hydrogen peroxide scavenging activity rose in proportion to their concentrations. 
Methanol showed the highest hydrogen peroxide scavenging activity (65.58% at 500 µg/ml) compared to other 
extracts. This was followed by the chloroform extract at 58.60%, the aqueous extract at 57.67%, and the ethanol 
and n-hexane extracts at 51.39%. At all doses, none of the extracts demonstrated stronger hydrogen peroxide 
scavenging efficacy than ascorbic acid. The extracts’ hydrogen peroxide scavenging activity did not differ sig-
nificantly (#p < 0.05) from that at 100 µg/ml.

Nitric oxide radical inhibition
Figure 9 compares the nitric oxide (NO) radical inhibition of P. ostreatus extracts (aqueous, methanol, ethanol, 
chloroform, and n-hexane) to the standard (rutin) at concentrations ranging from 100 to 500 µg/ml. The nitric 
oxide radical inhibition of the standard (rutin) and extracts increased in concentration-dependent fashion. At 
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a concentration of 500 µg/ml, ethanol inhibited nitric oxide by 65.81%, surpassing other extracts. This was fol-
lowed by the aqueous extract (57.67%), the n-hexane extract (48.60%), and the chloroform and methanol extracts 
(47.91% and 47.21%, respectively). Rutin inhibited nitric oxide radicals more effectively than any other extract 
at any concentration. The methanol and chloroform extracts inhibited nitric oxide radicals significantly more 
than the standard at 500 µg/ml (*p < 0.05).

Ascorbate peroxidase activity
Figure 10 compares the ascorbate peroxidase activity of P. ostreatus extracts (aqueous, methanol, ethanol, chlo-
roform, and n-hexane) to the standard (quercetin) at concentrations of 100–500 µg/ml. Ethanol showed the 
highest ascorbate peroxidase activity (1.60 iU/l). This was followed by n-hexane extract of 1.13 (iU/l), methanol 
extract of 0.81 (iU/l), aqueous extract of 0.20 (iU/l), and chloroform extract of 0.06 (iU/l). Across all concentra-
tions, none of the extracts had significantly higher ascorbate peroxidase activity than the standard. Aqueous, 
methanol, chloroform, and n-hexane extracts had significantly decreased ascorbate peroxidase activity (*p < 0.05) 
compared to the standard.

Guaicol peroxidase activity
Figure 11 compares the guaicol peroxidase activity of P. ostreatus extracts (aqueous, methanol, ethanol, chloro-
form, and n-hexane) to the standard (quercetin) at concentrations of 100–500 µg/ml. In comparison to the other 
extracts, n-hexane showed the greatest guaicol peroxidase activity of 0.20 (iU/l). This was followed by the 0.13 
(iU/l) aqueous and chloroform extracts, with the methanol and ethanol extracts coming in last at 0.07 (iU/l). 
Across all concentrations, none of the extracts had significantly higher guaicol peroxidase activity than the refer-
ence. All extracts showed considerably decreased guaicol peroxidase activity (*p < 0.05) compared to the standard.
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Comparative antioxidant activity of the five extracts of P. ostreatus based on their IC50
Table 2 shows the comparative antioxidant activity of the five P. ostreatus extracts based on their IC50 values. 
Ethanol was the most effective solvent for DPPH (IC50: 28.92 µg/ml) and NO (IC50: 19.04 µg/ml) scavenging 
activities. Chloroform was found to be the most effective solvent for decreasing TAC (IC50: 27.37 µg/ml) and 
Fe3+ (IC50: 11.85 µg/ml). The aqueous solvent had the highest scavenging ability for hydroxyl (IC50: 16.52 µg/
ml) and H2O2 (IC50: 18.21 µg/ml). n-Hexane extract had the highest Fe2+ chelating activity (IC50: 10.72 µg/ml).

Discussion
Reactive oxygen species react with many components in the biological system, creating oxidative damage that 
requires antioxidants to mitigate36. Natural antioxidants empower the body’s system to withstand the influx 
of free radicals and avoid oxidative stress2,9. Mushrooms are extremely nutritious foods that contain phenols, 
flavonoids, and other bioactive components37. They have been reported to have anticancer, anti-inflammatory, 
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Table 2.   IC50 of the in-vitro antioxidant activities of five extracts of P. ostreatus.  Significant values are in bold. 
# Compares the IC50 of the extract to the standard. *The extract with the least IC50.

Assays

Extracts (µg/ mL)

Standard Aqueous Methanol Ethanol Chloroform n-Hexane

DPPH 20.28 54.74 33.75 28.92* 79.35 29.02

TAC​ 28.72 368.60 595.30 661.6 27.37*# 27.63

OH- 29.86 16.52*# 34.68 20.05 195.20 109.50

Fe3+ 32.61 57.83 13.07 12.73 11.85*# 11.79

Fe2+ 43.24 11.25 11.26 11.38 11.28 10.72*#

H2O2 34.61 18.21*# 22.84 20.13 49.71 18.97

NO* 39.24 52.21 20.68 19.04*# 22.07 23.13
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antidiabetic, and antiaging characteristics, which are mostly attributed to the presence of natural antioxidants38,39. 
The need to highlight the antioxidant benefits of edible mushrooms has grown in significant measure due to the 
increased importance of antioxidants in combating the rising prevalence of oxidative stress-related illnesses. 
This study evaluated the phytochemical and antioxidant properties of five P. ostreatus extracts to ascertain the 
optimal extracting solvent for maximizing its medicinal potential.

Phytochemical composition the five extracts of P. ostreatus
The continual imbalance in reactive oxygen species generation and elimination has resulted in several oxidative 
stress-related diseases and disorders, including cancer, diabetes, aging, cardiovascular diseases, among others40,41. 
Mushrooms synthesize a diverse spectrum of secondary metabolites, including phenols, flavonoids, and other 
phytochemicals with strong antioxidant effects38,42,43. The presence of these phytochemicals in mushrooms indi-
cates that they can help prevent oxidative stress-related diseases and disorders when consumed alone or as 
food additive44. The qualitative phytochemical screening of the five P. ostreatus extracts revealed the presence 
of carbohydrates, tannins, saponins, flavonoids, alkaloids, anthrocyanins and betacyanins, quinones, cardiac 
glycosides, phenols, coumarins, and terpenoids (Table 1). Mushrooms are exceptionally nutritious foods rich in 
phenols, flavonoids, and other bioactive compounds15,21. These compounds have antioxidant properties and can 
be taken as an exogenous source of antioxidants21. They contribute to the medicinal efficacy of P. ostreatus45,46. 
Antioxidants protect cells from free radicals by preventing macromolecule oxidation within the cell47. Natural 
antioxidants serve to prepare the biological system to withstand the influx of free radicals and avoid oxidative 
stress48.

In terms of quantity, alkaloids were the biggest, followed by flavonoids, tannins, and phenols while the lowest 
was saponins. This supports the findings of Ogidi et al.49. Alkaloids are nitrogen-containing chemical compounds 
found mostly in plants but less so in fungi50. The high alkaloid content may be attributed to increased alkaloid 
production in P. ostreatus as a chemical defense, ecological function, or the presence of specific metabolic or 
biochemical pathways that contribute to the mushroom’s overall chemical diversity50,51.

Flavonoids are a type of polyphenol with anti-inflammatory and antioxidant properties. They exhibit varying 
polarity due to the presence of polar hydroxyl and non-polar substituent groups; they donate electrons or hydro-
gen atoms to free radicals thereby neutralizing them and preventing oxidative stress52. The chloroform extract 
contained the greatest amount of flavonoids when compared to the other P. ostreatus extracts. This could be due 
to the intermediate polarity of chloroform when compared to the other solvents, which allows it to interact more 
effectively with the cellular structure of P. ostreatus, resulting in increased release of lipophilic compounds such as 
flavonoids. This is consistent with the reports of the superior efficacy of chloroform in extracting flavonoids53,54.

Phenols are chemical compounds composed of aromatic hydrocarbon rings and hydroxyl groups. They 
include polyphenols and flavonoids, which have free radical scavenging and antioxidant properties55. The aque-
ous extract of P. ostreatus contained the highest amount of phenols; this may be due to its high polarity and the 
creation of hydrogen bonds with the hydroxyl groups of the phenols, which increases the solubility and extrac-
tion of phenolic compounds. Phenols and flavonoids possess antioxidant properties56, with which they quench 
singlet oxygen and donate hydrogen57.

Tannins are toxic when taken in large amounts48 because they reduce enzyme activity, interact with proteins, 
reducing their solubility, palatability, and digestibility58. The tannin content of P. ostreatus extracts ranged between 
6.31 and 25.12 mg/100 g; this is very low when considered with tannin concentrations in plant extracts. Hence, 
P. ostreatus are said to have negligible negative effect on protein and enzyme activity59 and are considered safe 
for human consumption48. The ethanol extract of P. ostreatus contained the highest amount of tannins when 
compared to the other extracts. This could be due to ethanol’s intermediate polarity that allows for more varied 
interactions with a wider spectrum of polar and moderately polar molecules, which may boost tannin’s solubility 
and extraction efficiency via hydrogen bonds.

Saponins froth in aqueous solutions and have a characteristic bitter flavor, which can affect the taste of food 
when present in large quantities60. Saponins cause hemolysis, vomiting, and nausea, and prevents cholesterol 
absorption, leading to hypercholesterolemia61. P. ostreatus had a very low saponin content, which could be attrib-
uted to its fungal nature, which limits its evolutionary ability to produce saponins when compared to plants. The 
level of saponin in mushroom species is extremely low, with no detectable effect on the taste of the mushrooms 
and no ability to destroy sperm cells, rupture red blood cells, or cause nausea and vomiting; however, they can 
help minimize complications associated with hypocholesterolemia62.

Antioxidant activities of P. ostreatus extracts
The antioxidant compounds in P. ostreatus were extracted using five different solvents. Their antioxidant proper-
ties (in-vitro) were compared to determine the most suitable solvent for extracting the antioxidants. Different 
methods for assessing antioxidant activity engaged in this study included DPPH scavenging activity, total anti-
oxidant capacity, hydroxyl radical scavenging activity, ferric (Fe3+) cyanide chelating activity, ferrous iron (Fe2+) 
chelating ability, hydrogen peroxide scavenging activity, nitric oxide radical inhibition, ascorbate peroxidase 
activity and guaicol peroxidase activity.

The hydroxyl radical is a free radical with an unpaired electron, making it extremely reactive and capable of 
destroying important macromolecules like as DNA, protein, and lipids63. The extracts’ hydroxyl radical scaveng-
ing activity was assessed, demonstrating their ability to neutralize hydroxyl radicals by donating electrons or 
hydrogen atoms. The chloroform extract of P. ostreatus exhibited the highest hydroxyl radical scavenging activ-
ity. This could be due to its high flavonoid content, which enables the donation of hydrogen atoms from their 
hydroxyl groups, resulting in hydroxyl radical scavenging. Overall, the hydroxyl radical scavenging activity of the 
standard (ascorbic acid) rose in a dose-dependent manner whereas the hydroxyl radical scavenging activity of all 
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five P. ostreatus extracts declined with increasing concentration. This shows that the extracts are more effective at 
scavenging hydroxyl radicals at lower concentrations. This could be due to the complex blend of molecules in the 
extracts with redox cycling, antioxidant, and pro-oxidant properties64. These properties may act synergistically 
at low dosages and antagonistically at higher doses, affecting the overall hydroxyl radical scavenging activity.

DPPH is a stable free radical that contains unpaired electrons. The DPPH scavenging activity assay deter-
mined the antioxidants’ ability to neutralize DPPH radicals by donating electrons, resulting in a color shift 
measured with a spectrophotometer65. The standard demonstrated greater DPPH scavenging action than any of 
the P. ostreatus extracts, possibly due to its high affinity for DPPH radicals. Similarly, the aqueous study environ-
ment gave ascorbic acid an advantage because of its high water solubility compared to the extracts that may be 
less soluble, thus, limiting their overall effective concentration and scavenging action.

The ferric cyanide reducing potential assay identifies the presence of reducing agents in extracts by donat-
ing electrons to convert ferricyanide (Fe3+) to ferrocyanide (Fe2+), resulting in a color shift that can be detected 
using a spectrophotometer66. The chloroform extract of P. ostreatus showed the greatest Fe3+ reducing potential, 
which could be attributable to its high level of flavonoids and phenols that function as reducing agents, rapidly 
converting Fe3+ to Fe2+. The ferric cyanide-reducing potential of the standard (gallic acid) increased with con-
centration, while the extracts dropped in a dose-dependent manner. This could be attributed to the presence 
of a single well-defined compound in the standard (gallic acid), which could make it more effective than P. 
ostreatus extracts that contain a diverse range of compounds with varying redox capacities, thereby, influencing 
the concentration–response relationship.

In contrast to the concentration-dependent decrease in the ferric cyanide potential of P. ostreatus extracts, 
the ferrous iron chelating activity increased with concentration. The test examined the extracts’ ability to bind 
or chelate ferrous ions. This is important to keep Fe2+ from participating in the Fenton reaction. The Fenton 
reaction involves the reaction of Fe2+ and hydrogen peroxide, resulting in Fe3+, hydroxyl radicals, and hydroxide 
ions. This process produces oxidative stress and a number of degenerative disorders67. At all concentrations, the 
five P. ostreatus extracts outperformed the standard (ascorbic acid) for iron chelation. This could be explained 
by the diverse chelating components in the extracts, including phenols, flavonoids, and other phytochemicals, 
compared to the standard (ascorbic acid). Similarly, the extract’s chelating compounds may have complementary 
chelating characteristics, such as a stronger affinity for ferrous ions than ascorbic acid.

The hydrogen peroxide (H2O2) scavenging capacity of the P. ostreatus extracts determined by their ability to 
react with H2O2 to produce water and oxygen. H2O2 neutralization prevents the production of hydroxyl radicals 
in the body, which can harm biomolecules via the Fenton reaction68. The ability of the standard and extracts to 
scavenge H2O2 improved with increasing concentration. At all doses, ascorbic acid outperformed the extracts 
in terms of H2O2 scavenging activity. This could be attributed to the high antioxidant activity, accessibility, and 
reactivity of ascorbic acid with H2O2 compared to the extracts, which contain several antioxidant components 
that may not act synergistically to exert considerable scavenging action.

The nitric oxide synthase enzyme in cells generates nitric oxide, a signaling molecule that also serves as a free 
radical. During the immune response, these cells, particularly immune cells like macrophages, generate nitric 
oxide69. However, excessive nitric oxide production causes inflammation and oxidative stress by interacting with 
molecular oxygen, producing nitrite (NO2

-) and other nitrogen oxide species70. The ability of the P. ostreatus 
extracts to inhibit nitric oxide radical generation was investigated. The nitric oxide radical inhibition activity 
of the extracts and standard (rutin) increased in a concentration-dependent manner. At higher concentrations 
of 300–500 µg/ml, rutin inhibited nitric oxide radicals more than all P. ostreatus extracts. It was less efficacious 
compared to ethanol extract at lower doses (100–200 µg/ml). This shows that, at lower concentrations, the com-
pounds in the ethanol extract may be more effective and preferential for nitric oxide inhibition than the standard 
(rutin). However, at higher concentrations, a reverse trend may occur due to an overload or saturation effect of 
the molecules in the ethanol extract, resulting in pro-oxidant activity and declining effects. Rutin, on the other 
hand, may not be prone to such interference being a single pure chemical.

The total antioxidant capacity (TAC) examined the ability of P. ostreatus extracts to quench reactive oxygen 
species and free radicals, both of which contribute to oxidative stress. The TAC of the standard (rutin) and 
aqueous extract increased with increasing concentration, whereas that of the P. ostreatus extracts decreased in 
a concentration-dependent manner. This could be due to the high phenol and flavonoid content of the aqueous 
extracts, which could interact to boost TAC when compared to other extracts.

Ascorbate peroxidase and guaicol peroxidase enzymes are essential components of the cellular antioxidant 
system, helping to protect cells from oxidative damage by neutralizing hydrogen peroxide71. The standard 
(quercetin) had much higher ascorbate and guaicol peroxidase activity than any P. ostreatus extract. In com-
parison, P. ostreatus extracts, with the exception of chloroform, have stronger ascorbate peroxidase activity than 
guaicol peroxidase activity. This could be due to the presence of chemicals in the extracts that work better as 
substrates for ascorbate peroxidase than guaicol peroxidase.

Comparative solvent suitability based on antioxidant and phytochemical profiles
IC50 is defined as the amount of an antioxidant-containing material required to scavenge 50% of a radical. An 
antioxidant substance or extract is said to be more effective at scavenging radicals when it has a lower IC50, hence, 
the lower the IC50 value, the higher the antioxidant activity72.

Chloroform had the highest hydroxyl radical scavenging and ferric cyanide reduction activity at 250 µg/
ml and 8495 µg/ml, respectively. It also gave the second highest DPPH scavenging activity, hydrogen peroxide 
scavenging activity, and guaicol peroxidase activity of 86.99%, 58.61%, and 0.13 iU/l, respectively. Based on its 
IC50, the primary antioxidant mechanisms are ferric cyanide-reducing power antioxidant and total antioxidant 
capacity.
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The aqueous extract had the highest total antioxidant capacity and ferric ion chelating activity of 5.27 µg/
ml GAE and 99.23% respectively. Similarly, it had the second highest nitric oxide inhibition activity, hydrogen 
peroxide scavenging activity, and guaicol peroxidase activity of 5.67%, 57.91%, and 0.13 iU/l, respectively. The 
principal antioxidant mechanisms, based on its IC50, are hydroxyl radical and hydrogen peroxide scavenging 
activity.

The methanol extract exhibited the highest DPPH and hydrogen peroxide scavenging activity of 87.67% and 
65.58% respectively. It also had the second highest TAC and ferrous iron chelating activity of 1.90 µg/ml GAE 
and 99.02%, respectively. The ethanol extract inhibited nitric oxide by 65.81% and had ascorbate peroxidase 
activity of 1.60 iU/l. The ethanol extract’s IC50 data revealed that its main antioxidant mechanisms are DPPH 
and nitric oxide scavenging activities.

The n-hexane extract exhibited the greatest guaicol peroxidase of 0.20iU/l, as well as the second highest fer-
ric cyanide reduction activity and hydroxyl radical scavenging activity of 7065 µg/ml antioxidant and 83.93%, 
respectively. The IC50 values of the extract showed that its primary antioxidant mechanism is ferric ion chelation 
potential.

Conclusion
The five extraction solvents used in this study yielded variable amounts of diverse phytochemicals present in 
P. ostreatus and also different levels of antioxidant activities. The chloroform, aqueous, n-hexane, and ethanol 
extracts respectively gave the highest amount of flavonoids, phenolic compounds, alkaloids, and tannins, whereas 
both methanol and n-hexane extracts had the same and best content of saponins.

The primary antioxidant mechanisms of the P. ostreatus extracts included free radical scavenging, Fe3+ reduc-
tion, and Fe2+ chelation. The study demonstrated the ability of P. ostreatus to scavenge a wide range of free 
radicals, including DPPH, hydroxyl radical, nitric oxide, and hydrogen peroxide, suggesting a wide range of 
medical and physiological uses in view of its capacity to protect important cell macromolecules, reduce free 
radical generation, and prevent oxidative stress (Supplementary).

The in-vitro antioxidant experiments showed that chloroform was the best extracting solvent for P. ostreatus 
as evidenced by its best antioxidant properties and phytochemical content when compared to the other extracts. 
In conclusion, P. ostreatus has been shown to be a rich source of natural antioxidants and nutraceuticals, with 
chloroform acting as an excellent extraction solvent.

Data availability
All data and materials used or generated in this study are available and may be provided on request by the cor-
responding author.
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