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Perception of power quality 
disturbances using Fourier, 
Short‑Time Fourier, continuous 
and discrete wavelet transforms
M. S. Priyadarshini 1, Mohit Bajaj 2,3,4,5*, Lukas Prokop 6 & Milkias Berhanu 7*

Electric power utilities must ensure a consistent and undisturbed supply of power, with the 
voltage levels adhering to specified ranges. Any deviation from these supply specifications can 
lead to malfunctions in equipment. Monitoring the quality of supplied power is crucial to minimize 
the impact of fluctuations in voltage. Variations in voltage or current from their ideal values are 
referred to as "power quality (PQ) disturbances," highlighting the need for vigilant monitoring and 
management. Signal processing methods are widely used for power system applications which include 
understanding of voltage disturbance signals and used for retrieval of signal information from the 
signals Different signal processing methods are used for extracting information about a signal. The 
method of Fourier analysis involves application of Fourier transform giving frequency information. The 
method of Short-Time Fourier analysis involves application of Short-Time Fourier transform (STFT) 
giving time–frequency information. The method of continuous wavelet analysis involves application 
of Continuous Wavelet transform (CWT) giving signal information in terms of scale and time where 
frequency is inversely related to scale. The method of discrete wavelet analysis involves application of 
Discrete Wavelet transform (DWT) giving signal information in terms of approximations and details 
where approximations and details are low and high frequency representation of original signal. In this 
paper, an attempt is made to perceive power quality disturbances in MATLAB using Fourier, Short-
Time Fourier, Continuous Wavelet and Discrete Wavelet Transforms. Proper understanding of the 
signals can be possible by transforming the signals into different domains. An emphasis on application 
of signal processing techniques can be laid for power quality studies. The paper compares the results 
of each transform using MATLAB-based visualizations. The discussion covers the advantages and 
disadvantages of each technique, providing valuable insights into the interpretation of power quality 
disturbances. As the paper delves into the complexities of each method, it takes the reader on a 
journey of signal processing complexities, culminating in a nuanced understanding of power quality 
disturbances and their representations across various domains. The outcomes of this research, 
elucidated through energy values, 3D plots, and comparative analyses, contribute to a comprehensive 
understanding of power quality disturbances. The findings not only traverse theoretical domains but 
also find practical utility in real-world scenarios.

Keywords  Continuous wavelet transform, Discrete wavelet transform, Fourier transform, Short-time Fourier 
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Continuous and reliable electric power is generated and supplied to various loads. The production of high-quality 
electric power adhering to specific standards is essential for optimal performance. Sankaran1 defines power qual-
ity in a comprehensive manner, encompassing the boundaries within which electrical systems should operate to 
achieve the desired performance. The IEEE Standard Dictionary of Electrical and Electronics characterizes power 
quality as the concept of powering and grounding sensitive equipment to ensure proper operation. Reference2 
provides a comprehensive overview of power quality disturbances, categorizing them based on their character-
istics. Various devices are employed to mitigate the impact of factors that can affect the quality of electric power.

Signals are transformed in order to get information from them. A processed signal is one that has undergone 
any of the numerous mathematical changes. Signal processing techniques based on various transformation meth-
ods can be used to analyze, diagnose, and identify power quality issues. In Fourier analysis a signal is decomposed 
into a sum of sinusoidal signals of different frequencies. Short-time Fourier Transform (STFT) has been used in 
power quality analysis as it can be applied to non-stationary signals. Analog voltage and current signals are trans-
formed to sampled digital values for automatic power quality monitoring. Lieberman et al.3 reviewed that some 
transforms give time and frequency domain information and can be used to classify power quality disturbances.

Initiation of preventive action for improved power quality requires correct recognition of the event. Fourier 
transform (FT), short time Fourier transform (STFT) and wavelet transform (WT) are widely used for informa-
tion extraction from PQ events. According to Collins et al.4, sampled data from disturbances is used to convert 
into different categories having certain attributes. “Phase shift and missing voltage” are examined and the meas-
urement requirements of the instruments are also addressed in4. The fundamental voltage component is used by 
Wang et al.5 for situations resulting in magnitude change. Santoso et al.6 analyzed that dilation of single prototype 
function results in analysis and decompose a signal into different scales and levels of resolutions. An algorithm is 
implemented by Naidoo et al.7 for extracting non-stationary sinusoidal signal out of a given signal as input and 
used for estimation of amplitude, phase and frequency during voltage sag. Tanaboylu et al.8 stated that the differ-
ence between the transient and ideal sine waveforms is used for disturbance evaluation. A method is proposed by 
Sushama et al.9 having steps of de-noising, detection of duration and cause of power quality disturbances using 
discrete wavelet transform. Discrete wavelet transform respectively provides short and long windows for high 
and low frequency components. The transients are localized in the process of analysis.

Wavelet analysis-based techniques are used for detecting, localizing and classifying different transients. A 
new event detection scheme for power quality analysis based on the statistical analysis of adaptive decomposi-
tion signals is proposed. Based on WT and de-noising, the system proposed by Yang et al.10 is able to detect 
disturbances in noisy surroundings. Wavelet transform is used as part of a procedure for accurate detection and 
localization of sag. A. C. Parsons et al.11 proposed method for identifying the start and stop time of disturbances. 
Translation and scaling refer to generation of wavelets from a single basic wavelet called as mother wavelet. Low 
scale, high-frequency components are termed as ‘Details and high-scale, low-frequency components are termed 
as ‘approximations’ of a signal. Wavelet and scaling of functions are used as to decompose a signal at different 
resolutions and is termed as multiresolution analysis (MRA). Detailed and approximated versions are generated 
by wavelet and scaling functions. An approximation contains tendency of the original signal. Details are obtained 
through a succession of convolution process12. Energy of detail coefficients termed as “detail-spectrum-energy13” 
of the normalized phase currents is used for a scale value of one by Costa et al. to perform the functions of 
detection and classification. Time–frequency plane is used and measured characteristics and benchmark values 
are compared to detect disturbances in signals. Poisson et al.14 located transients in the width of the signal and 
measured duration and magnitude of sags.

According to Singh et al.15 complex wavelet transform suffers from certain limitations. It is concluded in16 that 
first level wavelet coefficient energies are suited to detect very short duration components. A new methodology 
is proposed by Costa et al.17 for voltage sag characterization using wavelet transform. WT coefficients (WTCs) of 
details determine disturbance occurrence. Wavelet analysis of PQ events depends on the chosen mother wavelet 
and is crucial for analysis. A signal can be estimated and transformed from time to time–frequency domain using 
WT. It is not possible to generalize mother wavelet and levels of decomposition due to different applications and 
conditions. Ibrahim et al.18 stated wavelets as powerful tool for PQ signal analysis.

A fundamental understanding of the many notations used to express power quality is required to extract 
significant information from signals using signal processing techniques. The definition of power quality in the 
Institute of Electrical and Electronics Engineers (IEEE) dictionary19 focuses on the "powering and grounding" 
components of devices. Only with this basic understanding can effective signal processing be used to analyze 
and improve power quality. Power produced must be interruption free or disturbance free. The International 
Electrotechnical Commission (IEC)20, defined power quality in terms of “characteristics of electricity evaluated 
against a set of reference parameters”. Wavelet basis functions along with their properties are explained in21 with 
an emphasis on choice of scales. Mallat22 explained about the suitability of wavelet transform for accurate signal 
description having “fully scalable window”.

A major obstacle to preserving the stability and reliability of electrical systems is power quality disturbances. 
For efficient mitigation and enhanced power system performance, it is essential to identify and characterize these 
disturbances. In order to improve our comprehension of power quality disruptions, this research tackles the need 
for sophisticated signal processing techniques. It seeks to solve shortcomings in current approaches that could 
lead to the loss of subtle patterns and transitions in the signals.

By methodically applying and contrasting four well-known signal processing techniques—the Fourier trans-
form, the Discrete Wavelet transform (DWT), the Continuous Wavelet transform (CWT), and the Short-Time 
Fourier transform (STFT)—to power quality disturbances, this research adds to the body of knowledge already 
in existence. The study explores the subtleties of each technique and assesses how well it reveals particular fea-
tures of the disturbances.
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The newly developed use of DWT for signal decomposition into multiresolution components stands out as 
a noteworthy contribution. The study not only finds low and high-frequency representations but also excels at 
catching transitions and abrupt shifts within the signals by offering a deep examination of approximations and 
details. This unique method overcomes the limitations of previous methods by providing a more sophisticated 
knowledge of power quality disturbances and their representations across domains. The results of this study 
provide a refined and thorough approach for power quality assessment, which adds significant value to the field 
of power system analysis. In order to promote improvements in power system stability and reliability, future 
research will be guided by the comparative analysis provided in this work when choosing suitable signal process-
ing algorithms based on particular characteristics of power quality disturbances.

Power quality disturbance signals
Electric power utilities provide voltage that often experiences undesirable variations such as transients, sags, 
swells, interruptions, voltage imbalances, DC offsets, harmonics, noise, and fluctuations. Ensuring a constant 
and stable voltage supply is crucial for maintaining the quality of power, and all these variations fall within the 
overarching category of power quality disturbances. The analysis of disturbance signals plays a vital role in 
identifying and implementing appropriate preventive measures.

To analyze various voltage variations and proactively address abrupt changes in the connected load, signal 
processing techniques prove instrumental. The detection of voltage signal variations is crucial for implementing 
effective preventive measures. Transforming signals, which are temporal functions, into the time and frequency 
domain facilitates a more insightful interpretation of the original signal in the time domain. The signals under 
consideration encompass sag, swell, interruption, transient, harmonics, fluctuations, and flicker, alongside a 
sinusoidal signal utilized as a reference. Each of these signals manifests a discernible deviation, either in magni-
tude or frequency, from the pristine sinusoidal form of voltage over specific durations. The paper delineates the 
definitions of power quality disturbance signals and elucidates the application of Fourier transform, short-time 
Fourier transform, continuous wavelet transform, and discrete wavelet transforms to power quality disturbances. 
The visual identification of disturbance signals through diverse transforms in MATLAB streamlines the catego-
rization of disturbances, thereby enhancing power quality evaluation.

Generation of power quality disturbance signals
Mathematical modelling is carried out by parametric equations and the equations used for developing MAT-
LAB code for different disturbance signal generation are presented with the description of various parameters 
governing the equations. In order to apply signal processing methods, the basic step is to generate the signals. 
Due to changes in voltage in terms of any or all of magnitude, duration and frequency, there will be a deviation 
from pure sinusoidal form. Certain parameters define signals. Disturbances create signals, which are defined by 
waveforms with a fundamental frequency of 50Hz and a voltage magnitude of 1 per unit (pu) lasting 0.25 s. The 
term "pu" refers to a dimensionless number that represents measurements per unit.

Modeling power quality disturbances is critical in assessing power quality. Analyzing voltage disturbance 
waveforms leads to the discovery of power quality events. In23, a framework based on numerical models is used to 
generate various power quality waveforms. The term A represents the maximum value of the supply voltage V(t). 
Equation (1) represents pure sinusoidal supply voltage without any distortions with amplitude A and is given as:

In all the equations defined for transient, interruption, sag and swell the terms, u(t1), u(t2), u(t − t1) and 
u(t − t2) represent amplitude of unit step functions defined for period’s t1, t2, duration (t − t1) and duration 
(t − t2) respectively. For voltage interruption, sag and swell the duration (t2 − t1) is between T and 9T , where T 
represents time period of the sinusoidal voltage signal. Values of  t1 and t2 are 0.08 and 0.16 s and t2 is greater than 
t1 . The equations dictating each power quality disturbance are contingent on controlled parameters.

Choice of values of various parameters taken in literature depends on the necessity that generated signals 
must depict the actual conditions in a controlled manner and definitions given by IEEE must not be deviated. 
It is very important to choose different parameter values in such a manner that the waveforms are according to 
their standard definitions. Different simulation tools used for power system analysis are mentioned in24.

Transient
The term transient refers to an undesirable and short event. It can be a unidirectional impulse of positive or nega-
tive polarity. It can also be an oscillatory wave with damping and first peak occurring in either polarity2. Tran-
sients are mainly due to lightning strikes on transmission lines resulting in dangerously high potential differences.

Oscillatory transients are numerically modelled15 by Eq. (2) as:

Angular frequencies of supply voltage and transients are ω = 2π f  and ωn = 2π fn . The terms α, τ and fn 
represent magnitude, settling time and oscillatory frequency respectively for the transient. In the equations 
for transients, the ranges taken for α, τ and fn are 0.1 to 0.8, 0.008 to 0.04 s and 300 to 900 Hz respectively. The 
transient disturbance is defined for period  t1 as:

(1)V(t) = Asin(ωt)

(2)V(t) = A
[

sinωt + αe
−(t−t1)

τ sinωn(t − t1)(u(t2)− u(t1))
]

(3)V(t) = sin(ωt)+ α−(t−t1)/τsinωn(t− t1)
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Figure 1 depicts transient, simulated in MATLAB using Eq. (3). The magnitude of voltage varies from 1.381 
to  − 1.972 pu for a very short duration.

Interruption
An interruption is identified by the loss of supply voltage or load current. Specifically, it happens when the sup-
ply voltage or load current drops to less than 0.1 per unit (pu) and lasts for no more than 1 min2. Interruption 
is numerically modelled as in15 in Eq. (4).

Using MATLAB to simulate Eq. (4), Fig. 2 displays a waveform with an interruption, illustrating a complete 
loss of voltage for a specific duration. The range for the parameter α is 0.9 to 1.

(4)V(t) = A(1− α(u(t − t1)− α(u(t − t2))))sinωt

Figure 1.   Transient.

Figure 2.   Interruption.
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Voltage sag
Sag is decrease in rms voltage from 0.1 pu and 0.9 pu for duration of 0.5 cycles to 1 min2. Voltage sag is numeri-
cally modelled as in15 is given by Eq. (5).

Figure 3 depicts a voltage sag, obtained through the simulation of Eq. (5) in MATLAB.
 The range for the parameter α is 0.1 to 0.9.

Voltage swell
Swell is characterized by an increase in root mean square (rms) voltage beyond 1.1 per unit (pu) up to 1.8 pu, 
lasting from 0.5 cycles to 1 min2. Voltage swell is numerically modelled as in15 is given by Eq. (6).

Figure 4 illustrates a voltage swell, achieved through the simulation of Eq. (6) in MATLAB. This graph signi-
fies a sudden and temporary rise in voltage for a specific duration.

 The range for the parameter α is 0.1 to 0.9.

(5)V(t) = A(1− α(u(t − t1)− α(u(t − t2))))sinωt

(6)V(t) = A(1+ α(u(t − t1)− α(u(t − t2))))sinωt

Figure 3.   Voltage sag.

Figure 4.   Voltage swell.
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Harmonics
Harmonics fall within the realm of waveform distortion, representing voltages or currents with integer multi-
ples of the fundamental frequency2. Harmonics are produced by loads having nonlinear characteristics and are 
numerically modelled as in15 and given by Eq. (7).

The magnitude of nth order harmonic is αn and is summation of amplitudes of harmonic components.

By simulating Eq. (8) for harmonics, harmonics signal is obtained as depicted in Fig. 5.

Fluctuations
Fluctuations are systematic variations of envelope of voltage. There will be random changes and magnitude of 
voltage does not exceed 0.95 pu to 1.05 pu2.

Terms a and b are controlling parameters representing magnitude and integer multiple of frequency with 
ranges given as  0.1 ≤ a ≤ 0.2 and  0.4 ≤ b ≤ 0.6 . Waveform of fluctuations is shown in Fig. 6, obtained in 
MATLAB by simulating Eq. (9).

Flicker
Flicker is the consequence of voltage fluctuations affecting lighting intensity2. The voltage signal, as expressed 
in terms of flicker25, is defined by Eq. (10).

A1, ω1 and �1 correspond to amplitude, angular frequency and phase angle of fundamental component of 
voltage. Afi,  ωfi and �fi correspond to amplitude, angular frequency and phase angle of flicker component of 
voltage. The term I refers to number of components of flicker.

In25, general procedure to get severity of flicker level is described in terms of several blocks involving extrac-
tion of fundamental signal, voltage envelope from a power signal fed as input and with an output of “instanta-
neous flicker level”. This process involves spectral analysis to identify flicker components. Flicker waveform is 
shown in Fig. 7 and is generated in MATLAB.

The generated power quality disturbances contain information about disturbance in terms of magnitude and 
duration. Preventive measures are to be taken for avoiding the disturbances.

(7)V(t) = A
∑

αnsin (nωt), 1 ≤ n&

n
∑

i=1

α2
i = 1

(8)V(t) = α1sinωt + α3sin 3ωt + α5sin 5ωt + α7sin 7ωt

(9)V(t) = A(1+ asin (bωt))sin (ωt)

(10)V(t) =

[

A1 +
I

∑

i=1

Afisin
(

ωfit +�fi

)

]

sin (ω1t +�1)

Figure 5.   Harmonics.
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Application of Fourier transform
Frequency information of the signals can be obtained by using Fourier transform. Maximum value of normalized 
magnitude is always unity. Length of the signal has 4001 samples. The spikes are termed as spectral components. 
To speed up calculations, as the signal length is not an exact power of 2, length of signal is taken to have 4096 
samples and for single sided amplitude spectrum, 2048 samples are considered. For all the signals sine, sag, swell, 
interruption and transient shown in Figs. 8, 9, 10, 11 and 12, maximum value occur at a frequency of 50 Hz as 
all the signals contain only this frequency component. This frequency corresponds to sample number 21 out of 
considered 2048 frequency values. The mathematical equation given by Eq. (11) shows the transformation of 
signal x(t) in time domain to X(ω) in frequency domain.

Single sided magnitude spectrum of PQ disturbance signals are depicted in Figs. 8, 9, 10, 11, 12, 13, 14 and 15.
In Fig. 11, a variation in magnitude of 0.4575, 1 and 0.3925 is observed for frequencies 43.9453 Hz, 50 Hz 

and 56.1523 Hz.
In Fig. 13, other than the maximum value corresponding to frequency value 50 Hz, spikes are present at 

frequencies 150 Hz, 250 Hz and 350 Hz with sample numbers of 62, 103 and 144. This gives information that 
harmonics signal comprises of four signals, each at different frequency nearly equal to 50 Hz, 150 Hz, 250 Hz and 
350 Hz. Normalized magnitude values at sample numbers of 21, 62, 103 and 144 are 1, 0.1559, 0.1666 and 0.1741.

(11)X
(

jω
)

=
∫ ∞

−∞
x(t)e−jωtdt

Figure 6.   Voltage fluctuations.

Figure 7.   Voltage flicker.
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In Fig. 14, other than the maximum value corresponding to frequency value 50 Hz, small spikes are present 
at frequencies 24.4141 Hz and 75.6836 Hz with sample numbers of 11 and 32 having magnitude 145.6590 and 
135.3896 respectively with normalized magnitude values of 0.1065 and 0.0990. The maximum value of frequency 
considered on x-axis scale is 300 Hz as the magnitude values starting from 288.0859 Hz at sample 119 all the 
magnitude values which are either multiples of ten to the power of  − 4 or  − 5 up to last frequency 4997.6 Hz at 
sample 2048.

Figure 8.   Sine signal (a) Time domain (b) Frequency domain.

Figure 9.   Sag signal (a) Time domain (b) Frequency domain.
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In Fig. 15, other than the maximum value corresponding to frequency value 50 Hz, small spikes are present 
at frequencies 324.7070 Hz and 424.8047 Hz with sample numbers of 134 and 175 having normalized magnitude 
0.1072 and 0.1077 respectively. Magnitude values at sample numbers of 134 and 175 are 149.2614 and 149.9987. 
The maximum value of frequency considered on x-axis scale is 500 Hz as at 485.8398 Hz of sample 200 having 
normalized magnitude value 9.7066*10−4 has all decreasing magnitude values up to last frequency 4997.6 Hz 
at sample 2048.

Figure 10.   Swell signal (a) Time domain (b) Frequency domain.

Figure 11.   Interruption signal (a) Time domain (b) Frequency domain.
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It can be concluded that Fourier transform is effective for the signals whose frequency content is same at 
every point of time and determine existing frequency. But no adequate information is obtained related to sudden 
changes in voltage which are prone in practical point of view. The changes occurring in the signal are not localized 
in time i.e. the time at which these frequency components exist cannot be determined using Fourier transform. 
Information about frequency is absent in time domain and information about time is absent in frequency domain.

Figure 12.   Transient signal (a) Time domain (b) Frequency domain.

Figure 13.   Harmonics signal (a) Time domain (b) Frequency domain.
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Application of short time Fourier transform
Short time Fourier transform (STFT) is used to represent signals in time and frequency domains and depends 
on window size. In MATLAB, a function “spectrogram” is used to detect frequencies and their exact order to 
analyze signals using STFT. Color bars shown in figures are indicating low to high power levels of the signal. 
Spectrogram can be termed as visual representation of a signal as it varies with time. STFT plots represent 

Figure 14.   Fluctuations signal (a) Time domain (b) Frequency domain.

Figure 15.   Flicker signal (a) Time domain (b) Frequency domain.
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frequency variations as a function of time with representing power at any instant by a color. The mathematical 
equation of STFT is given by Eq. (12).

Signal to be transformed, window function and time index are represented by x(t),ω(τ) and τ . X(τ ,ω) is the 
Fourier transform of x(t)ω(t − τ) and represents a complex function. The complex values represent phase and 
magnitude of signal over time and frequency. ‘Hamming window’ is used for analysis of PQ signals. Figures 16, 
17, 18, 19, 20, 21, 22, 23 and 24 show the analysis of all the PQ disturbance signals using STFT. The spectrogram 
is considered as STFT representation of the signals and STFT spectrum in all the figures represent a two-dimen-
sional representation of frequency and time with varying amplitude indicated by common color bar in Fig. 16.

To depict the change in signal representation for changing window size, an interruption signal is considered 
as an example. Figure 24 shows the variation of an interruption signal, for different widths of window segments. 

(12)STFT X(τ ,ω) =
∞
∫

−∞
x(t)ω(t − τ)e−jωtdt

Figure 16.   (a) Spectrogram of sine signal (b) STFT spectrum.

Figure 17.   (a) Spectrogram of sag signal (b) STFT spectrum.
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Precise window size is necessary for STFT i.e. window size must neither be too small nor too large such that 
information is lost in representation. Blue segments show low power levels and broad yellow color in the spec-
trogram shows signal power spread across the range of frequencies. As window size is increased, good frequency 
resolution is possible by loosing time information and as window size is narrowed down, good time resolution is 
possible by loosing frequency information. Selection of window size is necessary for balancing both resolutions. 
By using STFT, frequency versus time information can be obtained by proper choice of window width. The per-
ception of signal changes upon changing the window size. This has initiated for wavelet transform based methods.

Application of continuous wavelet transform (CWT)
The signals which are a function of time can be transformed into another domain of time and frequency for better 
interpretation of the original signal in time domain. Continuous wavelet transform, a mathematical transform 
technique, is used for analysis of signals. Detection of changes in signals using continuous wavelet transform is 

Figure 18.   (a) Spectrogram of swell signal (b) STFT spectrum.

Figure 19.   (a) Spectrogram of interruption signal (b) STFT spectrum.
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termed as continuous wavelet analysis in MATLAB. As voltage signal is a function of only time, this analysis is 
one-dimensional (1D) analysis. 

Continuous wavelet analysis
A function in time domain is mapped into function of time and frequency by using continuous wavelet trans-
form. A wavelet is chosen as mother wavelet indicated by ψ . For applying continuous wavelet transform (CWT), 
terms s and τ are used. The term s is scaling (stretching if |s| > 1 or compressing if |s| < 1 ) or dilation factor to 
control width of wavelet and the term τ is translation (shifting position in time) parameter to control location of 
the wavelet with s, τ ∈ R and s > 0 . Each wavelet is created by scaling and translation of mother wavelet which 
is a function that oscillates with finite energy and has zero mean value26. Different wavelet families are Haar, 
Daubechies, biorthogonal, Coiflets, Symlets, Morlet, Mexican Hat and Meyer wavelets. Morlet wavelet, shown 

Figure 20.   (a) Spectrogram of harmonics signal (b) STFT spectrum.

Figure 21.   (a) Spectrogram of transient signal (b) STFT spectrum.
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in Fig. 25, is taken as mother wavelet as for majority of applications of CWT uses Morlet wavelet. Morlet wavelet 
has no scaling function, and has only wavelet function ψ , but is explicit27.

Scaling and translating a mother wavelet ψ give a family ψτ ,s of ‘wavelet daughters’ given by Eq. (13)28. The 
correlation between the voltage variation signals and ‘wavelet daughters’ also termed as template functions, gives 
information about the disturbance in the signal. This is due to the comparison of template functions against the 
voltage variation signals.

(13)ψτ ,s(t) =
1
√
s
ψ

(

t − τ

s

)

Figure 22.   (a) Spectrogram of fluctuations signal (b) STFT spectrum.

Figure 23.   (a) Spectrogram of flicker signal (b) STFT spectrum.
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CWT with respect to the wavelet ψ is Wx,ψ(τ , s) , given by Eq. (14) is the wavelet transform by mapping the 
signal in time domain x(t) into a function of s and τ giving information simultaneously on time and frequency, 
where scale is related inversely to frequency28. Position of wavelet in time domain is given by τ and position in 
frequency domain is given by s.

It can be established that by using CWT, time domain functions can be mapped into time and frequency 
domain. Sum over all time of the signal multiplied by scaled, shifted versions of the wavelet function ψ defines 
CWT and coefficients as function of scale and position are obtained27.

Continuous wavelet analysis using MATLAB graphical interface
Continuous Wavelet Analysis (CWT) is performed using MATLAB, leveraging both command-line functionality 
and the graphical interface for a comprehensive exploration of power quality disturbance signals29,30. MATLAB’s 
graphical interface provides an intuitive platform for users to interactively analyze and visualize CWT results. The 
combination of command-line scripts and graphical tools enhances the accessibility and user-friendliness of the 
analysis process. MATLAB’s graphical interface facilitates the dynamic exploration of CWT results by allowing 
users to interactively adjust scale and time parameters31. This interactivity empowers researchers to fine-tune the 
analysis, enabling a detailed examination of disturbances at different scales and time intervals32. The graphical 
representation of CWT coefficients as a function of scale and time offers a unique perspective on signal varia-
tions. MATLAB’s plotting capabilities enable the creation of coefficient line plots, aiding in the identification of 
hidden patterns that might not be immediately apparent in the original signals. MATLAB’s graphical interface 
provides a wide selection of wavelets for CWT analysis. Researchers can easily experiment with various mother 
wavelets, including Morse, Morlet, and bump wavelets, to identify the most suitable wavelet for capturing specific 
features in power quality disturbances33,34. The inclusion of 3D plots representing disturbance signals with time, 
scale, and coefficient values enhances the visual interpretation of CWT results. These plots, generated through 
MATLAB’s graphical interface, offer a holistic view of energy distribution across different scales and times35,36. 
Researchers can utilize MATLAB’s graphical interface to obtain quantitative insights into the energy levels of 
CWT coefficients. The tabular representation of energy values for different scales (1 and 64) aids in expressing 
signal strength in terms of coefficient energy37. The integration of MATLAB’s graphical interface into the CWT 
analysis process not only simplifies the workflow but also contributes to the enhanced interpretability of power 
quality disturbance signals. Wavelet toolbox is one of powerful graphical interfacing tools in MATLAB for power 
quality38. In39, sag and swell are analyzed in a transmission system employing a suitable compensator. Harmonics 
are analyzed using STFT in40 using different window lengths and in41, statistical features are extracted from PQ 
signals. Wavelet toolbox main menu can be opened in a new window and continuous Wavelet 1-D graphical 
tool is selected. The signal can be loaded directly in “. mat” format or MAT-files which refers to files readable by 
MATLAB. The signal can also be imported from workspace in MATLAB. Similar results can be obtained in both 
ways. Signals considered are transient, sag, swell, interruption, harmonics, fluctuations and flicker for duration 
of 0.4 s. The coefficients plot as a function of scale and time and coefficients line are obtained in step-by-step 

(14)Wτ ,s(x(t)) = �x(t),ψτ ,s(t)� =
∫ ∞

−∞
x(t)ψ∗

τ ,s(t)dt =
1
√
s

∫ ∞

−∞
x(t)ψ∗

(

t − τ

s

)

dt

Figure 25.   Morlet Wavelet.
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mode and the coefficients line is a plot of the coefficients of 64-by-4001 size matrix. The coefficients line plot also 
gives information about the changes in the signal. It is observed from coefficients line plot, during disturbances, 
a deviation is observed in the coefficients. Mother wavelet is selected as “morl”, indicating Morlet wavelet. By 
clicking on the “Analyze” button continuous wavelet transform is performed. The maximum values of coefficients 
lines are calculated for scale of 64. Scale value of 32 has frequency 0.025. It is observed from all the plots that 
continuous wavelet analysis using continuous wavelet transform provides same coefficients using either one of 
command line interface or wavelet toolbox. The additional feature included in toolbox is selected axes can be 
any one of, two of or all three of coefficients, coefficients line, and maxima lines. In Figs. 26, 27, 28, 29, 30, 31 and 
32, the original disturbance signals are shown along with coefficients and coefficients line for scale value of 32.

For scale value of 64, CWT coefficients of sag signal have a maximum value of 0.4996 at 0.1501 s.
For scale value of 64, CWT coefficients of swell signal have a maximum value of 0.5117 at 0.1458 s.
For scale value of 64, CWT coefficients of interruption signal have a maximum value of 0.9452 at 0.1501 s.
For scale value of 64, CWT coefficients of transient signal have a maximum value of 0.5609 at 0.0753 s.
For scale value of 64, CWT coefficients of harmonics signal have a maximum value of 0.9469.
For scale value of 64, CWT coefficients of fluctuations signal have a maximum value of 0.2062.
In the context of continuous wavelet analysis, the evaluation of the flicker signal at a scale value of 64 reveals 

its maximum CWT coefficient, reaching a pivotal value of 0.1140. This peak coefficient serves as a critical indi-
cator for discerning variations initiated in the voltage, offering insights into the dynamic changes within the 
signal and facilitating the visualization of deviations from the ideal waveform42. The choice of Morse, Morlet, 
and bump wavelets as mother wavelets adds depth to the analysis, each contributing unique characteristics to 
the exploration of power quality disturbance signals. These wavelets play a pivotal role in uncovering hidden 
patterns that might elude detection in the original signals43,44. The matrix dimensions of coefficients for all 
considered signals are contingent on the selected scale, with the scale range of 1:16:128 dictating the breadth 
of frequency representations. This comprehensive scaling approach allows for a detailed exploration of signals 
across a spectrum of frequencies, providing a foundation for nuanced analyses. Tables 1 and 2 further enrich 
the narrative; Table 1 meticulously delineates the energy values of coefficients obtained through the continuous 
wavelet transform at scales 1 and 64, offering a dual-scale perspective on high and low frequencies. Meanwhile, 
Table 2 introduces a three-dimensional (3D) visualization paradigm, encapsulating disturbance signals with 

Figure 26.   (a) Sag (b) Absolute CWT Coefficients (c) Coefficients line.
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time, scale, and coefficient values on the respective axes. This visual representation at scales 1 and 64 unravels the 
intricate interplay between high and low-frequency components, emphasizing the inverse relationship between 
scale and frequency.

The examination of power quality disturbance signals during their initiation and recovery phases reveals 
conspicuous deviations in the coefficients, providing crucial insights into the transient nature of these 
disturbances45,46. To unravel the intricacies of these signals, a comprehensive analysis employing Fourier trans-
form, short-time Fourier transform, and continuous wavelet transform (CWT) is undertaken. Each of these 
transforms serves as a lens through which the signals are perceived in different domains, enriching the under-
standing of their multifaceted characteristics47,48. Notably, CWT is applied with continuous scales, signifying an 
inverse relationship with frequency49. This approach allows for the encapsulation of diverse energy levels within 
each scale, with the highest scale value of 64 strategically employed to extract low-frequency contents, while the 
lowest scale value of 1 adeptly captures high-frequency components. Consequently, the information about power 
quality disturbances is encapsulated as a dynamic interplay between low and high-frequency energy levels. The 
coefficients derived from CWT are meticulously plotted as a function of both scale and time, elucidating the 
temporal and frequency-specific variations. This methodology proves instrumental in unveiling hidden patterns 
that remain obscured in the original signals50,51. However, it is imperative to acknowledge that the computational 
demands of CWT analysis introduce redundancy, necessitating judicious considerations52. The analytical process 
is facilitated through both command-line functionality and the graphical interface of MATLAB, providing a 
robust platform for the identification of power quality disturbances using the insights derived from CWT​53,54.

Discrete wavelet transform (DWT)
Discrete Wavelet Transform (DWT) emerges as a powerful tool for disentangling the intricate details within 
power quality disturbance signals55,56. Leveraging the concept of multiresolution analysis, DWT efficiently 
decomposes a signal into multi-resolution components, unraveling its diverse frequency components. Discrete 
wavelet transform is used for decomposing a signal into multi-resolution components and for detecting changes 
in signal waveforms57. The theory of multiresolution signal decomposition was proposed by Stephan Mallat 
and certain58 important theorems were proved with description of mathematical modes in which are neces-
sary for multiresolution representation termed as, “wavelet representation” for extracting information between 

Figure 27.   (a) Swell (b) Absolute CWT Coefficients (c) Coefficients line.
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successive resolutions. The decomposition process unfolds in a hierarchical fashion, initially splitting the signal 
into level one approximation and detail59. The iterative refinement continues, progressively delving deeper into 
the signal’s nuances, until a sufficient level of information is captured60. The elegance of multiresolution analysis 
unfolds as the signal undergoes a sequential dissection, revealing its nuanced structure61. Initially, the signal 
is bifurcated into a level one approximation and detail. An iterative refinement process ensues, as the detail 
is disregarded, and the approximation is further scrutinized through the lens of a secondary multiresolution 
analysis62. This cascading refinement continues until a critical juncture is reached where the loss of information 
becomes perceptible. The quintessence of wavelet analysis lies in the identification of signal variations through 
this intricate multiresolution journey. The discrete wavelet transform (DWT) becomes the linchpin, orchestrat-
ing this process with finesse. It orchestrates a dual representation of the signal—low frequency encapsulated 
within the approximation and high frequency articulated through detail components63,64. In stark contrast to its 
continuous counterpart, DWT operates with optimal efficiency, eliminating redundancy while preserving the 
essential information mosaic. The overarching aim remains clear: applying the wavelet transform as a discerning 
lens to unravel the mysteries of power quality disturbances, decoding the nuanced features embedded within 
the signals65. This pursuit is augmented by the extraction of key attributes from the level 1 detail coefficients, 
encompassing the peak characteristics, variance, and skewness of level 7 approximations, alongside the mean 
deviation of level 6 details, as explicated in66.

It is mentioned in67 that the property of multiresolution gives precise low and high frequency content informa-
tion of the analyzed signal by using long and short windows. Figure 33 comprises of few wavelets (a) db1 (b) db2 
to db10 (c) coif 1 to coif 5 (d) sym 2 to sym8 which are used as mother wavelets. The discrete wavelet transform 
is defined in Eq. (15)6, with complex conjugate of mother wavelet given by ψ∗(t).

In Eq. (15), the discretized mother wavelet is given by Eq. (16)

(15)DWTψ(m, n) =
+∞
∫

−∞

x(t)ψ∗
m,n(t)dt

Figure 28.   (a) Interruption (b) Absolute CWT Coefficients (c) Coefficients line.



21

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3443  | https://doi.org/10.1038/s41598-024-53792-9

www.nature.com/scientificreports/

In DWT, scaling and translation parameters a , b are discretized as a = am0  and b = nb0a
m
0  ,   where a0 > 1

,   b0 > 0 ,   and m ,   n are positive integers. Dilation refers to scaling i.e. change of frequency. Translation refers 
to shifting of mother wavelet68. Any function in time domain is represented by discrete wavelet transform with 
scaling function as ϕ(t) and wavelet function as ψ(t)6 is represented by Eq. (17).

The term 
∑

k cj(k)2
j/2ϕ

(

2jt− k
)

 represents approximation and 
∑

k dj(k)2
j/2ψ

(

2jt− k
)

 represents detail of 
the signal with  j referring ‘scaling parameter’ and k ‘shift parameter’.

DWT based Identification of PQ disturbances
Embarking on a meticulous dissection, power quality disturbance signals undergo a comprehensive analysis 
through a sophisticated five-level decomposition, leveraging the prowess of Daubechies 4 (db4) as the designated 
mother wavelet69,70. This intricate process involves the instantiation of daughter wavelets, aptly referred to as 
template functions, with their width defining the elusive scale. The multifaceted procedure unfolds through the 
tandem application of filtering and downsampling, the dynamic duo driving the dissection into quintessential 
components71. At the heart of this analytical symphony lies the extraction of linear combinations of wavelet func-
tions, christened as wavelet coefficients72. This culmination not only marks the transformation of the signal but 
births a new realm—the wavelet transform73. The convolutional interplay with low and high pass filters ushers 
in a dichotomy of approximation and detail coefficients, each holding a unique key to the intricate tapestry of 
the signal’s essence. To crystallize this revelation, the obtained signal undergoes a deliberate downsampling by 
a factor of two, culminating in a nuanced and distilled representation74,75.

(16)ψm,n(t) = a
−m/2
0 ψ

((

t− nam0 b0
)

/am0
)

(17)f(t) =
∑

k

cj(k)2
j/2ϕ

(

2jt− k
)

+
∑

k

dj(k)2
j/2ψ

(

2jt− k
)

Figure 29.   (a) Transient (b) Absolute CWT Coefficients (c) Coefficients line.
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Figures 34, 35, 36, 37, 38, 39 and 40 show extraction of level five approximations and level five to one details 
from signals. From 500th sample and to 1500th sample out of 4000 samples of time disturbances of sag, swell 
and interruption are initiated. Following information is obtained from few of the decomposed signals:

•	 The maximum values of details for levels one to five of transient are 0.9970, 0.4357, 0.8022, 0.4972 and 0.2626.
•	 In harmonics, fluctuations and flicker signals, there are no abrupt changes but a change in frequency of signals 

can be observed. So initiation and recovery of disturbances cannot be directly perceivable from the signals.
•	 The maximum values of details for levels one to five of harmonics are 0.0108, 0.0321, 0.1286, 0.2385 and 

0.2511.
•	 When ‘db20’, ‘coif5’ and ‘db37’ wavelets are used, details for all levels are zero. If ‘db4’ wavelet is used, the 

maximum values of details for levels one to five of fluctuations are 0.0056, 0.0158, 0.0134, 0.0518 and 0.1171.
•	 The maximum values of details for levels one to five of flicker are 0.0051, 0.0165, 0.0402, 0.1645 and 0.1242.

Navigating the intricate landscape of signal analysis, the Discrete Wavelet Transform (DWT) emerges as a 
beacon of precision, adept at discerning nuanced transitions within the signal. This methodical dissection unfolds 
over five levels, where the signal undergoes a metamorphosis, decomposing into a tapestry of multi-resolution 

Figure 30.   (a) Harmonics (b) Absolute Coefficients of CWT (c) Coefficients line.
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components. The linchpin of this process lies in the intricate interplay of template functions—a consequence of 
the shifting and dilation of the chosen mother wavelet. These templates, resembling a symphony of patterns, are 
meticulously compared with the disturbances encoded within the signal. The extent of correlation serves as a 
compass, revealing the distinct fingerprint of each type of disturbance. Daubechies fourth-order wavelet (db4), 
showcased in the visual tableau of Fig. 41, emerges as the maestro in power quality analysis. Its selection is not 
arbitrary but rooted in the ’compactness and localization’ properties, rendering it an ideal candidate for unrave-
ling the complexities of disturbances76. A pivotal study77 adds an extra layer of validation, drawing comparisons 
between the entropy values of approximations within disturbance signals and a reference sinusoidal signal—a 
testament to the robustness and reliability of the chosen methodology.

In the realm of signal analysis, the Discrete Wavelet Transform (DWT) stands out as a meticulous tool 
capable of discerning intricate transitions within signals78. Its remarkable ability to identify discontinuities is 
most pronounced at the initial level of detail. This intrinsic characteristic renders the DWT particularly adept at 
effectively identifying signals characterized by abrupt changes, overshadowing its efficacy in scenarios involving 
harmonics, fluctuations, and flicker, where alterations manifest more gradually. The lucidity of identification 
becomes notably conspicuous when scrutinizing signals associated with sag, swell, interruption, and transient 
phenomena79. Level 1 details, akin to a metaphorical magnifying lens, systematically unravel the complexities 
of these specific disturbances, furnishing a nuanced and exhaustive perspective crucial in the domain of power 
quality analysis80.

Figure 31.   (a) Fluctuations (b) Absolute CWT Coefficients (c) Coefficients line.
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Figure 32.   (a) Flicker (b) Absolute CWT Coefficients (c) Coefficients line.

Table 1.   Energy values of CWT coefficients for each disturbance.

Signal Scale 1 Scale 64

Sine 0.0015 76.327

Sag 0.0001 96.386

Swell 0.0002 109.39

Interruption 0.0001 159.86

Harmonics 0.0087 206.68

Transient 0.0339 340.59

Flicker 0.0006 76.485

Fluctuations 0.0001 82.773
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Insights about the continuous wavelet transform (CWT) coefficient matrix and reason for 
selection of discrete wavelet transform (DWT) over CWT​

•	 In the CWT coefficient matrix dimensions, each row of the matrix contains the CWT coefficients for one 
scale.

•	 The column dimension of the matrix is equal to the length of the input signal.
•	 There are 64 rows because the ‘SCALES’ input to CWT is 1:1:64, with 1 representing initial value, 1 represent-

ing increment and 64 representing maximum value of scale used.
•	 The length of different signals used in time domain is 2501 with input given in MATLAB as t = [0:0.0001:0.25].
•	 Thus, the CWT coefficient matrix has 64 rows and 2501 columns.
•	 Computation is more using continuous wavelet transform (CWT) and results in redundant information.
•	 Compared to CWT, discrete wavelet transform (DWT) contains required amount of information without 

redundancy and requires less computation.

Colormap used for indicating magnitude of coefficients

Signal 3D plot

Flicker

Table 2.   Continuous wavelet transform based 3D plots of coefficients.
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Figure 33.   Different Wavelet families.
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•	 DWT is chosen over CWT as DWT results in a finite number of wavelet coefficients depending upon the 
integer number of the discretization step in scale and translation.

•	 DWT results in saving space.
•	 By using Multiresolution analysis in DWT, a signal can be decomposed into approximations (low frequency 

version) and details (high frequency version).
•	 The transitions present in the signal having abrupt changes can be easily captured from details by using DWT.

Figure 34.   (a) Sag (b) Approximation (level 5) (c) to (g) 5th, 4th, 3rd, 2nd and 1st level details.
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Power quality disturbances after applying Fourier, short-time Fourier, Continuous and discrete wavelet trans-
forms are visualized in MATLAB.

Conclusion
By applying different signal processing techniques to power quality disturbances, information about the signals 
can be extracted. Different signals are generated for a time duration and based on the type of disturbances, 
variations are shown in magnitude and frequency. Perception of power quality signals in different domains by 
applying mathematical transforms of Fourier transform, Short time Fourier transform, Continuous wavelet 

Figure 35.   (a) Swell (b) Approximation (level 5) (c) to (g) 5th, 4th, 3rd, 2nd and 1st level details.
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transform and Discrete wavelet transform is done. Results of application of Fourier Transform to power quality 
disturbances are signals in time domain are represented in frequency domain, existing frequency in the signals 
can be determined and the time at which frequency components exist cannot be determined. Fourier transform 
is effective for the signals whose frequency content is same at every point of time. Results of application of Short-
Time Fourier Transform (STFT) to power quality disturbances are signals in time domain are represented in 

Figure 36.   (a) Interruption (b) Approximation (level 5) (c) to (g) 5th, 4th, 3rd, 2nd and 1st level details.
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time and frequency domains and depends on window size. By using STFT, frequency versus time information 
can be obtained by proper choice of window width. Visual two-dimensional representation of the signal as a 
function of frequency and time can be obtained with varying magnitude. Results of application of Continuous 
Wavelet Transform (CWT) to power quality disturbances are by using CWT, coefficients as a function of scale 
and position can be obtained. Each scale stores different energy levels of the signal. Coefficients line plot gives 

Figure 37.   (a) Transient (b) Approximation (level 5) (c) to (g) 5th, 4th, 3rd, 2nd and 1st level details.
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information about changes in the signal. CWT results in better interpretation for finding hidden patterns that 
are not available in original signals. It is a time-scale analysis method. Results of application of Discrete Wavelet 
Transform (DWT) to power quality disturbances are signals can be decomposed into multiresolution compo-
nents—approximations and details. Approximations are low frequency components. Details are high frequency 

Figure 38.   (a) Harmonics (b) Approximation (level 5) (c) to (g) 5th, 4th, 3rd, 2nd and 1st level details.
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components. Transition or singular points or any abrupt changes can be detected. It is a time-discretized scale 
analysis method. Fourier, Short Time Fourier, Continuous Wavelet transform and Discrete wavelet transforms 
are applied in MATLAB environment for power quality disturbances to provide perception in different domains 
giving useful information about the content that is not available in time domain signals.

Figure 39.   (a) Fluctuations (b) Approximation (level 5) (c) to (g) 5th, 4th, 3rd, 2nd and 1st level details.
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Figure 40.   (a) Flicker (b) Approximation (level 5) (c) to (g) 5th, 4th, 3rd, 2nd and 1st level details.

Figure 41.   Daubechies (‘db4’) wavelet (a) Scaling function (b) Wavelet function.
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