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Exponential super‑twisting 
control for nonlinear systems 
with unknown polynomial 
perturbations
Jianghua Liu 1, Jiang Zhu 1*, Karim Khayati 2*, Dong Zhong 1 & Jinguang Jiang 3

The study focuses on the control of nonlinear dynamic systems in the presence of parameter 
uncertainties, unmodeled dynamics, and external disturbances. The lumped perturbation is assumed 
to be bounded within a polynomial in the system state with the polynomial parameters and degrees 
unknown a priori such that it accommodates a quite wider range dynamic systems. Based on the 
studies in recent super‑twisting algorithm designs and the idea from adaptive sliding mode control 
for nonlinear systems with uncertainties, we propose a novel adaptive super‑twisting algorithm with 
exponential reaching law, or exponential super‑twisting algorithm (ESTA), for the high‑stability and 
acceptable accuracy control of the aimed nonlinear dynamics. The stability analysis and practical 
finite‑time (PFT) convergence are proven using Lyapunov theory and an intuitive analysis of the 
control behaviour. Simulations are performed to compare the proposed ESTA with the existing super‑
twisting method and the traditional proportional integral differential control. The simulation results 
demonstrate the effectiveness of the proposed ESTA in terms of the fastest settling time and the 
smallest overshoot.

During past few decades, sliding mode control (SMC) has gained much attention for its robustness in terms 
of parameter variations that occur in the control channel and the finite time convergence (FTC) to the sliding 
 surface1–6. A high-frequency oscillation called chattering is the well-known drawback of the SMC. To attenuate 
the chattering phenomenon and improve the accuracy, the high-order SMC (HOSMC) has been studied inten-
sively and shown  effectiveness7,8. As an important class of HOSMC, the super-twisting algorithm (STA) intro-
duced  in9 attracts a lot of  attention10–14. Chalanga et al.11 proposed an STA based output feedback stabilization 
for perturbed double-integrator system. A describing function based STA was presented  in15. Yan et al., studied 
the quantization  effect16 on STA. The reaching time estimation and convergence condition on STA were analysed 
 in10,12,17  and13, respectively. For systems with saturated control action, Seeber and Reichhartinger investigated 
conditioned  STA18. For the systems subject to T-periodic perturbations, Papageorgiou and  Edwards19 inves-
tigate the stability properties and performance of super-twisting sliding-mode control loops. STA techniques 
were applied to different areas such as Mars entry trajectory tracking with nonsingular terminal sliding mode 
 surface20, control of robot  manipulators21,22 and mobile  robots23 using robust high-order form, altitude control 
of a quadrotor unmanned aerial  vehicle24, adaptive STA control of multi-quadrotor under external  disturbance25, 
aircraft at high angle of  attack26, STA control combined with radial basis function neural network for micro 
 gyroscope27, energy management control for integrated DC micro-grid28, STA control of passive gait training 
exoskeleton driven by pneumatic  muscles29, STA non-sigular fast terminal sliding motor control of interior per-
manent magnet synchronous  motor30, and STA state observer based controllers for induction motor  drive14 and 
for permanent magnet synchronous motor  drive31,32 systems. Among these STA techniques, it is assumed that 
the system uncertainties or external perturbations are bounded within some constants and/or some Lipschitz 
functions with the boundaries known a priori. To ensure the stability, the system lumped uncertainties should 
be compensated completely. Consequently, the feedback control gains in STA techniques tend to be overesti-
mated. The overestimated gains may guarantee the system’s stability. However, it may also excite the unmodeled 
dynamics and/or undesirable  chattering33.
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To overcome the drawback of the overestimation and to deal with uncertainties of unknown bounds, the 
design of adaptive sliding mode control (ASMC) was  introduced2,34–38 where the time-varying switching gain is 
designed to adaptively compensate for the lumped uncertainties. Most ASMC techniques use integral adaptation 
laws or integral adaptation law combined with other techniques such as the σ-modification34 or the dead zone 
 method35. It is shown that, by using integral-type adaptation law, the systems with uncertainties of unknown 
constant bounds have finite-time  stability36. However, the system response to the perturbation is relatively slow 
and, even though the overestimation is avoided somehow, the chattering phenomenon is still  observed39. To 
further attenuate the chattering phenomenon, a possible adaptation law is to reduce the switching gain to a 
minimum admissible value since the magnitude of the chattering level is proportional to the magnitude of the 
switching  gain37.  In37, the ASMC law is applied to STA and uses a low-pass filter to tune the switching gain in 
the control to a possibly minimum value once the sliding mode is established. However, it still requires a large 
enough feedback gain to compensate the perturbation with affine function form in the system state, and the use 
of a low-pass filter introduces a time delay which affects the transient phenomenon.

To achieve fast response and chattering-attenuation property, asymptotic reaching laws rather than ASMC can 
be found as the form of power reaching  law1 and an exponential reaching  law40,41. However, they either lose the 
robustness when system states are around the sliding  surface1 or require a priori knowledge of the uncertainty 
 bounds40,41. Yang et al.42 proposed an ASMC technique using exponential reaching law, called adaptive exponen-
tial sliding mode control (AESMC), for the control of a beaingless induction motor. Still, for the AESMC design 
 in42 all the bounds of the uncertainties must be known a priori. In brief, the aforementioned STA techniques 
assume that the bounds of the uncertainties are known a priori, while the ASMC techniques assume that the 
uncertainties are bounded within some constants or affine functions in the system state with the bounds a priori 
known or unknown. For the case that the bounds of the uncertainties are unknown a priori, seldom researches 
studied the STA based ASMC. More than the case that the uncertainties are bounded within constants or affine 
functions in the norm of the system state, the uncertainties may be bounded within some quadratic or cubic 
functions in the norm of the system  state3 with the bounds unknown or inaccurate a priori. For instance, with 
inaccurate parameters the aircraft dynamics and robot manipulators contain uncertainties bounded by quadratic 
functions of the state. Also, polynomial uncertainties can be found in the systems of the inverted pendulum 
mounted on a cart, the tunnel-diode circuit dynamics and the Duffing  dynamics3.

Such cases (with quadratic or cubic uncertainties) represent a wider class of nonlinear systems than the above 
STA and ASMC techniques considered. More generally, all the above discussed uncertainties can be assumed 
to be bounded within some polynomials in the norm of the system state with the bounds unknown a priori. To 
stabilize the above wide class of nonlinear systems, we propose a control method of an exponential super-twisting 
algorithm (ESTA) where the algorithm structures from STA are integrated with a novel exponential reaching 
law. Thus, the main contributions of the work can be illustrated as follows.

• Compared to the conventional STA where the bounds of the system’s uncertainties must be known a priori, 
or the adaptive STA where the uncertainties are assumed to be bounded within some constants or affine 
functions, a more general case of nonlinear systems is considered in this study where the uncertainties are 
assumed to be bounded within some polynomials in the norm of the system state with the bounds unknown 
a priori, i.e., both the polynomial parameters and degrees are unknown a priori.

• A novel algorithm, adaptive super-twisting algorithm with exponential reaching law, is proposed to stabilize 
the aimed nonlinear systems. The stability and the practical finite time  convergence43 of the new design are 
proven using Lyapunov theory and an intuitive analysis of the control behavior.

• The proposed new ESTA is compared with the traditional STA and PI methods in simulations, and the 
simulation results demonstrate the superiority of the new design.

Section “Problem formulation” introduces the nonlinear systems with unknown polynomial uncertainties. The 
STA technique is recalled with the discussion of the stability issues in some STA designs over past decade. The 
new ESTA laws are proposed in section “Methodology”. The new design with single-input-single-out (SISO) 
form is introduced first for the ideal case. Then the multi-input-multi-output (MIMO) forms of the new ESTA 
are designed for the ideal and real cases. Simulation results are presented in section “Simulation results” to verify 
the effectiveness of the proposed algorithms. Finally, section “Conclusion” concludes the paper.

Problem formulation
In this section, we recall the existing STA  techniques9,10,16,26 to analyze the stability limitations. Useful definition 
and mathematical lemma are first introduced in this section.

Definition 1 The signum function is given as

Then,

Lemma 1 If the time derivative of σ(t) exists, then

(1)sgn(σ ) =
{

1 if σ > 0
0 if σ = 0

−1 if σ < 0

(2)|σ | = σ sgn(σ )
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for all σ(t)  = 0.

Problem statement
Consider the uncertain nonlinear dynamic system

where σ ∈ χ ⊂ R
n is the measured signal designating the system state or any sliding variable, t ∈ R

+ is the time, 
and u ∈ R

n is the control input signal.
0 is an equilibrium of (4). Function f (σ , t) ⊂ R

n represents lumped perturbation containing parameter 
uncertainties, unmodeled dynamics, and external disturbances and Function g(σ , t) ⊂ R

n×n contains parameter 
uncertainties.

Assumption 1 The norm of the perturbation f (σ , t) is upper-bounded with some unknown polynomials in the 
state vector σ ∈ χ . More specifically,

where q is an uncertain finite integer, ai ( i = 0, 1, · · · , q ) uncertain non-negative finite values, and ni positive 
real scalars.

Note, Assumption 1 includes but not limits to the following example.

Example 1 

Assumption 2 Let g(σ , t)T be the transpose matrix of g(σ , t) . The uncertain term g(σ , t) is positive definite in 
wide sense, i.e., its symmetric part gs defined by

is positive definite in the regular meaning.

The assumption 2 implies that the minimum eigenvalue of gs is lower-bounded by a positive finite constant. 
In other words, there exists a positive finite constant b such that

where In is an identity matrix with dimension n.

Remark 1 Uncertainty f (σ , t) in Assumption 1 takes into account a large class of uncertainties. Many  studies6,36 
assume that the uncertainty ‖f (σ , t)‖ is bounded by a constant i.e., �f (σ , t)� ≤ a0 with a0 possibly unknown. 
Some other  researchers16,34,37 assume that ‖f (σ , t)‖ is bounded by an affine function in the system state with 
parameters unknown, i.e., �f (σ , t)� ≤ a0 + a1�σ� with a0 and a1 possibly unknown. Assumption 1 covers all the 
cases described  in6,16,34,36,37,44. Moreover, it covers (but not limited to) the case of quadratic uncertainties, i.e., 
�f (σ , t)� ≤ a0 + a1�σ� + a2�σ�2 with unknown a0 > 0 , a1 > 0 and a2 > 0 . Thus, the systems under Assump-
tion1 represent a large class of nonlinear dynamics systems with uncertainties.

Remark 2 Usually the control parameter g(σ , t) is assumed to be known a priori. For the case where g(σ , t) is 
varied, the bounds of the variations usually are assumed known a priori as well. In this contribution, we consider 
the statement (7), that is, the variation values of the control parameter g(σ , t) are loosely structured, which is 
another way extending the class of nonlinear systems to be addressed.

Existing super‑twisting algorithm based design
For simplicity, we recall the existing STA designs in the scalar case. To steer σ to zero, STA  techniques9,10,12,15,16,18,26 
are proposed with the control u(t) basically defined as

for k1 and k2 sufficiently large. In particularly, f (σ , t) in (4) is split into two terms as f (σ , t) = γ (σ , t)+ a(σ , t) 
with the following two conditions must be satisfied.10,12,15,16,18,19.

(3)
d

dt
|σ(t)| = σ̇ (t)sgn(σ (t))

(4)σ̇ = f (σ , t)+ g(σ , t)u

(5)�f (σ , t)� ≤
q

∑

i=0

ai�σ�ni

(6)�f (σ , t)� ≤ a0 + a1
√

�σ� + a2�σ� + a3�σ�3/2 + · · ·

(7)gs(σ , t) =
1

2

[

g(σ , t)+ g(σ , t)T
]

> 0

(8)gs(σ , t) ≥ b ∗ In > 0

(9)u = −
(

k1
√

|σ |sgn(σ )+ k2

∫ t

0
sgn(σ (τ ))dτ

)

/b
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The selections of the scalars k1 and k2 in the existing STA designs are based on some stability analyses and have 
different complicated  forms9,16,26. Alternatively, k1 and k2 are simply  selected10,11,15,18,19 as

In10,11,15,16,18,19 it is stated that, if the scalars k1 and k2 are sufficiently large or respectively satisfy (12) and (13), the 
finite-time stability of the STA design (9) is guaranteed.

The condition (11) contains a possible strict ramp disturbance in the domain of time t. Consequently, the 
magnitude of the ramp disturbance may go to infinity as time elapses. However, most the existing STA control 
designs are difficult to handle a disturbance with extremely large (or infinity) amplitude. It is possible that some 
researchers are aware of the inappropriateness or unreality of this hypothesis. The condition (11) is not presented 
in STA designs  of20,22,45. Papageorgioua and  Edwards19 used a restricted assumption, a T-periodic perturbation 
with (11), to replace the simple (11). Base on the ’T-periodic’ assumption, the authors further demonstrate that 
under smaller gain conditions ( k2 < L ), the solutions of the closed loop system converge to a stable limit cycle 
around the origin as well.

Remark 3 Note, the Assumption 1 includes the condition (10) but not (11). In real dynamic systems, the condi-
tion Eq. (11) which possibly contains a strict ramp disturbance is unnecessary and has little practical significance.

Based on the above discussion, we take Assumptions1 and 2 instead of the conditions (10) and (11) in the 
following new ESTA design.

Methodology
In this section, we will propose a novel adaptive STA based control law, ESTA design, to expand the traditional 
STA design by using an exponential reaching law to constrain the system states of (4)–(7) to the vicinity of zero 
in finite time. The finite time convergence to the vicinity of the equilibrium is also defined as practical finite time 
stability (PFTS)  in43 or finite settling time stability (FSTS)  in46. We start the new ESTA design for the system 
(4)-(7) for the ideal scalar case. Then we extend the new design to the real case with MIMO form.

Definition 2 The system (4) is said to be practical finite-time stable (PFTS)43 if for all σ0 ∈ R
n , there exist ε > 0 

and tF(ε, σ0) < ∞ , such that �σ(t)� ≤ ε for all t ≥ tF.

Remark 4 The PFTS means that the state σ in (4) converges to the vicinity of the equilibrium in finite time. The 
finite settling time stability (FSTS) defined  in46 has a similar meaning.

ESTA design for SISO systems
We first consider an simple SISO case where the dynamic systems are  ideal9. Consider the following control law

for some positive constants c1 and c2.

Theorem 1 Consider the scalar system (4)–(7) subject to (14), then the state in (4) has PFTS.

Proof Consider the situation where the system state σ is outside of the vicinity of the equilibrium, i.e.,

for any small positive value of ε . We will prove that the state will converge to the domain |σ | ≤ ε in finite time. 
Note from (5)

Since the exponential term bc1e
√
|σ | will eventually be bigger than the polynomial term bc1 +

∑q
i=0 ai|σ |ni as σ 

increasing, the term |f (σ , t)| − bc1

(

e
√
|σ | − 1

)

 in (16) is upper bounded, i.e.,

(10)|γ (σ , t)| ≤ δ
√

|σ |

(11)|ȧ(σ , t)| ≤ L

(12)k1 > δ

(13)k2 > L

(14)u = −c1

(

e
√
|σ | − 1

)

sgn(σ )− c2

∫ t

0
sgn(σ (τ ))dτ

(15)|σ | ≥ ε > 0

(16)

|f (σ , t)| − bc1

(

e
√
|σ | − 1

)

= |f (σ , t)| + bc1 − bc1e
√
|σ |

≤ bc1 +
q

∑

i=0

ai|σ |ni − bc1e
√
|σ |
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for a positive constant c∗ . Now we consider the time derivative of |σ | . Using Lemma 1, we obtain for |σ | ≥ ε,

Now we consider two cases of σ . Case I, the system state is in the positive space of the vicinity of the equilibrium, 
i.e., σ ≥ ε > 0 . We obtain from (17) and (18),

Let t∗ = c∗/c2b . Then, after time t∗ ( t ≥ t∗),

Noting that c2b(t − t∗) is continuously increasing as time elapses after t ≥ t∗ . That is, the rate of the decline of 
the state |σ | is getting faster and faster as time elapses and the state |σ | will eventually reach the region |σ | ≤ ε in 
finite time. By integrating (20) between t∗ and t > t∗ and using the Comparison  Lemma3, we obtain

Then the reaching time tF is estimated as

Case II, the system state is in the negative space of the vicinity of the equilibrium, i.e., σ ≤ −ε < 0 . We obtain 
from (17) and (18),

Note that the inequality (22) has a same form as (20) in Case I. We conclude that |σ | will eventually reach the 
region |σ | ≤ ε in finite time and remains on it thereafter with the reaching time estimated as 

tF ≤
√

2
|σ(t∗)| − ε

c2b
+ t∗   �

Theorem 1 shows that for any positive constants c1 and c2 the control (14) will always steer the system state 
to the vicinity of the equilibrium point in finite time even if the lumped perturbation contains some polynomial 
form in the system state and even if we do not known the boundaries of the uncertainties a priori. The reaching 
time or the finite settling time tF of Theorem 1 contains two parts, the compensating time t∗ and the converging 

time 

√

2
|σ(t∗)| − ε

c2b
 . One can see that the settling time tF depends on the control gain c2 and system parameter 

b . Generally, tF can be reduced by increasing c2 and b values. An insight discussion of the finite settling time tF 
estimation can be found in Ref.39.

(17)|f (σ , t)| − bc1

(

e
√
|σ | − 1

)

≤ c∗

(18)

d

dt
|σ | = f (σ , t)sgn(σ )+ g(σ , t)sgn(σ )u

= f (σ , t)sgn(σ )− g(σ , t)sgn(σ )c1

(

e
√
|σ | − 1

)

sgn(σ )

− g(σ , t)sgn(σ )c2

∫ t

0
sgn(σ (τ ))dτ

= f (σ , t)sgn(σ )− g(σ , t)c1

(

e
√
|σ | − 1

)

− c2g(σ , t)sgn(σ )

∫ t

0
sgn(σ (τ ))dτ

(19)

d

dt
|σ | ≤ |f (σ , t)| − bc1

(

e
√
|σ | − 1

)

− c2b · 1
∫ t

0
1dτ

≤ c∗ − c2b

∫ t

0
1dτ

≤ c∗ − c2b

∫ t∗

0
1dτ − c2b

∫ t

t∗
1dτ

(20)
d

dt
|σ | ≤ −c2b

∫ t

t∗
1dτ

≤ −c2b(t − t∗)

|σ(t)| − |σ(t∗)| ≤ −1

2
c2b(t − t∗)2

(21)

ε − |σ(t∗)| ≤ −1

2
c2b(tF − t∗)2

tF ≤
√

2
|σ(t∗)| − ε

c2b
+ t∗

(22)

d

dt
|σ | ≤ |f (σ , t)| − bc1

(

e
√
|σ | − 1

)

− c2b · (−1)

∫ t

0
(−1)dτ

≤ c∗ − c2b

∫ t∗

0
1dτ − c2b

∫ t

t∗
1dτ
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One drawback of the conventional sliding mode control is the chattering phenomenon where the switching 
function sgn(·) is the main source of it. In real implementation, the function is usually replaced by some smooth 
functions to attenuate the chattering  effects2,3,37. In this work, a simple smooth function sgn(σ ) ≈ σ

|σ | + µ
 with 

a small positive scalar µ47 can be used to replace the switching function.

where the small positive constant µ is related to the thickness of the boundary layer of the real sliding  mode3. 
Using the aforementioned small positive scalar ε as the vicinity of the equilibrium, we have the following 
proposition.

Proposition 1 Consider the scalar system (4)–(7). If the control law is selected as (23), then the states in (4) has 
PFTS.

The proof is similar to the proof of Theorem 1 and is shown  in Appendix “Proof of the Proposition 1”.

Remark 5 The smoothing function can be used in most sliding mode control. The main imperfection of the 
smoothing function is that it is not suitable for direct application of a small number of SMC controls, such as 
the STA design (9). In other words, when the smoothing function sgn(σ ) ≈ σ

|σ | + µ
 is chosen to approximate 

the switching function, the existing STA design (9) with conditions (10) and (11) may encounter stability issues 
which can be seen in the following example.

Example 2 Consider the uncertain nonlinear system 4 with the conditions (10) and (11). Let g(σ , t) = b = 1 , 
γ (σ , t) = 0 and ȧ(σ , t) = L = 1 for simplicity. Consider the existing STA control (9) with the switching function 
sgn(σ ) replaced by 

σ

|σ | + µ
 where µ = 0.001 . Let the designed parameter k1 = 1 satisfying (12). We choose case 

I k2 = 1.1 to satisfy (13) and case II k2 = 10 to be sufficiently large. The simulation results with sampling time 
0.001s are shown in Figs. 1 and 2.

The above example shows that by using the existing STA design, if the switching function is approximated by 
some smoothing functions, the system may become unstable no matter the gain k2 satisfies (13) or k2 is sufficient 
large. (See Fig. 1 for k2 = 1.1 satisfying (13) and Fig. 2 for k2 = 10 sufficiently large.)
ESTA for MIMO systems
Now we extend the new ESTA design for the MIMO systems (4)–(7). Let ‖σ‖ be the 2-norm of the system state 
σ . Consider the following control law

for some positive constants c1 and c2.

Theorem 2 Consider the MIMO system (4)–(7) subject to (24), then the state in (4) has PFTS.

(23)u = −c1

(

e
√
|σ | − 1

) σ

|σ | + µ
− c2

∫ t

0

σ

|σ | + µ
dτ

(24)u = −c1

(

e
√
�σ� − 1

) σ

�σ� − c2
(

∫ t

0
�σ�dτ

) σ

�σ�

Figure 1.  Simulation results of the Example (2) by using the existing STA control (9) with the switching 
function sgn(σ ) replaced by 

σ

|σ | + 0.001
 for the case I k2 = 1.1.
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Proof In the following, the argument t of most given vector field (i.e., σ , f, g, etc.) will be omitted for simplicity. 
Consider the following Lyapunov function candidate

Let uT be the transpose vector of u in (24). Using (4) and (24), the time derivative of V along the system trajec-
tories is

Note, the scaler f Tσ =
(

f Tσ
)T = σT f  , then f Tσ + σT f = 2σT f  . Since c1 , c2 , ‖σ‖ , 

(

e
√
�σ� − 1

)

 , and 
( ∫ t

0 ‖σ‖dτ
)

 

are scalars, and uT = −c1
(

e
√
�σ� − 1

) σT

�σ� − c2
( ∫ t

0 �σ�dτ
) σT

�σ� , we have

Then, we obtain from (7), (26) and (27),

Consider the situation where the system state σ is outside of the vicinity of the equilibrium, i.e., �σ� ≥ ε . Using 
�σ� =

√
V  , �σ�2 = σTσ , and recalling Assumption 2, we reformulate (28) as,

(25)V = σTσ

(26)

V̇ = σ̇Tσ + σT σ̇

=
(

f T + uTgT
)

σ + σT (f + gu)

= f Tσ + σT f + uTgTσ + σTgu

(27)

uTgTσ + σTgu =
(

− c1

(

e
√
�σ� − 1

)

σT

�σ� − c2

(
∫ t

0
�σ(τ)�dτ

)

σT

�σ�

)

gTσ

+ σTg

(

− c1
(

e
√
�σ� − 1

)

σ

�σ� − c2

(
∫ t

0
�σ(τ)�dτ

)

σ

�σ�

)

= −c1

(

e
√
�σ� − 1

)

σT

�σ� g
Tσ − c2

(
∫ t

0
�σ(τ)�dτ

)

σT

�σ� g
Tσ

− c1

(

e
√
�σ� − 1

)

σTg
σ

�σ� − c2

(
∫ t

0
�σ(τ)�dτ

)

σTg
σ

�σ�

= −c1

(

e
√
�σ� − 1

)

σT (gT + g)σ

�σ� − c2

(
∫ t

0
�σ(τ)�dτ

)

σT (gT + g)σ

�σ�

(28)V̇ = 2σT f − 2c1

(

e
√
�σ� − 1

)

σTgsσ

�σ� − 2c2

(
∫ t

0
�σ(τ)�dτ

)

σTgsσ

�σ�

(29)

V̇

2
√
V

= σT

�σ� f − c1

(

e
√
�σ� − 1

)

σTgsσ

σTσ

− c2

(
∫ t

0
�σ(τ)�dτ

)

σTgsσ

σTσ

≤ �f � − c1b

(

e
√
�σ� − 1

)

− c2b

(
∫ t

0
�σ(τ)�dτ

)

Figure 2.  Simulation results of the Example (2) by using the existing STA control (9) with the switching 
function sgn(σ ) replaced by 

σ

|σ | + 0.001
 for the case II k2 = 10.
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We denote by h(�σ�) = �f � − c1b

(

e
√
�σ� − 1

)

 . One can see that h(‖σ‖) is upper-bounded since a positive 

exponential function ultimately grow faster than any polynomial. That is, there exists a finite scalar h such that

for all σ . Note that 
d

dt
�σ� ≡ V̇

2
√
V

 for �σ� ≥ ε . The inequality (29) can be rewritten as

For any �σ� ≥ ε , the term c2b
∫ t
0 ‖σ(τ)‖dτ in (31) keeps increasing and will eventually compensates for h . 

Since this compensating action occurs for any �σ� ≥ ε , we conclude that there exists a time instant t∗ such that 
h ≤ c2b

∫ t∗

0 �σ(τ)�dτ . Then, after the time instant t∗ , i.e., t ≥ t∗ , 
∫ t
0 �σ(τ)�dτ =

∫ t∗

0 �σ(τ)�dτ +
∫ t
t∗ �σ(τ)�dτ . 

We obtain from (31)

By applying the mojorant curve  approach39, we conclude that ‖σ‖ reaches the region �σ� ≤ ε in finite time and 
remains on it thereafter with the reaching time estimated as tF ≤ π

2
√
c2b

+ t∗   �

The above ESTA algorithm (24) is designed for the ideal case. For the real implementation, the magnitude 
of the integral term 

∫ t
0 ‖σ(τ)‖dτ may rise to a very large value since it keeps growing for any �σ� �= 0 . Also, the 

term ‖σ‖ as a denominator in (24) may cause some singularity problem when ‖σ‖ is close to zero. To eliminate 
these problems, we use ε-adaptation36 and a smoothing  function47 in the following ESTA design for the MIMO 
systems (4)–(7) in real implementation.

where c1 and c2 are positive gains and µ is the smoothing factor in the smoothing function 
σ

�σ� + µ
 used for 

replacing the switching function sgn(·).

Proposition 2 Consider the MIMO system (4)–(7) subject to (33), then the states in (4) have PFTS.

The proof is ignored here to save the space.

Remark 6 Note that the controllers ESTA (14) and STA (9) use full state feedback control. These controllers 
can be applied to higher-order systems if they can be converted to first-order systems and the state of the first-
order system is available. If the state of the system cannot be measured directly, but the system is observable, 
it is often possible to construct an “observer” or simply use some differentiator to estimate the full state. When 
the “observer” or differentiator are good to use, the two-part structure of proposed ESTA methods (14), (23), 
(24) and (33) can be extended to three-part structure. For example, ESTA controller (14) can be extended to a 
controller containing a differential term.

where ˙̂|σ | represents the estimation of the differential of the measured sensor signal σ if σ̇ is not directly available. 
The stability proof of the control (34) is verbose and ignored here.

The selection of gains can refer to the gain adjustments of PID control. Generally, the exponential gain c1 in 
proposed ESTA methods can be first tuned to a relatively large value. Then gain c2 can be tuned to eliminate the 
steady error. If the measured signals are differentially reliable, c3 can also be tuned to further reduce the overshoot.

Remark 7 The reference signal of the controllers designed in this paper can be time-invariant, such as coordinate 
values, or time-varying, such as trajectories. For the trajectory reference signal, we require it to be second-order 
differentiable such that the error dynamics equation of the trajectory tracking control system can be constructed.

Simulation results
Although the STA algorithm appeared in the 90s of the last century, it is still widely used today, such as the 
 literatures13,14,19,25,29–32 of the last three years. The core structure of the STA algorithms used in these literatures is 
consistent. As a result, these newer STA control methods also share common features, such as a reduced settling 

(30)h(�σ�) ≤
q

∑

i=0

ai�σ�ni + c1b− c1be
√
�σ� ≤ h

(31)
d

dt
�σ� ≤ h− c2b

∫ t

0
�σ(τ)�dτ

(32)
d

dt
�σ� ≤ −c2b

∫ t

t∗
�σ(τ)�dτ

(33)

u = −c1

(

e
√
�σ� − 1

) σ

�σ� + µ

− c2

∫ t

0
(�σ(τ)� − ε)dτ

σ

�σ� + µ

(34)u = −c1

(

e

√
|σ | − 1

)

sgn(σ )− c2

∫

t

0
sgn(σ (τ ))dτ − c3

(

e
˙̂|σ | − 1

)

sgn(
˙̂|σ |)
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time, but a decrease in robustness. Compared to the STA methods, the advantage of the ESTA proposed in this 
paper is that it maintains a short or shorter settling time, while at the same time has a significant improvement 
in robustness. Because of the comparison in terms of settling time (stability time) and robustness, we chose two 
quantitative indicators, settling time ts and overshoot O.S., for stability analysis.

Illustrated example
In this section, an example which contains external perturbations and polynomial uncertainties in the norm 
of the state is given to illustrate the system response of the proposed ESTA. Consider the system (4) with 
g(t) = b = 1 for simplicity. The lumped perturbation f (σ , t) = f1(t)+ f2(σ ) is chosen as 

 where f1(t) represents external disturbances and f2(σ ) contains system parameter uncertainties or unmodelled 
dynamics. In particular, α3(σ 2 + σ 3) represents higher order polynomial bounded disturbances if the unknowm 
scalar α3  = 0 . In simulation the proposed ESTA control (23) (for real case) is compared to the existing STA 
control (9) and the conventional proportional-integral (PI) control which has the following form:

Note, the three methods have similar proportional-integral forms. For simplicity and comparability, the ‘P-param-
eters’ in (9), (23) and (36) are selected as k1 = c1 = d1 = 1 , as well as the ‘I-parameters’ k2 = c2 = d2 = 1 . We 
choose the smoothing factor µ = 0.001 and keep it unchanged for all simulations.

Transient response under external disturbances
To test the system transient response under various external disturbances, we let the parameter of the unmod-
elled dynamics α2 = α3 = 0 be fixed. Two levels of the external disturbance, α1 = 2 and α1 = 5 , are used to 
respectively represent a moderate and a relatively large external disturbances.

We first choose a moderate external disturbance with α1 = 2 where the simulation results of the state σ(t) and 
the control input u(t) are shown in Figs. 3 and 4, respectively. Then we increase the magnitude of α1 to a relatively 
large value, i.e., α1 = 5 where the simulation results are shown in Figs. 5 and 6. One can see that, compared to 
the STA and PI methods, the proposed ESTA method has the fastest settling time and the smallest overshoot. In 
particular, for the moderate external disturbance with α1 = 2 , the system settling time ts of the proposed ESTA 
is reduced from 10 and 4 seconds to 3.2 second ( 68% reduction and 20% reduction) compared to those of the 
existing PI and STA methods, respectively. For the relatively large external disturbance α1 = 5 , the ts of the pro-
posed ESTA is reduced from 8.1 and 9.2 seconds to 6.1 second ( 25% reduction and 34% reduction) respectively 
compared to those of the PI and STA methods (see ts in Table 1). Simultaneously, compared to the PI and STA 
methods the percentage of the system overshoot O.S. by using the proposed ESTA is respectively reduced from 
30% and 40% to 25% for the moderate external disturbance. Meanwhile, the O.S. by ESTA is reduced to 16% for 

(35a)f1(t) = α1

(35b)f2(σ ) = α2 · σ + α3
(

σ 2 + σ 3
)

(36)uPI = −d1σ − d2

∫ t

0
σ(τ)dτ

Figure 3.  Transient response of the nonlinear system (4) under an external disturbance (35) with α1 = 2 , 
α2 = α3 = 0 : Control inputs u(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black).
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the relatively large external disturbance (see O.S. in Table 1). Note, the percentage of O.S. is calculated from the 
control signals (Figs. 3 and 5) because we choose the system steady state at its equilibrium state, i.e., σ(∞) = 0.

System response under external disturbances and linear unmodelled dynamics
To test the system response under various linear parameter uncertainties (or unmodelled dynamics), we keep 
the magnitude of the external disturbance unchanged, i.e., α1 = 2 , no higher order polynomial disturbance, i.e., 
α3 = 0 , and choose different values of linear unmodelled dynamics α2.

First we choose a relatively small value of α2 = 0.5 . One can see that the ESTA method still has the fastest 
settling time and the smallest overshoot (see Figs. 7 and 8). Specifically, the settling time ts dropped from 18 
and 5.2 seconds respectively by applying PI and STA approaches to 3.2 seconds by using the proposed ESTA 
method (see ts in Table 2). Then we increase the parameter uncertainty to a moderate level of α2 = 1.0 . From 
the simulation results Figs. 9 and 10, one can see that by using STA and PI methods the systems are unstable 
and oscillating, respectively. In contrast, the system is still stable by using the proposed ESTA control method.

Note that any α2 > d1 = 1 will lead to an unstable PI control as well. We continue to increase the α2 value to 
1.5 where the simulation results are shown in Figs. 11 and 12. It can be seen that the system becomes unstable by 

Figure 4.  Transient response of the nonlinear system (4) under an external disturbance (35) with α1 = 2 , 
α2 = α3 = 0 : State σ(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black).

Figure 5.  Transient response of the nonlinear system (4) under an external disturbance (35) with α1 = 5 , 
α2 = α3 = 0 : Control inputs u(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black).
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Figure 6.  Transient response of the nonlinear system (4) under an external disturbance (35) with α1 = 5 , 
α2 = α3 = 0 : State σ(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black).

Table 1.  Settling times (obtained from Figs. 4 and 6) and overshoots (obtained from Figs. 3 and 5) by using 
three control methods for the nonlinear system (4) under constant external disturbances only, i.e., α2 = α3 = 0

. Significant values are in [bold].

α1

Settling time ts (Seconds) Overshoot O.S. ( %)

PI STA ESTA PI STA ESTA

2 10 4 3.2 30 40 25

5 8.1 9.2 6.1 30 40 16

Figure 7.  System response under external disturbances and linear unmodelled dynamics (35) with α1 = 2 , 
α2 = 0.5 and α3 = 0 : Control inputs u(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid 
black).
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Figure 8.  System response under external disturbances and linear unmodelled dynamics (35) with α1 = 2 , 
α2 = 0.5 and α3 = 0 : States σ(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black).

Table 2.  Settling times (obtained from Fig. 8, 10 and 12) and overshoots (obtained from Figs. 7, 9, and 11) by 
using three control methods for the nonlinear system (4) under external disturbances and linear unmodelled 
dynamics, i.e., α1 = 2 , α2  = 0 , and α3 = 0. Significant values are in [bold].

α2

Settling time ts (Seconds) Overshoot O.S. ( %)

PI STA ESTA PI STA ESTA

0.5 18 5.2 3.2 70 70 40

1.0 Oscillating Unstable 4.5 Oscillating Unstable 50

1.5 Unstable Unstable 9.5 Unstable Unstable 150

Figure 9.  System response under external disturbances and linear unmodelled dynamics (35) with α1 = 2 , 
α2 = 1.0 and α3 = 0 : Control inputs u(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid 
black).
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using the PI method as well as by using the STA method. In contrast, the system state is still stable by applying 
the proposed ESTA method.

System response under high order polynomial bounded disturbances
Now we test the system response where higher order polynomial bounded disturbances arise. We keep the 
magnitude of the external disturbance and linear unmodelled dynamics unchanged, i.e., α1 = 2 and α2 = 0.5 . 
We choose different values of α3 to see the system response when higher order polynomial disturbances arise. 
First we choose a relatively small value of α3 = 0.1 . One can see that the ESTA method still has the fastest set-
tling time and the smallest overshoot (see Figs. 13 and 14). Specifically, compared with PI and STA approaches, 
the settling time ts dropped from 15 and 3.1 seconds to 2.3 seconds and the overshoot O.S. reduced from 90% 
and 70% to 50% by applying using the proposed ESTA method, respectively (see ts and O.S. in Table 3). Then we 
increase the magnitude of polynomial disturbance to a moderate level of α3 = 0.25 . From the simulation results 
Figs. 15 and 16, one can see that by using the PI method the systems become unstable. When the magnitude of 
the polynomial disturbance coefficient is increased to α3 = 0.57 , the STA method starts to become unstable as 
well (see Figs. 17 and 18). In contrast, the system keeps stable by using the proposed ESTA control method for the 

Figure 10.  System response under external disturbances and linear unmodelled dynamics (35) with α1 = 2 , 
α2 = 1.0 and α3 = 0 : States σ(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black).

Figure 11.  System response under external disturbances and linear unmodelled dynamics (35) with α1 = 2 , 
α2 = 1.5 and α3 = 0 : Control inputs u(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid 
black).
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above three cases. Moreover, the system is still stable for ESTA as the coefficient value of polynomial disturbance 
arises to α3 = 1 (see Figs. 19 and 20).

Inverted pendulum
An inverted pendulum mounted to a motorized cart is commonly founded in control system textbooks and 
research  literature48. In Fig. 21, M is the cart mass, m the pendulum mass, 2l the length of the pendulum, and b the 
coefficient of friction of the cart. In this case we only consider a two-dimensional problem where the pendulum is 
constrained to rotate in the vertical plane. The control input is the force F that moves the cart horizontally and the 
output is the angular position θ for simplicity. Since the angular velocity of the pendulum can be estimated via a 
filtered differentiator of the angular position θ , a PID rather than a PI controller is often used in most literature to 
stabilize the pendulum  system48. For the comparison, we stabilize the system using ESTA, PID and STA methods.

Nonlinear equations of motion
Applying Newton or energy method, we can derive the following nonlinear equations of motion.

Figure 12.  System response under external disturbances and linear unmodelled dynamics (35) with α1 = 2 , 
α2 = 1.5 and α3 = 0 : States σ(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black).

Figure 13.  System response under parameter uncertainty (35) with α1 = 2 , α2 = 0.5 and α3 = 0.1 : Control 
inputs u(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black). One can see that all the 
three methods are stable.
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Figure 14.  System response under parameter uncertainty (35) with α1 = 2 , α2 = 0.5 and α3 = 0.1 : States σ(t) 
using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black). One can see that all the three methods 
are stable.

Table 3.  Settling times (obtained from Figs. 14, 16, 18, and 20) and overshoots (obtained from Figs. 13, 
15, 17, and 19) by using three control methods for the nonlinear system (4) under higher order polynomial 
disturbances: α1 = 2 fixed, α2 = 0.5 fixed, and α3  = 0 varied. Significant values are in [bold].

α3

Settling time ts (Seconds) Overshoot O.S. ( %)

PI STA ESTA PI STA ESTA

0.1 15 3.1 2.3 90 70 50

0.25 Unstable 3.6 2.5 Unstable 75 52

0.57 Unstable Unstable 2.8 Unstable Unstable 60

1.0 Unstable Unstable 3.5 Unstable Unstable 90

Figure 15.  System response under parameter uncertainty (35) with α1 = 2 , α2 = 0.5 and α3 = 0.25 : Control 
inputs u(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black). One can see that the PI 
method becomes unstable.
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where I = (1/12)m(2l)2 = 1

3
ml2 is the mass moment of inertia of the pendulum around the center of the pen-

dulum and g is the gravity. Then we can solve the above equations (37) and (38) to obtain the following full 
nonlinear equation.

(37)(M +m)ẍ + bẋ + (ml cos θ)θ̈ − (ml sin θ)θ̇2 = F

(38)(ml cos θ)ẍ + (I +ml2)θ̈ − gml sin θ = 0

(39)θ̈ =
(

b cos θ ẋ − (ml sin θ cos θ)θ̇2 + (M +m)g sin θ − (cos θ)F
)

/q

(40)ẍ =
(

− 4

3
lbẋ + 4

3
ml2 sin θ θ̇2 − gml sin θ cos θ + 4

3
lF
)

/q

Figure 16.  System response under parameter uncertainty (35) with α1 = 2 , α2 = 0.5 and α3 = 0.25 : States 
σ(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black). One can see that the PI method 
becomes unstable.

Figure 17.  System response under parameter uncertainty (35) with α1 = 2 , α2 = 0.5 and α3 = 0.57 : Control 
inputs u(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black). One can see that both PI 
and STA methods become unstable.
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where q = 4

3
l(M +m)−ml cos2 θ > 0 . Let σ1 = kθ + θ̇ be a sliding  variable10 and u = −F be the new control 

input. The second-order differential equation (39) can then be converted into a first-order differential 
equation.

where f (θ , θ̇ , x, ẋ) = kθ̇ +
(

b cos θ ẋ − (ml sin θ cos θ)θ̇2 + (M +m)g sin θ
)

/q and g(θ , θ̇ , x, ẋ) = (cos θ)/q . 
Note, f (θ , θ̇ , x, ẋ) is considered here to be a disturbance bounded by a quadratic polynomial, i.e., all the coeffi-
cients 

(M +m)g sin θ

q
 , [k, b cos θ

q
] , and 

ml sin θ cos θ

q
 of the polynomial terms θ0 , [θ̇1, ẋ1]T and θ̇2 , respectively, 

are bounded. Thus, the polynomial bounded disturbance f (θ , θ̇ , x, ẋ) satisfies Assumption 1. Moreover, 
g(θ , θ̇ , x, ẋ) > 0 is positive definite for −π/2 < θ < π/2 and satisfies Assumption 2. Since the output is one 
measurement θ and the PID control law contains the differentiation of θ , we use ˙̂θ(t) as the filtered differentiation 
of θ to replace its mathematical differentiation θ̇ , i.e.,

(41)σ̇1 = f (θ , θ̇ , x, ẋ)+ g(θ , θ̇ , x, ẋ)u

Figure 18.  System response under parameter uncertainty (35) with α1 = 2 , α2 = 0.5 and α3 = 0.57 : States 
σ(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black). One can see that both PI and STA 
methods become unstable.

Figure 19.  System response under parameter uncertainty (35) with α1 = 2 , α2 = 0.5 and α3 = 1.0 : Control 
inputs u(t) using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black). One can see that the ESTA 
method is still stable.
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where L−1 denotes the Laplace inverse transform. The PID feedback control law can then be written as

For comparison, we use ESTA control law (34) and expand the structure of the control law STA (9) to be similar 
with the structure of PID (43).

Stabilization of the inverted pendulum
Now we can build the simulation model of the inverse pendulum system using the equations of motion (39) 
and (40) and applying the three control laws (34), (43) and (44) for the three methods ESTA, PID, and STA, 
respectively. The parameter values for the inverted pendulum system are shown in Table 4.

We test the transient response of the inverted pendulum system under different pulse disturbances. First we 
tuned the PID control, and, after some try and error, it is found that the PID gains [k1, k2, k3] = [50, 10, 20] 
provides a satisfactory response. For comparison, let’s make the corresponding gains the same for all three 
methods, i.e., k1 = c1 = d1 = 50 , k2 = c2 = d2 = 10 and k3 = c3 = d3 = 20 . Let’s choose the pulse width 0.2 
seconds fixed and select different pulse amplitudes Ao , 0.1, 0.2, 0.4, 0.8, 1.2 and 1.4 in radius, which corresponds 

(42)
˙̂
θ(t) = L

−1{ s

Ts + 1
θ(s)}

(43)uPID(θ ,
˙̂
θ) = −d1θ − d2

∫ t

0
θ(τ )dτ − d3

˙̂
θ(t)

(44)uSTA(θ ,
˙̂
θ) = −k1

√

|θ(t)|sgn(θ(t))− k2

∫

t

0
sgn(θ(τ ))dτ − k3

˙̂
θ(t)

Figure 20.  System response under parameter uncertainty (35) with α1 = 2 , α2 = 0.5 and α3 = 1.0 : States σ(t) 
using PI (36) (dash red), ESTA (23) (dot blue), and STA (9) (solid black). One can see that the ESTA method is 
still stable.

Figure 21.  Schematic representation of the inverted pendulum system.
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to the magnitudes of the offset angles of the inverted pendulum, 5.7◦ , 11.5◦ , 22.9◦ , 45.8◦ , 68.8◦ and 80.3◦ , respec-
tively. The simulation results are shown in Figs. 22, 23 and 24. From Fig. 22 where the pulse offset angles Ao are 
relatively small ( 5.7◦ and 11.5◦ ), one can see that there is no significant difference in the overshoot and settling 
time of the system between the three different control methods. When the pulse angle offset Ao increases to 
medium values, 22.9◦ and 45.8◦ , and relatively large values, 68.8◦ and 80.3◦ , the overshoot and settling time of 
the system are significantly different between the three methods (Figs. 23 and 24). In particular, for the pulse 
angle offset Ao of medium values 22.9◦ and 45.8◦ , the system settling time ts of the proposed ESTA is reduced 
from 3 and 0.8 seconds to 0.4 second ( 83% reduction and 50% reduction) and 5 and 1.2 seconds to 0.9 second 
( 81% reduction and 25% reduction) compared to those of the existing PI and STA methods, respectively (see ts 
and O.S  in Table 5). For Ao of large values 68.8◦ and 80.3◦ , one can see that by using STA and PI methods the 
systems are unstable. In contrast, the system is still stable by using the proposed ESTA control method (Fig. 24). 
Note that an offset angle Ao ≥

π

2
= 1.57 radius ( 90◦ ) means that the inverted pendulum would fall down com-

Table 4.  Parameter values for the inverted pendulum mounted to a cart.

Parameter Symbol Value Unit

Cart mass M 1 Kg

Pendulum mass m 0.1 Kg

Pendulum length 2l 1 m

Coefficient of friction for cart b 0.1 N/(m/s)

Gravity g 9.8 m/s2

Pulse offset angle Ao 0.1, 0.2, 0.4, 0.8, 1.2, 1.4 rad

Figure 22.  System responses under pulse disturbances with relatively small offset angles 0.1 radius ( 5.7◦ ) and 
0.2 radius ( 11.5◦ ) using ESTA (23) (dot blue), PID (36) (dash red), and STA (9) (solid black).

Figure 23.  System responses under pulse disturbances with medium offset angles 0.4 radius ( 22.9◦ ) and 0.8 
radius ( 45.8◦ ) using ESTA (23) (dot blue), PID (36) (dash red), and STA (9) (solid black).
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pletely. In other words, θ ∈ (−π

2
,
π

2
) can be a possibly stabilizable range of the inverted pendulum. The perfor-

mance of the inverted pendulum stabilized via the three methods is summarized in Table 5.

Phase portraits of angular positions and angular velocities
The simulation results of the inverted pendulum system also let us analyse the phase portraits of the system. In 
the phase portraits Figs. 25-27 the angular position state θ versus the angular velocity state θ̇ are plotted along 
with two levels of local magnifications. For the system under pulse disturbances with relatively small offset angles 
( Ao = 0.1 and Ao = 0.2 , Fig. 25) and medium offset angles ( Ao = 0.4 and Ao = 0.8 , Fig. 26), one can see that 
the trajectories of the two phases θ and θ̇ have similar performance with the three methods. All θ − θ̇ trajectories 
start vertically upwards from the origin and eventually return in a spiral towards the origin. Compared to the 
STA and PID methods, the trajectory ranges of the ESTA method are slightly larger, but the returns are much 
closer to the origin. For the offset angles increased to large values ( Ao = 1.2 and Ao = 1.4 ), the proposed ESTA 
method performed much better than the STA and PI methods (Fig. 27). Specifically, not only the θ − θ̇ trajectory 
regression to the origin of the ESTA method is faster and closer, but also the trajectory range is much smaller.

Conclusion
The paper first investigates some perturbation assumptions in some STA designs over the past decade. The 
polynomial perturbation is then used to fix the stability issue and further extend the range of nonlinear dynamic 
systems. To handle the extended systems, a novel adaptive super-twisting sliding mode control with exponential 
reaching law is proposed. The new ESTA method is extended from the existing STA design and integrated with 
an novel exponential reaching law. The stability analysis and finite-time convergence are proven using Lyapunov 
theory and an intuitive analysis of the control behavior. The new design successfully applied to the control of 
the nonlinear systems having lumped perturbations bounded by a parameter-unknown-a-priori polynomial. 
The simulation results of the illustrated example show that, for the external disturbance, the system settling 
time ts of the proposed ESTA is reduced by 25− 68% and 20− 35% compared to those of the existing PID and 
STA methods, respectively. Simultaneously, compared to the PI and STA methods the percentage of the system 
overshoot O.S. by using the proposed ESTA is respectively reduced from 30% and 40% to 16− 25% . It is worth 
noting that when the polynomial disturbance appears and arises to medium or relatively large amplitudes, the 
system using STA and PI methods began to become unstable, but with the proposed ESTA control method it 
remains stable. The simulation results of the inverted pendulum also show that, when the inverted pendulum 

Figure 24.  System responses under pulse disturbances with relatively large offset angles 1.2 radius ( 68.8◦ ) and 
1.4 radius ( 80.3◦ ) using ESTA (23) (dot blue), PID (36) (dash red), and STA (9) (solid black).

Table 5.  Settling times and overshoots obtained from Figs. 22, 23 and 24 by using three control methods for 
the inverted pendulum system, (39) and (40), under external pulse disturbances with pulse width 0.2 seconds. 
Significant values are in [bold].

Pulse Amplitude Ao ( rad/◦)

Settling time ts (Seconds) Overshoot O.S. ( %)

PI STA ESTA PI STA ESTA

0.1/5.7◦ 1.0 1.1 0.9 18 32 24

0.2/11.5◦ 1.0 1.0 0.9 15 30 40

0.4/22.9◦ 3 0.8 0.4 20 26 28

0.8/45.8◦ 5 1.2 0.9 10 20 9

1.2/68.8◦ Unstable Unstable 1.0 Unstable Unstable 5

1.4/80.3◦ Unstable Unstable 2.8 Unstable Unstable 5
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is disturbed by small pulses close to the equilibrium point, the use of all three methods has a good stabilizing 
effect. However, when the pulse is of medium size, ESTA has better stability than PID and STA. Specifically, ESTA 
method reduced settling time by 25− 80% and overshoot by 10− 50% . Moreover, when pulse is large, ESTA can 
still stabilize the system quickly, while PID and STA cannot stabilize the system.

Compared with the commonly used STA and PID methods, the proposed ESTA approaches exhibit supe-
riority in terms of faster settling time, smaller overshoot and stronger stability. Moreover, ESTA methods are 
able to deal with nonlinear systems where higher order polynomial bounded disturbances may arise. Thus, the 
proposed ESTA methods are of great significance for future designs and applications of robust control for a large 
class of nonlinear dynamic systems, such as all-weather flight control of civil airliners, flight control of rescue 
helicopters in disaster weather, motion control of humanoid robots subjected to sudden external forces, etc.. 
Our future work will focus on a real flight control of an unmanned aerial vehicle in strong wind environments.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author upon reasonable request.

Figure 25.  Phase portraits of angular positions and velocities under pulse disturbances with relatively small 
offset angles 0.1 radius ( 5.7◦ ) and 0.2 radius ( 11.5◦ ) using ESTA (23) (dot blue), PID (36) (dash red), and STA (9) 
(solid black).

Figure 26.  Phase portraits of angular positions and velocities under pulse disturbances with medium offset 
angles 0.4 radius ( 22.9◦ ) and 0.8 radius ( 45.8◦ ) using ESTA (23) (dot blue), PID (36) (dash red), and STA (9) 
(solid black).
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Appendicies
Proof of the Lemma

Proof There are two cases of |σ | �= 0.

• Case I: σ > 0 . Then, sgn(σ (t)) = 1 . From (2), we have 

• Case II: σ < 0 . Then, sgn(σ (t)) = −1 . 

  �

Note, the above lemma does not include the case of σ = 0 where the system is under the steady state.
Proof of the Proposition 1

Proof Consider the case |σ | ≥ ε > 0 . Using the definition of h(|σ |) (Eq. (30)), we have from (5)

for a positive constant c∗ . Now we consider the time derivative of |σ | . Using Lemma 1 and (47), we obtain for 
|σ | ≥ ε > 0,

(45)
d

dt
|σ(t)| = σ̇ (t) = σ̇ (t)sgn(σ (t))

(46)
d

dt
|σ(t)| = −σ̇ (t) = σ̇ (t)sgn(σ (t))

(47)

f (σ , t)sgn(σ )− g(σ , t)c1
|σ |

|σ | + µ
h(|σ |)

≤ |f (σ , t)| − bc1
ε

ε + µ
h(|σ |)

≤ bc1
ε

ε + µ

(

1+
√

|σ |
)

+
q

∑

i=0

ai|σ |i − bc1
ε

ε + µ
e
√
|σ |

≤ c∗

Figure 27.  Phase portraits of angular positions and velocities under pulse disturbances with relatively large 
offset angles 1.2 radius ( 68.8◦ ) and 1.4 radius ( 80.3◦ ) using ESTA (23) (dot blue), PID (36) (dash red), and STA 
(9) (solid black).
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Noting that 
∫ t
0 |σ(τ)|dτ is continuously increasing whenever |σ | ≥ ε > 0 , there exists a time t∗ such that ∀t ≥ t∗ , 

(

c∗ − c2b
∫ t
0 |σ(τ)|dτ

)

≤ 0 . Then, after time t∗ ( t ≥ t∗),

Similar to the proof of Theorem 1, we conclude that |σ | reaches the region |σ | ≤ ε in finite time with the reaching 
time estimated as tF ≤ 2(ε + µ)

c1bε

√
|σ(t∗)| + t∗   �
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