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Genome wide association study 
of seedling and adult plant leaf rust 
resistance in two subsets of barley 
genetic resources
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Leaf rust (LR) caused by Puccinia hordei is a serious disease of barley worldwide, causing significant 
yield losses and reduced grain quality. Discovery and incorporation of new sources of resistance 
from gene bank accessions into barley breeding programs is essential for the development of leaf 
rust resistant varieties. To identify Quantitative Trait Loci (QTL) conferring LR resistance in the two 
barley subsets, the Generation Challenge Program (GCP) reference set of 142 accessions and the 
leaf rust subset constructed using the Focused Identification of Germplasm Strategy (FIGS) of 76 
barley accessions, were genotyped to conduct a genome‑wide association study (GWAS). The results 
revealed a total of 59 QTL in the 218 accessions phenotyped against barley leaf rust at the seedling 
stage using two P. hordei isolates (ISO‑SAT and ISO‑MRC), and at the adult plant stage in four 
environments in Morocco. Out of these 59 QTL, 10 QTL were associated with the seedling resistance 
(SR) and 49 QTL were associated with the adult plant resistance (APR). Four QTL showed stable effects 
in at least two environments for APR, whereas two common QTL associated with SR and APR were 
detected on chromosomes 2H and 7H. Furthermore, 39 QTL identified in this study were potentially 
novel. Interestingly, the sequences of 27 SNP markers encoded the candidate genes (CGs) with 
predicted protein functions in plant disease resistance. These results will provide new perspectives on 
the diversity of leaf rust resistance loci for fine mapping, isolation of resistance genes, and for marker‑
assisted selection for the LR resistance in barley breeding programs worldwide.

Barley (Hordeum vulgare ssp. vulgare L.) is an important cereal crop worldwide ranking 4th in terms of acreage 
and providing multiple uses as feed, food, and beverages with its ability to adapt to different harsh  climates1. 
In 2018, approximately 2 million ha of barley were harvested in Morocco with an average grain yield of 1.82 t/
ha2, which is significantly lower compared to the global average grain yield of 2.95 t/ha2.This reduced yield may 
be attributed to several abiotic stresses such as heat drought, as well as biotic stresses, especially foliar diseases. 
Of these, barley leaf rust, caused by the fungus Puccinia hordei Otth, is the most common and widespread 
foliar disease affecting barley production worldwide. This disease can cause severe yield losses of up to 62% 
in susceptible varieties under epidemic  conditions3,4. Genetic resistance to P. hordei through the cultivation 
of resistant varieties is the most economical and environmentally friendly strategy for controlling this disease.

Genetic resistance to leaf rust is generally classified into two forms: seedling resistance (SR) and adult plant 
resistance (APR). SR is always race-specific, controlled by a single gene with a large effect, and is characterized 
by a hypersensitive  response5,6. These genes are easily recognized by breeders and incorporated into the adapted 
 germplasm7. In contrast, APR is either specific or non-specific to the pathotypes. Non-specific APR, also known 
as partial resistance, is often conferred by multiple genes with small effect and is characterized by slow rusting 
which reduces the severity of the  disease8. APR is considered more durable than seedling resistance because it 
remains effective over large areas for long periods of  time9,10.

Most of the leaf rust resistance genes, also known as Rph (resistance to P. hordei), are race-specific, conferred 
by major genes at the seedling stage. To date 28 Rph genes conferring LR resistance have been catalogued 
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and  mapped11, of which 25 (Rph1–Rph19, Rph21, Rph22, Rph25, Rph26, Rph27, and Rph28) confer seedling 
 resistance11–15, and three slow rusting resistance genes namely Rph20, Rph23, and Rph24 govern  APR16–18. Since 
all SR genes conferring resistance to P. hordei are race-specific, these resistance genes lose their effectiveness with 
the development of new pathotypes/races of the pathogen due to imposed selection pressure by the particular 
resistance gene. The ineffectiveness of most SR genes and the limited diversity of APR against P. hordei highlight 
the need to diversify genetic resources for resistance to leaf rust in barley by identifying, characterizing, and 
mapping novel sources of resistance. Therefore, the use of diverse germplasm will be a valuable source to exploit 
genetic variability for LR resistance and its use in barley breeding  programs19.

The mining and use of genetic resources is an important element of any crop improvement program. 
Genebanks provide plant breeders around the world with access to germplasm with valuable traits, such as 
drought tolerance and resistance to pests and diseases. ICARDA’s genebank contains one of the largest barley 
collections in the world with more than 32,000  accessions20. The approaches for mining plant genetic resources 
typically use the concept of the core collection, which represents the maximum geographic or morphological 
diversity as a small subset of 3000 barley accessions which represent 5–10% of the total  collection21,22. The 
Generation Challenge Program (GCP) (https:// www. gener ation cp. org) has developed a reference subset of 10% 
(300 accessions) of the core collection, providing a set of representative germplasm genetic diversity using 
molecular markers (https:// www. geneb anks. org/ resou rces/ publi catio ns/ barley- strat egy- 2008/; accessed on 12 
January 2022). Focused Identification of Germplasm Strategy (FIGS) is an alternative approach for efficient 
exploitation of genetic resources to better respond to seed requests for specific traits sought by breeders. FIGS 
subsets have been developed for wheat, barley and lentil for various abiotic and biotic stresses. This approach 
has shown effectiveness in identifying sources of resistance to various diseases and pests such as leaf  rust23, leaf 
 scald24, and net blotch (Pyrenophora teres Drechs.)25 in barley, powdery  mildew26, stem  rust27,28, and yellow  rust29 
in wheat, and Ascochyta  blight30 in lentil.

The deployment of sources of resistance will require the identification and the characterization of QTL. 
Bi-parental mapping typically focuses on major genes with large effects. It is a time-consuming approach that 
involves phenotyping successive generations, and it is limited by low allelic diversity and low recombination 
events, which reduces the mapping resolution. Compared to bi-parental mapping, GWAS is a powerful tool 
that analyzes the entire genome of a pre-existing set of genetically diverse germplasm to identify SNPs (single 
nucleotide polymorphism) that are associated with the trait of interest, allowing for a more comprehensive 
understanding of the genetic architecture of  resistance31. Several studies have successfully used GWAS to identify 
genomic regions associated with resistance to several barley diseases including net form of net  blotch32,33, spot 
form of net  blotch34,35, spot  blotch36,37, leaf  rust38–40, stem  rust41, and stripe  rust37,42. The main objectives of this 
study were to: (1) identify the genetic loci associated with LR resistance at the seedling and adult plant stages 
along with their associated candidate genes, and (2) to compare the genetic diversity of FIGS-LR with the GCP 
subsets and their genomic regions associated with LR resistance, and (3) to identify putative novel genomic loci 
and confirm known loci conferring leaf rust resistance in barley.

Results
Genetic diversity
A total of 218 barley accessions were genotyped using the Illumina iSelect 50K SNP array for barley (Illumina, San 
Diego, CA, USA) After quality control of removing monomorphic markers, SNPs with the minor allele frequency 
(MAF) of > 5%, missing data of < 20%, and markers with missing physical map position, 32,686 SNP markers 
were retained. The chromosomal distribution of the filtered markers used for analysis is shown in Supplementary 
Fig. S1 in a 1 Mb window size. The SNPs used in this study showed a wide distribution across all the seven barley 
chromosomes (Table 1). The highest numbers of SNPs (6137) were found on the chromosome 5H, followed by 
the chromosome 2H (5552), and the chromosome 1H harbored the lowest number of polymorphic markers 
with 3584 SNPs (Table 1). The minor allele frequency (MAF) ranged from 0.257 to 0.270, with chromosome 
6H having the lowest average MAF. Similar PIC values were observed on all chromosomes and an average SNP 
density of 7.103 SNPs per Mb was calculated (Table 1). The highest number of SNP markers (36.87%) had PIC 
values greater than 0.3. Gene diversity (GD) ranged from 0.092 to 0.5, with an average of 0.354 (Table 1).

Table 1.  SNP markers summary statistics and their genome wide distribution of 32,686 filtered SNPs of the 
218 barley genotypes.

Chr No. of SNP markers Length (Mb) Density (SNP/Mb)

Gene diversity PIC MAF

Mean Mean Mean

1H 3584 558.37 6.42 0.358 0.286 0.268

2H 5552 767.93 7.23 0.352 0.282 0.261

3H 5159 697.85 7.39 0.360 0.288 0.269

4H 3795 646.18 5.87 0.361 0.289 0.270

5H 6137 669.37 9.17 0.351 0.282 0.260

6H 3943 583.02 6.76 0.349 0.281 0.257

7H 4516 656.90 6.87 0.351 0.282 0.259

Genome 32,686 654.233 7.103 0.354 0.284 0.263

https://www.generationcp.org
https://www.genebanks.org/resources/publications/barley-strategy-2008/
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The average  r2 values for SNP markers showed a fast decline with increased physical distance, and the LD 
decay distance was 250 Kb  (r2 = 0.2) (Supplementary Fig. S2).

Population structure
The genotyping data of 32,686 filtered SNPs was used to analyze the population structure of the 218 barley 
genotypes of FIGS-LR and GCP. Figure 1a shows the admixture bar plots of four clusters represented by four 
different colors. In addition, the principal component analysis (PCA) was performed to explore patterns of 
genetic variation within and between subsets using the genotypic data. Based on the subset (FIGS_LR and 
GCP) information of each genotype, the PCA scatter plot showed that the first two principal components PC1 
and PC2 accounted for 12.4% and 8.26% respectively (Fig. 1b). The analyzed barley accessions did not cluster 
exclusively by subset (FIGS_LR and GCP); the first cluster contained mainly GCP accessions, but also some 
FIGS_LR accessions. The second cluster contained predominantly accessions from FIGS_LR, which are mainly 
distributed in the extremities.

The genetic variation within subsets was analyzed using PCA. The results showed that the GCP subset 
exhibited a clustering pattern based on the row type, with little admixture observed with PC1 and PC2, which 
explained 12.5% and 6.4% of the total variation, respectively (Fig. 1c). In contrast, FIGS-LR subset did not show 
any clustering pattern based on the row type, but it exhibited a clustering pattern based on geographical origin, 
with clear clusters observed for the accessions from Eastern Africa and Southern Asia. The first two principal 
components of FIGS-LR explained a higher proportion of the total variation (30.8%) compared to the GCP subset 
(18.9%), with PC1 and PC2 explaining 19.2% and 10.6% of the total variation, respectively (Fig. 1d).

GWAS of leaf rust resistance
Genome-wide association study (GWAS) for resistance to barley leaf rust at the seedling and at the adult plant 
stages was conducted using a total of 218 barley accessions and 32,686 SNP markers. The QQ plots for LR 
resistance are shown in Supplementary Fig. S3. The QQ plots were used to check the fitness of the six models 
implemented in GAPIT3 across all environments and isolates, and the MLM model accounting for population 
structure and relatedness (PCA + K) was the best fit model for leaf rust resistance for both Ph isolates at SR and for 
APR in all environments (Supplementary Fig. S4). This study identified 10 and 49 QTL (− log10 (p values) ≥ 3.3) 
associated with P. hordei resistance at the seedling and at the adult plant stages, respectively (Tables 2, 3). For 
LR resistance at the seedling stage, 4 QTL associated with ISO-SAT isolate were detected on chromosomes 
3H, and 6H (Table 2), with JHI-Hv50k-2016-189805 being the most significant SNP marker with the lowest 
p-value of 2.06 ×  10–04, the highest effect of − 0.266, and the highest  R2 of 5.43% on chromosome 3H. For the 
ISO-MRC isolate, 6 QTL were detected on chromosomes 1H, 2H, and 7H. The QTL QPh.ISO-MRC-5 on 2H 

Figure 1.  Population structure of FIGS-LR and GCP subsets based on 32,686 SNP markers. Bar plots of 
individual ancestry proportions for the genetic clusters inferred using LEA package in R (K = 3) for 218 
genotypes of FIGS-LR and GCP using 32,686 SNP markers (a), scatter plot of the first two principal components 
(PC1 and PC2) of the 218 barley accessions clustered based on the subset (b), GCP subset based on row type (c), 
and FIGS-LR based on the geographic origin (d).
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(644,195,113 bp) was the most significant QTL with the lowest p-value of 8.852 ×  10–05 and the highest  R2 
of 7.541%. The highest effect (− 0.387) was caused by the QTL QPh.ISO-MRC-4 on the chromosome 2H at 
623,237,567 bp.

For LR resistance at the adult plant stage, 49 QTL were identified using phenotypic data of four field 
environments. Among them, 4, 22, and 14 QTL were detected in Sidi Allal Tazi station in 2017 (SAT2017), 2018 
(SAT2018), and in 2019 (SAT2019) respectively. Additionally, 11 QTL were identified in GUICH2018 (Table 3). 
The total phenotypic variance explained by the SNP markers associated with APR was 0.236, 1.260, 1.682 and 
0.865 for SAT2017, SAT2018, GUICH2018, and SAT2019, respectively.

Among the 49 QTL associated with APR, four QTL were stable in at least two environments. These QTL 
were namely QPh.SAT2019-1 and QPh.GUICH2018-1 detected on the chromosome 1H at 458,868,886 bp and 
464,120,530 bp respectively, QPh.SAT2019-9 (200,043–210,117 bp) and QPh.GUICH2018-7 (5,777,486 bp) on 4H, 
the two QTL QPh.SAT2018-16 (514,627,876 bp) and QPh.SAT2019-10 (516,956,372 bp), and QPh.GUICH2018-9 
(524,805,000 bp), QPh.SAT2017-2 (528,058,903 bp) detected on 5H (Table 3).

Two common QTL associated with LR were detected for both SR and APR. The first one associated with the 
SR QTL QPh.ISO-MRC-5 at 644,195,113 bp and the APR QTL QPh.SAT2018-3 at 643,275,772 bp on chromosome 
2H, the second one on chromosome 7H associated with the the SR QTL QPh.ISO-MRC-6 at 549,976,599 bp and 
APR QTL QPh.GUICH2018-11 (547,518,640–548,075,313 bp).

QTL alignments and candidate genes (CGs)
Several studies have identified Ph resistance loci, which allows for a comparison of these loci to those identified 
in the present study. Interestingly, out of the 59 QTL identified, 21 overlapped with the known genes or QTL 
involved in LR resistance (Table 4), while 39 QTL were located at chromosomal positions that had not previously 
been reported to be involved in Ph resistance. Therefore, these 39 QTL could be considered novel loci for Ph 
resistance.

The putative CGs associated with the significant SNP markers for LR resistance at both SR and APR have 
been reported in Table 4. Most of the CGs were located in genomic regions encoding proteins with functional 
domains involved in plant defense mechanisms based on their annotation in the barley reference genome. In 
total, we have reported 25 SNP markers, which showed homologies with functional proteins/enzymes related 
to disease resistance (Table 4).

Discussion
Leaf rust is an important disease of barley that can severely reduce barley productivity of susceptible cultivars. 
The rapid evolution of new virulent races renders most of the resistance genes ineffective. Therefore, a continuous 
search and identification of novel sources of resistance conserved in different genebanks is required for the 
diversification of genetic resistance. Both FIGS and GCP barley subsets have proven to be powerful approaches 
for identifying sources of resistance to Puccinia hordei at the seedling and adult plant  stages23. Hence, it was 
important to characterize the resistance loci/genes available in germplasm before being exploited by breeding 
programs. In this study, we explored the genetic diversity of FIGS-LR and GCP subsets by genotyping them with 
50 k SNP array followed by association mapping of leaf rust resistance at the seedling and adult plant stages.

The filtered genotyping data (32,686 SNPs) was used to estimate the GD (gene diversity) and PIC and to 
identify QTL associated with LR resistance at the seedling and at the adult plant stages. The PIC can be used 
to measure the ability of a marker to detect polymorphisms, thus, the PIC can be divided into three categories: 
highly polymorphic marker when PIC > 0.5, moderately informative marker when 0.25 < PIC < 0.5, and low-
informative marker when PIC < 0.2555. In our study, the mean PIC value was 0.284, indicating that most of the 

Table 2.  Summary of genomic regions significantly associated with the seedling resistance to Puccinia 
hordei in FIGS-LR and GCP barley subsets. **Common QTl between SR and APR. a Chromosome. b Physical 
position of SNPs based on Morex genome version 3.0 c Allele effect. The p-value threshold (− log10 p-value 
(0.0005) ≥ 3.3) was used to declare significant QTL.

QTL Marker Chra Positionb p.value FDR R2 (%) Effectc Allele frequency of GCP Allele frequency of FIGS

SR-MRC

 QPh.ISO-MRC-1 JHI-Hv50k-2016-5493 1 5,345,263 3.06E−04 1.224E−05 6.36 G(− 0.201) 19.72 26.32

 QPh.ISO-MRC-2 JHI-Hv50k-2016-108241 2 573,521,745 5.47E−04 1.989E−05 5.81 T(0.205) 33.1 38.16

 QPh.ISO-MRC-3 JHI-Hv50k-2016-108614 2 574,568,303 5.28E−04 1.53E−05 5.85 G(0.218) 59.86 60.53

 QPh.ISO-MRC-4 JHI-Hv50k-2016-124322 2 623,237,567 1.55E−04 6.119E−06 7.01 A(− 0.388) 90.14 96.05

 QPh.ISO-MRC-5 JHI-Hv50k-2016-135641** 2 644,195,113 8.85E−05 1.53E−06 7.54 A(− 0.251) 76.76 76.32

 QPh.ISO-MRC-6 JHI-Hv50k-2016-491720** 7 549,976,599 2.88E−04 7.649E−06 6.42 G(0.316) 88.03 97.37

SR-SAT

 QPh.ISO-SAT-1 JHI-Hv50k-2016-189805 3 487,537,283 2.06E−04 3.059E−06 5.43 A(− 0.266) 21.13 23.68

 QPh.ISO-SAT-2 JHI-Hv50k-2016-373247 6 12,265,667 4.53E−04 9.178E−06 4.83 A(− 0.214) 58.45 47.37

 QPh.ISO-SAT-3 JHI-Hv50k-2016-404658 6 407,625,773 4.50E−04 7.649E−06 4.84 G(0.211) 31.69 35.53

 QPh.ISO-SAT-4 JHI-Hv50k-2016-433188 6 560,082,939 3.40E−04 6.119E−06 5.05 C(− 0.194) 60.56 51.32
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QTL Marker Chra Positionb p.value FDR R2 (%) Effectc
Allele frequency of 
GCP (%)

Allele frequency of 
FIGS (%)

SAT2017

 QPh.SAT2017-1 JHI-Hv50k-2016-229639 4 10,008,919 1.13E−04 6.12E−06 6.71 A(− 14.406) 98.59 86.84

 QPh.SAT2017-2 JHI-Hv50k-2016-335902* 5 528,058,903 4.59E−04 1.53E−05 5.49 G(8.078) 84.51 61.84

 QPh.SAT2017-3 JHI-Hv50k-2016-461706 7 50,031,910 4.22E−04 1.38E−05 5.56 C(− 8.005) 86.62 77.63

 QPh.SAT2017-4 JHI-Hv50k-2016-511346 7 613,938,104 2.94E−04 1.07E−05 5.88 T(9.512) 87.32 64.47

SAT2018

 QPh.SAT2018-1
JHI-Hv50k-2016-41535 1 475,085,011 4.71E−04 8.57E−05 3.99 C(− 11.422) 9.15 25

JHI-Hv50k-2016-41672 1 475,371,901 8.96E−05 3.21E−05 5.05 G(10.907) 8.45 25

 QPh.SAT2018-2 JHI-Hv50k-2016-86045 2 93,370,745 1.07E−05 1.38E−05 6.45 A(− 9.977) 7.04 7.89

 QPh.SAT2018-3 JHI-
Hv50k-2016-135076** 2 643,275,772 3.64E−04 6.73E−05 4.15 T(13.281) 4.23 6.58

 QPh.SAT2018-4 JHI-Hv50k-2016-138543 2 649,502,617 3.90E−06 6.12E−06 7.13 C(10.079) 93.66 89.47

 QPh.SAT2018-5 BOPA2_12_11295 3 186,046,917 4.41E−04 7.95E−05 4.03 G(7.516) 10.56 9.21

 QPh.SAT2018-6 JHI-Hv50k-2016-205616 3 564,696,164 4.14E−04 7.34E−05 4.07 T(6.837) 28.87 60.53

 QPh.SAT2018-7 SCRI_RS_65010 3 598,142,453 3.93E−04 7.19E−05 4.1 A(− 7.516) 19.01 27.63

 QPh.SAT2018-8 JHI-Hv50k-2016-246896 4 459,723,972 3.10E−05 2.14E−05 5.74 T(8.321) 18.31 17.11

 QPh.SAT2018-9 JHI-Hv50k-2016-247049 4 461,112,374 2.83E−04 5.97E−05 4.31 G(7.311) 18.31 17.11

 QPh.SAT2018-10 JHI-Hv50k-2016-247160 4 461,874,702 2.83E−04 5.51E−05 4.31 A(− 7.311) 18.31 17.11

 QPh.SAT2018-11 JHI-Hv50k-2016-247277 4 463,152,295 2.83E−04 5.66E−05 4.31 A(− 7.311) 18.31 17.11

 QPh.SAT2018-12 JHI-Hv50k-2016-265580 4 587,293,277 5.12E−04 9.33E−05 3.94 G(− 16.566) 95.77 77.63

 QPh.SAT2018-13 SCRI_RS_141803 4 589,422,387 4.87E−04 9.03E−05 3.97 A(− 6.465) 70.42 81.58

 QPh.SAT2018-14

JHI-Hv50k-2016-271709 4 600,927,835 9.43E−05 3.37E−05 5.02 A(− 6.057) 25.35 28.95

JHI-Hv50k-2016-272051 4 601,538,674 3.02E−07 3.06E−06 8.91 C(− 9.73) 83.1 84.21

JHI-Hv50k-2016-272121 4 601,760,759 2.46E−06 4.59E−06 7.45 G(9.13) 80.99 82.89

SCRI_RS_188829 4 602,053,544 2.76E−05 1.99E−05 5.82 A(− 8.064) 83.8 84.21

 QPh.SAT2018-15
JHI-Hv50k-2016-304171 5 394,402,295 5.23E−05 2.91E−05 5.4 G(− 7.674) 71.13 78.95

SCRI_RS_236759 5 394,808,984 2.20E−05 1.53E−05 5.97 A(− 8.026) 71.13 77.63

 QPh.SAT2018-16 BOPA2_12_11298* 5 514,627,876 5.33E−04 1.04E−04 3.91 A(− 14.212) 8.45 31.58

 QPh.SAT2018-17 JHI-Hv50k-2016-337389 5 530,890,859 4.22E−04 7.50E−05 4.06 T(10.03) 21.83 28.95

 QPh.SAT2018-18 JHI-Hv50k-2016-339430 5 536,277,945 6.74E−05 3.06E−05 5.23 G(− 9.013) 8.45 14.47

 QPh.SAT2018-19 JHI-Hv50k-2016-344094 5 545,187,485 1.75E−04 4.59E−05 4.62 A(− 9.127) 9.15 18.42

 QPh.SAT2018-20 JHI-Hv50k-2016-344917 5 546,907,629 4.42E−04 8.11E−05 4.03 C(− 6.01) 23.24 19.74

SAT2019

 QPh.SAT2019-1 JHI-Hv50k-2016-37820* 1 458,868,886 1.86E−04 1.53E−05 9.77 G(6.975) 7.04 7.89

 QPh.SAT2019-2
JHI-Hv50k-2016-46373 1 486,477,700 3.26E−04 3.06E−05 8.99 A(− 8.298) 9.15 0

JHI-Hv50k-2016-46552 1 486,668,358 3.26E−04 2.91E−05 8.99 T(8.298) 9.86 2.63

 QPh.SAT2019-3 JHI-Hv50k-2016-57599 1 515,112,071 3.93E−04 3.37E−05 8.74 T(4.519) 34.51 22.37

 QPh.SAT2019-4 SCRI_RS_135391 2 11,532,558 5.18E−04 3.98E−05 8.37 A(− 5.842) 21.83 34.21

 QPh.SAT2019-5
JHI-Hv50k-2016-110935 2 593,971,328 9.79E−05 1.53E−06 10.66 A(− 5.101) 50 76.32

JHI-Hv50k-2016-111047 2 593,922,554 9.79E−05 7.65E−06 10.66 T(5.101) 51.41 76.32

 QPh.SAT2019-6 JHI-Hv50k-2016-116579 2 608,480,345 1.20E−04 1.07E−05 10.37 A(− 5.457) 26.06 30.26

 QPh.SAT2019-7
JHI-Hv50k-2016-127870 2 630,365,638 5.47E−04 4.28E−05 8.29 C(− 9.945) 11.97 10.53

JHI-Hv50k-2016-127929 2 630,599,862 5.47E−04 4.44E−05 8.29 C(− 9.945) 11.97 6.58

 QPh.SAT2019-8 JHI-Hv50k-2016-207495 3 574,021,612 1.66E−04 1.38E−05 9.92 C(− 8.519) 11.27 3.95

 QPh.SAT2019-9
JHI-Hv50k-2016-226348* 4 200,043 4.19E−04 3.82E−05 8.65 C(− 5.066) 76.76 72.37

JHI-Hv50k-2016-226367* 4 210,117 1.97E−04 1.84E−05 9.68 T(5.284) 74.65 71.05

 QPh.SAT2019-10 JHI-Hv50k-2016-329065* 5 516,956,372 2.76E−04 2.75E−05 9.22 A(− 8.887) 7.04 1.32

 QPh.SAT2019-11 BOPA2_12_30596 6 184,345,417 2.04E−04 2.29E−05 9.63 A(− 10.089) 7.04 1.32

 QPh.SAT2019-12 JHI-Hv50k-2016-395409 6 270,437,155 2.04E−04 2.45E−05 9.63 C(− 10.089) 7.04 1.32

 QPh.SAT2019-13 JHI-Hv50k-2016-395444 6 273,286,262 2.04E−04 2.14E−05 9.63 G(10.089) 7.04 1.32

 QPh.SAT2019-14 JHI-Hv50k-2016-502834 7 596,652,222 4.11E−04 3.52E−05 8.68 C(− 5.574) 13.38 15.79

GUICH2018

 QPh.GUICH2018-1 JHI-Hv50k-2016-38800* 1 464,120,530 8.22E−05 1.22E−05 7.42 T(3.653) 35.92 32.89

 QPh.GUICH2018-2 JHI-Hv50k-2016-69628 2 17,690,886 1.80E−04 2.14E−05 6.69 C(4.698) 13.38 6.58

 QPh.GUICH2018-3 BOPA2_12_20326 2 46,947,830 4.78E−04 4.13E−05 5.79 G(5.502) 92.25 84.21

 QPh.GUICH2018-4 JHI-Hv50k-2016-131955 2 637,682,135 5.94E−05 6.12E−06 7.72 C(− 5.385) 5.63 6.58

Continued
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SNP markers used in this study were moderately informative markers. This value was similar to those reported in 
previous  studies56,57. Similar PIC values in all chromosomes indicate that the SNP markers detected a consistent 
level of genetic diversity across all seven barley chromosomes. Furthermore, the average gene diversity (GD) 
value was 0.354. These findings are similar to those reported by Ref.58 using SNP markers (GD = 0.35).

Population structure analysis typically grouped barley accessions based on row type (2- or 6-row). PCA does 
not always classify accessions into distinct groups, especially when accessions are from diverse geographical 
 origins59. The genetic variation within the GCP and FIGS-LR subsets analyzed using PCA suggests that the row 
type has some influence on the genetic variation observed in the GCP, while the geographic origin has some effect 
on FIGS-LR. The first two PCs of FIGS-LR explained higher proportion of the total variation compared with GCP 
subset (Fig. 1c,d). The observed patterns of genetic variation in each subset may be attributed to their respective 
assembling strategies. For example, the co-evolutionary trait-environment approach of FIGS-LR28,60 may have 
resulted in a subset of accessions that are more similar to each other based on the specific trait and environment 
they were selected for, while the GCP subset, which aims to capture maximum genetic diversity, may have 
resulted in a more diverse set of accessions with variation influenced by other factors such as geographic origin 
or environmental adaptation. Similarly, Muñoz-Amatriaín et al.52 reported that principal component analysis 
identified five major subpopulations within a core collection of 2417 barley accessions which was genotyped 
with 7842 SNPs. It differentiated mainly by geographical origin and row type.

To identify SNP markers associated with LR resistance in the two barley subsets, genome-wide association 
studies were conducted using phenotyping data of 218 barley accessions and filtered genotyping data (32,686 
SNPs). Earlier studies have demonstrated the efficiency of GWAS for genetic mapping of disease resistance 
to net form net  blotch32, spot form net  blotch34,35, spot  blotch36,37, leaf  rust46, stem  rust41, and stripe  rust37,42. 
GWAS analysis revealed a total of 59 QTL. Among these, 10 QTL were associated with the SR and 49 QTL 
were associated with the APR. Four QTL showed stable effects in at least two environments for APR, while two 
common QTL associated with SR and APR were detected on chromosomes 2H and 7H. Furthermore 39 (66%) 
QTL identified in this study were potentially novel loci, which is relatively higher compared to the novel QTL 
identified in AM2017, where 32 (55%) novel QTL were  found45. The SR GWAS identified 10 QTL associated 
with LR resistance, among which 4 QTL were aligned to previously reported LR QTL, and 6 QTL were novel. 
On chromosome 1H, only one QTL (QPh.ISO-MRC-1) was associated with the Ph isolate ISO-MRC at 5,345,263 
bp. This QTL was colocalized with a known Ph resistance  loci43–45. The frequency of the favorable allele at this 
QTL was higher in FIGS-LR accessions with 26.32% compared to GCP with 19.72%. Four new QTL (QPh.ISO-
MRC-2, QPh.ISO-MRC-3, QPh.ISO-MRC-4 and QPh.ISO-MRC-5) were found to be significantly associated with 
SR (ISO-MRC) on chromosome 2H. The favorable allele frequencies of these three QTL QPh.ISO-MRC-2, QPh.
ISO-MRC-3 and QPh.ISO-MRC-4 were slightly higher in FIGS-LR compared to GCP, while for the QTL QPh.
ISO-MRC-5, the favorable allele was equal for both subsets. The QTL QPh.ISO-SAT-1 (487,537,283 bp) was the 
only QTL associated with SR on chromosome 3H. This QTL coincided with a MTA at 488,214,308 bp identified 
in a previous  study45. Furthermore, three QTL (QPh.ISO-SAT-2, QPh.ISO-SAT-3 and QPh.ISO-SAT-4) were 
associated with SR against Ph isolate ISO-SAT on chromosome 6H. The QTL QPh.ISO-SAT-2 (12,265,667 bp) 
was co-located with the genomic region of the QTL Rphq1543. The QTL QPh.ISO-SAT-4 (560,082,939 bp) aligned 
with the SNP marker JHI-Hv50k-2016-431728 (557,773,626 bp) detected in SR against Ph in the association 
mapping panel  AM201745. On chromosome 7H, only one QTL (QPh.ISO-MRC-6) associated to SR was identified 
at 549,976,599 bp, and it is considered as novel.

Among the 49 QTL associated with Ph resistance in case of APR, 17 QTL were aligned to known Ph 
loci and 34 QTL were novel. Of the five QTL detected on the chromosome 1H, the QTL QPh.SAT2018-1 
(475,085,011–475,371,901 bp) associated with Ph resistance in SAT2018 was in the vicinity of the previously 
reported SNP marker JHI-Hv50k-2016-41795 (475,643,422 bp)45. In addition, QPh.SAT2019-3 (515,112,071 bp) 
was found in the same loci associated with the marker 11_20509 (514,738,633 bp)52.

No QTL was found on chromosome 2H in SAT2017. However, SAT2018 revealed three QTL, SAT2019 
detected four QTL, and GUICH2018 also identified four QTL on the chromosome 2H. The QTL QPh.SAT2018-4 

QTL Marker Chra Positionb p.value FDR R2 (%) Effectc
Allele frequency of 
GCP (%)

Allele frequency of 
FIGS (%)

 QPh.GUICH2018-5 JHI-Hv50k-2016-141021 2 653,624,675 1.91E−04 2.45E−05 6.63 A(− 3.981) 16.2 6.58

 QPh.GUICH2018-6 JHI-Hv50k-2016-185883 3 460,861,131 5.09E−04 4.28E−05 5.73 C(− 4.931) 9.15 3.95

 QPh.GUICH2018-7 JHI-Hv50k-2016-228182* 4 5,777,486 9.57E−05 1.84E−05 7.28 T(5.572) 8.45 3.95

 QPh.GUICH2018-8 JHI-Hv50k-2016-333100 5 523,740,008 9.45E−07 1.53E−06 11.75 C(− 4.261) 42.25 30.26

 QPh.GUICH2018-9 JHI-Hv50k-2016-333747* 5 524,805,000 4.72E−04 3.82E−05 5.8 C(− 3.933) 66.9 57.89

 QPh.GUICH2018-10 JHI-Hv50k-2016-384829 6 41,559,241 4.75E−04 3.98E−05 5.79 T(3.603) 16.2 17.11

 QPh.GUICH2018-11

JHI-
Hv50k-2016-491548** 7 547,518,640 8.99E−05 1.38E−05 7.33 T(5.172) 11.97 5.26

JHI-
Hv50k-2016-491670** 7 548,075,313 2.41E−05 3.06E−06 8.58 C(− 5.422) 11.97 6.58

Table 3.  Summary of genomic regions significantly associated with the adult plant resistance to Puccinia 
hordei in FIGS-LR and GCP barley subsets. *Common QTL in at least two environments. **Common genomic 
regions between SR and APR. a Chromosome. b Physical position of SNPs based on Morex genome version 3. 
c Allele effect. The p-value threshold (−log10 p-value (0.0005) ≥ 3.3) was used to declare significant QTL.
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QTL Marker Chra Positionb Candidate genes Homology
Previously identified gene/
QTLc

Seedling resistance

 ISO-MRC

  QPh.ISO-MRC-1 JHI-Hv50k-2016–5493 1 5,345,263 HORVU.MOREX.
r3.1HG0002590

Serine/threonine-protein 
kinase 19

Rph4.d; Rphq14; JHI-
Hv50k-2016-536943–45

  QPh.ISO-MRC-2 JHI-Hv50k-2016-108241 2 573,521,745 HORVU2Hr1G092880.7 – –

  QPh.ISO-MRC-3 JHI-Hv50k-2016-108614 2 574,568,303 HORVU.MOREX.
r3.2HG0185460

Alpha/beta-Hydrolases 
superfamily protein, putative –

  QPh.ISO-MRC-4 JHI-Hv50k-2016-124322 2 623,237,567 HORVU.MOREX.
r3.2HG0200040

Phospholipid/glycerol 
acyltransferase family protein –

  QPh.ISO-MRC-5 JHI-Hv50k-2016-135641** 2 644,195,113 HORVU.MOREX.
r3.2HG0208800 Actin-related family protein –

  QPh.ISO-MRC-6 JHI-Hv50k-2016-491720** 7 549,976,599 HORVU.MOREX.
r3.7HG0724110

RING/U-box superfamily 
protein –

 ISO-SAT

  QPh.ISO-SAT-1 JHI-Hv50k-2016-189805 3 487,537,283 HORVU.MOREX.
r3.3HG0289030

Neuronal acetylcholine receptor 
subunit alpha-5 JHI-Hv50k-2016-18992845

  QPh.ISO-SAT-2 JHI-Hv50k-2016-373247 6 12,265,667 MLOC_1411 – ABC152A; Rphq1545

  QPh.ISO-SAT-3 JHI-Hv50k-2016-404658 6 407,625,773 HORVU.MOREX.
r3.6HG0600090 Kinase family protein –

  QPh.ISO-SAT-4 JHI-Hv50k-2016-433188 6 560,082,939 HORVU.MOREX.
r3.6HG0633530 ATP-dependent RNA helicase JHI-Hv50k-2016-43172845

Adult plant resistance

 SAT2017

  QPh.SAT2017-1 JHI-Hv50k-2016-229639 4 10,008,919 HORVU.MOREX.
r3.4HG0334930

Inositol hexakisphosphate 
and diphosphoinositol-
pentakisphosphate kinase

–

  QPh.SAT2017-2 JHI-Hv50k-2016-335902* 5 528,058,903 HORVU.MOREX.
r3.5HG0511140 Cysteine protease Rph9.i44

  QPh.SAT2017-3 JHI-Hv50k-2016-461706 7 50,031,910 HORVU7Hr1G027540.1 Glutathione S-transferase 
family protein –

  QPh.SAT2017-4 JHI-Hv50k-2016-511346 7 613,938,104 HORVU.MOREX.
r3.7HG0744530

Disease resistance protein (TIR-
NBS-LRR class)

RphQ14 (Rph3/19); Rph3.c; 
RphQ28; Rph3.c; JHI-
Hv50k-2016-511500; JHI-
Hv50k-2016-51078044–47

 SAT2018

  QPh.SAT2018-1

JHI-Hv50k-2016-41535 1 475,085,011 HORVU.MOREX.
r3.1HG0076530

ATP-dependent 
6-phosphofructokinase JHI-Hv50k-2016-4179545

JHI-Hv50k-2016-41672 1 475,371,901 HORVU.MOREX.
r3.1HG0076580

ATP-binding cassette 
transporter subfamily A 
member

JHI-Hv50k-2016-4179545

  QPh.SAT2018-2 JHI-Hv50k-2016-86045 2 93,370,745 HORVU.MOREX.
r3.2HG0124130 Cyclin family protein –

  QPh.SAT2018-3 JHI-Hv50k-2016-135076** 2 643,275,772 HORVU.MOREX.
r3.2HG0208330 Serine/threonine-protein kinase –

  QPh.SAT2018-4 JHI-Hv50k-2016-138543 2 649,502,617 MLOC_36886 Response regulator 2 QPh.2H-2; QRph.sun-2H.248

  QPh.SAT2018-5 BOPA2_12_11295 3 186,046,917 HORVU.MOREX.
r3.3HG0255150

Sec14p-like 
phosphatidylinositol transfer 
family protein

–

  QPh.SAT2018-6 JHI-Hv50k-2016-205616 3 564,696,164 HORVU.MOREX.
r3.3HG0307410 DNA ligase-like Bmag60649

  QPh.SAT2018-7 SCRI_RS_65010 3 598,142,453 HORVU.MOREX.
r3.3HG0320950 Villin –

  QPh.SAT2018-8 JHI-Hv50k-2016-246896 4 459,723,972 HORVU.MOREX.
r3.4HG0385950 Elongator complex protein 6 –

  QPh.SAT2018-9 JHI-Hv50k-2016-247049 4 461,112,374 HORVU.MOREX.
r3.4HG0386090 Glutathione-S-transferase –

  QPh.SAT2018-10 JHI-Hv50k-2016-247160 4 461,874,702 HORVU.MOREX.
r3.4HG0386280

Ribosomal protein S24e family 
protein –

  QPh.SAT2018-11 JHI-Hv50k-2016-247277 4 463,152,295 HORVU.MOREX.
r3.4HG0386480 Calcium-transporting ATPase –

  QPh.SAT2018-12 JHI-Hv50k-2016-265580 4 587,293,277 HORVU.MOREX.
r3.4HG0409850 4-coumarate–CoA ligase-like 4 –

  QPh.SAT2018-13 SCRI_RS_141803 4 589,422,387 HORVU.MOREX.
r3.4HG0410720 Alpha-2C adrenergic receptor –

Continued
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QTL Marker Chra Positionb Candidate genes Homology
Previously identified gene/
QTLc

  QPh.SAT2018-14

JHI-Hv50k-2016-271709 4 600,927,835 HORVU.MOREX.
r3.4HG0415080

Mediator of RNA polymerase II 
transcription subunit 12 –

JHI-Hv50k-2016-272051 4 601,538,674 HORVU.MOREX.
r3.4HG0415230

basic helix-loop-helix (bHLH) 
DNA-binding superfamily 
protein

–

JHI-Hv50k-2016-272121 4 601,760,759 HORVU.MOREX.
r3.4HG0415340

ATP-binding cassette 
transporter subfamily A 
member

–

SCRI_RS_188829 4 602,053,544 HORVU.MOREX.
r3.4HG0415420 Tubulin beta chain –

  QPh.SAT2018-15
JHI-Hv50k-2016-304171 5 394,402,295 HORVU.MOREX.

r3.5HG0474140 Cytochrome B5-like protein Rph2.t44

SCRI_RS_236759 5 394,808,984 HORVU.MOREX.
r3.5HG0474200

BTB/POZ domain containing 
protein, expressed Rph2.t44

  QPh.SAT2018-16 BOPA2_12_11298* 5 514,627,876 HORVU.MOREX.
r3.5HG0505140 Phosphatase 2C family protein –

  QPh.SAT2018-17 JHI-Hv50k-2016-337389 5 530,890,859 HORVU.MOREX.
r3.5HG0512320 Cytochrome P450

JHI-Hv50k-2016-338772; 
RphQ25; QLr.S42-5H.a; Rph9; 
Rph1245,47,50,51

  QPh.SAT2018-18 JHI-Hv50k-2016-339430 5 536,277,945 HORVU.MOREX.
r3.5HG0514020 GRAS transcription factor

JHI-Hv50k-2016-338772; 
RphQ25; QLr.S42-5H.a; Rph9; 
Rph1245,47,50,51

  QPh.SAT2018-19 JHI-Hv50k-2016-344094 5 545,187,485 HORVU.MOREX.
r3.5HG0518020 Lipid transfer protein

JHI-Hv50k-2016-338772; 
RphQ25; QLr.S42-5H.a; Rph9; 
Rph1245,47,50,51

  QPh.SAT2018-20 JHI-Hv50k-2016-344917 5 546,907,629 HORVU.MOREX.
r3.5HG0518820

Translation elongation factor 
EF1B, gamma chain –

 SAT2019

  QPh.SAT2019-1 JHI-Hv50k-2016-37820* 1 458,868,886 HORVU.MOREX.
r3.1HG0072590

Aminotransferase-related 
family protein –

  QPh.SAT2019-2
JHI-Hv50k-2016-46373 1 486,477,700 HORVU.MOREX.

r3.1HG0080620 Exostosin-2 –

JHI-Hv50k-2016-46552 1 486,668,358 HORVU.MOREX.
r3.1HG0080690 Endoglucanase –

  QPh.SAT2019-3 JHI-Hv50k-2016-57599 1 515,112,071 HORVU.MOREX.
r3.1HG0094980

Mitochondrial outer membrane 
porin 11_2050952

  QPh.SAT2019-4 SCRI_RS_135391 2 11,532,558 HORVU.MOREX.
r3.2HG0100410

tRNA/tmRNA (uracil-C(5))-
methyltransferase –

  QPh.SAT2019-5

JHI-Hv50k-2016-110935 2 593,971,328 HORVU.MOREX.
r3.2HG0188960

BEACH domain-containing 
protein

JHI-Hv50k-2016-111819; 
JHI-Hv50k-2016-110777; 
JHI-Hv50k-2016-111042; 
Rphq1143,45

JHI-Hv50k-2016-111047 2 593,922,554 HORVU.MOREX.
r3.2HG0188940 Gag polyprotein

JHI-Hv50k-2016-111819; 
JHI-Hv50k-2016-110777; 
JHI-Hv50k-2016-111042; 
Rphq1143,45

  QPh.SAT2019-6 JHI-Hv50k-2016-116579 2 608,480,345 HORVU.MOREX.
r3.2HG0194000

p-loop containing nucleoside 
triphosphate hydrolases 
superfamily protein, putative

–

  QPh.SAT2019-7
JHI-Hv50k-2016-127870 2 630,365,638 HORVU.MOREX.

r3.2HG0202810 Receptor-like kinase –

JHI-Hv50k-2016-127929 2 630,599,862 HORVU.MOREX.
r3.2HG0202930

Transmembrane emp24 
domain-containing protein –

  QPh.SAT2019-8 JHI-Hv50k-2016-207495 3 574,021,612 HORVU.MOREX.
r3.3HG0310540

Mannosyl-oligosaccharide 
glucosidase –

  QPh.SAT2019-9
JHI-Hv50k-2016-226348* 4 200,043 HORVU.MOREX.

r3.4HG0331240
Cytochrome oxidase complex 
assembly protein –

JHI-Hv50k-2016-226367* 4 210,117 HORVU.MOREX.
r3.4HG0331260

ABC transporter ATP-binding 
protein ARB1 –

  QPh.SAT2019-10 JHI-Hv50k-2016-329065* 5 516,956,372 HORVU.MOREX.
r3.5HG0505960 Zinc finger family protein Rph9.i44

  QPh.SAT2019-11 BOPA2_12_30596 6 184,345,417 HORVU.MOREX.
r3.6HG0577760 Ran-binding zinc finger protein –

  QPh.SAT2019-12 JHI-Hv50k-2016-395409 6 270,437,155 HORVU.MOREX.
r3.6HG0585520

Calmodulin binding protein-
like protein –

  QPh.SAT2019-13 JHI-Hv50k-2016-395444 6 273,286,262 HORVU.MOREX.
r3.6HG0585880

Flavin-containing 
monooxygenase bPb-372246

  QPh.SAT2019-14 JHI-Hv50k-2016-502834 7 596,652,222 HORVU.MOREX.
r3.7HG0736860

Aspartyl/glutamyl-tRNA(Asn/
Gln) amidotransferase subunit 
B, putative isoform 2

QPh.7H-3; Rphq9; QTL_Castro; 
JHI-Hv50k-2016-50147748,49,53

Continued
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(649,502,617 bp) has been reported to be involved in P. hordei resistance in previous  study48. The QTL QPh.
SAT2019-5 (593,971,328–593,922,554 bp) was co-located with a previously reported  QTL45.

On chromosome 3H, three QTL (QPh.SAT2018-5, QPh.SAT2018-6, and QPh.SAT2018-7) were associated with 
APR SAT2017, the QTL QPh.SAT2018-6 (634,928,088) was located in the vicinity of the marker  Bmag60649. Two 
QTL QPh.SAT2019-8, and QPh.GUICH2018-6 associated with the APR SAT2019 and GUICH2018, respectively, 
were considered as novel in addition to eleven other QTL detected on 4H.

The chromosome 5H harbors eleven QTL associated with LR resistance at APR. The QTL QPh.SAT2017-
2 (528,058,903 bp) detected at SAT2017 overlapped with the QTL Rph9.i44. The QTL QPh.SAT2018-15 
(394,402,295–394,808,984 bp) was located in the vicinity of the QTL Rph2.t44. Three QTL QPh.SAT2018-17 
(530,890,859 bp), QPh.SAT2018-18 (536,277,945 bp), QPh.SAT2018-19 (545,187,485 bp) associated with the 
APR SAT2018 were previously reported in several  studies47,50,51. On chromosome 6H, four SNP markers were 
significantly associated with LR resistance. The QTL QPh.SAT2019-13 (273,286,262 bp) associated with APR 
to P. hordei was mapped in the proximity to the SNP marker bPb-372246. The APR QTL QPh.GUICH2018-10 
(41,559,241 bp) detected in GUICH2018 overlapped with several QTL/genes including Rphq3, QTL_Castro, 
RphQ11, QTL_Hickey, and Rph2416,18,46,49,53. It also aligned with QRph-6H.4954. On the chromosome 7H, the QTL 
QPh.SAT2017-4 (613,938,104 bp) was reported in many previous  studies44–47. The genomic region in the vicinity 
of the QTL QPh.SAT2019-14 (596,652,222 bp), QPh.7H-3, Rphq9, QTL_Castro, and JHI-Hv50k-2016-501477 
has been reported in different  studies48,49,53.

Two common QTL associated with P. hordei were detected in both SR and APR. One QTL was identified 
on 2H (at 643,275,772–644,195,113 bp), and the other one QTL on chromosome 7H (548,075,313–549,976,599 
bp). These QTL were considered novel. The highly significant QTL QPh.ISO-MRC-5 (644,195,113 bp), with the 
lowest p-value of 8.852 ×  10–05 and the highest  R2 of 7.541% detected for the Ph isolate ISO-MRC overlapped 
with the APR QTL QPh.SAT2018-3 (643,275,772 bp) at SAT2018.

Understanding the disease resistance mechanism of the putative candidate genes (CGs) associated with 
SNP markers can help in developing functional and predictive markers. Based on functional annotation, many 
of the identified CGs were involved in plant defense mechanisms, suggesting that they may contribute to LR 
resistance. The major R-genes encode the NLR proteins, harboring the central nucleotide-binding domain (NBS) 
and a C-terminal leucine-rich repeat (LRR) domain. The NLR proteins are intracellular immune receptors that 
recognize pathogen effectors (dominant avirulence gene product) via direct or indirect interaction in a gene-for-
gene interaction, causing plant cell death in the area surrounding the initial point of infection to stop the further 
spread of the pathogen. This response is efficient for biotrophic pathogens that require living tissue. Seven SR 
and twelve APR SNP markers showed homology with NLR and RLK (receptor like kinases). The CGs associated 
with the QTL QPh.SAT2017-4 (7H, 613,938,104 bp) showed homology with NB-LRR disease resistance proteins 
(Table 4). The NLR proteins have been reported in several leaf rust resistance genes in wheat and barley such as 

QTL Marker Chra Positionb Candidate genes Homology
Previously identified gene/
QTLc

 GUICH2018

  QPh.GUICH2018-1 JHI-Hv50k-2016-38800* 1 464,120,530 MLOC_60455 BHLH transcription factor 1 –

  QPh.GUICH2018-2 JHI-Hv50k-2016-69628 2 17,690,886 HORVU.MOREX.
r3.2HG0104340 Integrator complex subunit 11 –

  QPh.GUICH2018-3 BOPA2_12_20326 2 46,947,830 MLOC_55107 Xylose isomerase –

  QPh.GUICH2018-4 JHI-Hv50k-2016-131955 2 637,682,135 HORVU.MOREX.
r3.2HG0205670 Root meristem growth factor 9 –

  QPh.GUICH2018-5 JHI-Hv50k-2016-141021 2 653,624,675 HORVU.MOREX.
r3.2HG0213170 Ubiquinol oxidase –

  QPh.GUICH2018-6 JHI-Hv50k-2016-185883 3 460,861,131 HORVU.MOREX.
r3.3HG0284730 B3 domain transcription factor –

  QPh.GICH2018-7 JHI-Hv50k-2016-228182* 4 5,777,486 HORVU.MOREX.
r3.4HG0333480 Globulin-1 –

  QPh.GUICH2018-8 JHI-Hv50k-2016-333100 5 523,740,008 HORVU5Hr1G093890.1 Undescribed protein –

  QPh.GUICH2018-9 JHI-Hv50k-2016-333747* 5 524,805,000 HORVU.MOREX.
r3.5HG0509760 Auxin-responsive protein Rph9.i44

  QPh.GUICH2018-10 JHI-Hv50k-2016-384829 6 41,559,241 HORVU.MOREX.
r3.6HG0554800 Transmembrane protein 53

QPh.6H-2; Rphq3; QTL_Castro; 
RphQ11; QTL_Hickey; Rph24; 
QRph-6H.4916,18,46,49,53,54

  QPh.GUICH2018-11
JHI-Hv50k-2016-491548** 7 547,518,640 HORVU.MOREX.

r3.7HG0723480 F-box family protein –

JHI-Hv50k-2016-491670** 7 548,075,313 HORVU7Hr1G093380 dihydroflavonol 4-reductase-
like1 –

Table 4.  QTL alignment and candidate genes identified for seedling and adult plant resistance to leaf rust in 
both barley subsets FIGS-LR and GCP. *Common QTL in at least two environments. **Common genomic 
regions between SR and APR. a Chromosome. b Physical position of SNPs based on Morex genome version 
3. c QTL previously mapped at the same position for barley leaf rust. The p-value threshold (− log10 p-value 
(0.0005) ≥ 3.3) was used to declare significant QTL.
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Lr1, Lr21, Lr22a, Lr10 and Rph161–65. In durum wheat, an association mapping analysis showed that the wPt-8460 
marker on the chromosome 2B corresponding to NBS-LRR gene was associated with stem-rust  resistance66.

Several cell signaling components encode protein kinases. In this study, the CGs associated with the two SR 
QTL QPh.ISO-MRC-1 (1H, 5,345,263 bp) and QPh.ISO-SAT-3 (6H, 407,625,773 bp) and the two APR QTL QPh.
SAT2019-7 (2H, 630,365,638 bp) and QPh.SAT2018-3 (2H, 643,275,772 bp), encoded proteins possessing kinase 
domain. Interestingly, the Ph resistance gene Rph22 encodes a lectin receptor kinase, a member of a protein family 
located in the plasma  membrane67. In addition, serine/threonine kinases have been implicated in resistance to 
many diseases including stem rust in barley (rpg1)68, Pseudomonas syringae in tomato (Pti1)69, powdery mildew 
in wheat (Pm21)70, and bacterial blast caused by Xanthomonas oryzae pv. Oryzae in rice (Xa21)71.

The putative candidate genes (CG) adjacent to the two APR QTL QPh.SAT2019-9 (JHI-Hv50k-2016-226367; 
210,117 bp) and QPh.SAT2018-14 (JHI-Hv50k-2016-272121; 601,760,759 bp) on the chromosome 4H, and to the 
QTL QPh.SAT2018-1 (JHI-Hv50k-2016-41672; 475,371,901 bp) on chromosome 1H encode an ABC transporter 
protein. The wheat LR resistance gene Lr34 encodes a ABC transporter protein that is effective at the adult plant 
 stage72, and it confers effective resistance to multiple biotrophic pathogens including leaf rust, stem rust, stripe 
rust, and powdery mildew in  wheat73, and powdery mildew and leaf rust in  barley74.

Overall, we identified 59 QTL associated with resistance to barley leaf rust at the seedling and the adult plant 
stages. In addition to the detection of already known loci, 65.6% of the QTL identified were novel, providing 
additional information for barley breeders searching for new sources of disease resistance and their associated 
markers. We were able to identify highly resistant FIGS-LR and GCP accessions with high frequency of the 
favorable alleles of the significant markers that can be used in barley breeding program. Further characterization 
and validation of QTL are needed to effectively introgress the identified LR resistance loci into elite barley 
germplasm via marker-assisted selection. Understanding the molecular mechanism of the identified LR resistance 
and CGs can help in the process of developing functional and predictive markers. It also contributes to a better 
understanding of the genetic mechanisms that control barley leaf rust resistance and provides the basis for their 
characterization, cloning, and gene manipulation in future studies.

Methods
Plant material
The germplasm used in this study consisted of 218 barley accessions originated from different countries. This 
experimental population included two subsets; 142 accessions of GCP (Generation Challenge Program) and 76 
accessions of FIGS-LR (subset selected for leaf rust using the Focused Identification of Germplasm Strategy). 
These two barley subsets were composed of 57 two-row and 161 six-row type genotypes, including barley cultivars 
and landraces, provided by the genebank of the International Center for Agriculture Research in the Dry Areas 
(ICARDA), Rabat, Morocco. This germplasm collection was evaluated for seedling resistance using two P. hordei 
isolates (ISO-MRC and ISO-SAT) and for adult plant resistance under field conditions in four  environments23. 
The full list of barley accessions and their detailed infection response to P. hordei at both stages has been presented 
in Supplementary Table S1.

Phenotyping for seedling resistance to P. hordei
Barley accessions of both subsets were screened for the seedling resistance with two Moroccan P. hordei isolates 
(ISO-MRC and ISO-SAT) selected based to their wide virulence spectra across the 19 Bowman near-isogenic 
lines (NIL) of barley differentials with known Rph genes. ISO-MRC was virulent on NILs carrying Rph2.b, Rph3.c, 
Rph4.d, Rph5.e, Rph6.f Rph5, Rph7.g, Rph8.h, Rph9.i, Rph10.o, Rph11.p, Rph9.z Rph12, Rph2.j, Rph2.y, Rph2.t, 
whereas the isolate ISO-SAT was virulent on NILs carrying Rph1.a, Rph3.c, Rph4.d, Rph8.h, Rph9.

4–5 grains of each genotype were grown in plastic cone (3.8 cm in diameter and 14 cm in length) arranged 
in 14 × 7-unit tray (98 genotypes/tray). Barley genotypes Philadelphia and Lakhan were used as resistant and 
susceptible checks, respectively. At the first leaf stage (10–12 days), a uniform inoculation was conducted by 
spraying 15 mg of urediniospores suspended in 10 ml of light mineral oil (Novec 7100, Sigma Aldrich) per 
tray using an airbrush (Revell, München, Germany). Inoculated plants were left at the room temperature for 
20 min for allowing the oil evaporation and were fine-misted with water then moved to the growth chamber 
in the dark for 24 h at 18 °C with relative humidity close to 100%. Seedlings were kept in the growth chamber 
at 20 °C with 16h light/8h dark photoperiod for disease development. LR infection types were recorded 10–12 
days post-inoculation based on the following  scale75: immune (0), resistant (0; and 1), moderately resistant (2), 
moderately susceptible (3), or susceptible (4).

Phenotyping for adult plant resistance to P. hordei
The APR experiments were conducted in the fields at the INRA experimental station of Sidi Allal Tazi (34° 52ʹ 
N, 6.32175 W) during 2016–2017 (SAT2017), 2017–2018 (SAT2018), 2018–2019 (SAT2019), and at GUICH (33° 
58ʹ 59.7ʹʹ N 6° 51ʹ 41.6ʹʹ W) during 2017–2018 (GUICH2018).

Field plots were planted in single rows of 1m with 0.5 m row spacing between adjacent accessions in an 
augmented block design. The seed mixture of susceptible cultivars Bowman and Aglou were grown in a long 
single row as spreader row after each block. Natural infection was established at SAT, but at GUICH LR epidemic 
was initiated by spraying the susceptible spreader rows with LR inoculation as described in our previous 
 study23. Briefly, two spray inoculations were made during evening hours with urediniospores suspension (1g 
of urediniospores in 200 ml of mineral oil) on the trial using an airbrush (Revell, Munchen, Germany). The 
establishment and spread of the disease were favored by covering the spreader rows with a plastic sheet overnight 
and by periodic sprinkler irrigation. LR severity for GCP and FIGS_LR subsets was recorded at Zadoks growth 
stage GS 65–7776 according to the modified Cobb’s  scale77 which includes disease severity (percentage of leaf area 
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covered with rust urediniospores) as well as infection type. The infection types were recorded as 0 (Immune), 
no visible infection on plants; R (resistant), visible chlorosis or necrosis, no uredia are present; MR (moderately 
resistant), small uredia are present and surrounded by either chlorotic or necrotic areas; MS (moderately 
susceptible), medium sized uredia are present and possibly surrounded by chlorotic areas; S (susceptible), large 
uredia are present, generally with little or no chlorosis and no necrosis.

The field disease severity data was converted to Coefficient of Infection (CI) by multiplying the percent 
disease severity (0–100%) by the constant values of infection types (R = 0.2, MR = 0.4, MS = 0.8, S = 1)78, and 
the accessions were rated based on the average coefficient of infection (ACI) where values of 0–7, 8–16, 17–29, 
30–50, and > 50 were considered as resistant, moderately resistant, moderately susceptible, susceptible, and highly 
susceptible, respectively.

Genotyping and quality control
DNA from the 218 barley accessions of the FIGS-LR and GCP subsets was extracted from the leaves of two weeks 
old seedlings, and subsequently genotyped using the Illumina iSelect 50K SNP array for barley (Illumina, San 
Diego, CA, USA)79 at the Cereal Crop Research Unit, USDA-ARS Genotyping Laboratory Fargo, North Dakota, 
 USA80. A total of 36,864 markers were scored, and after the quality control, 32,686 SNPs were retained with 
missing data of less than 20% and minor allele frequency MAF > 5%. Missing data imputation was performed 
using the LDKNNimp  method81 implemented in TASSEL version 5.282, and the final filtered data was then used 
for further genetic analysis. Genome-wide SNP marker density of 32,686 SNP markers used in this study was 
plotted using the CMplot R package (https:// github. com/ YinLi Lin/R- CMplot).

Genetic diversity analysis
Genetic diversity including polymorphism information content (PIC) and gene diversity (GD) were estimated for 
FIGS_LR and GCP subsets separately and in combination using PowerMarker V3.2583. Minor allele frequency 
(MAF) was calculated using PLINK (–freq).

The degree of linkage between nearby loci was characterized using linkage disequilibrium (LD) analysis in 
PLINK 1.984. The LD was assessed by calculating the Pearson correlation values (R2) for all pairs of SNPs located 
at a maximum of 5000kb. R2 and pairwise distance between SNPs were used to generate LD decay plots using 
ggplot2 R package. The LD decay was calculated when the r2 value decreased below a threshold level (R2 < 0.2).

Population structure
Population structure of the 218 barley genotypes was assessed using molecular marker information with sparse 
non-negative matrix factorization (SNMF)85 implemented in the R package ‘landscape and ecological association 
(LEA)’86. For this analysis, the cross-entropy was calculated for each K number of clusters ranging from K = 1 
to K = 10, with ten replicates for each K value. The K with the lowest cross-entropy was selected as the optimal 
number of clusters. The ancestry proportion matrix was calculated for K = 3. The PCA and clustering groups for 
barley accessions was plotted using the R package  ggplot287. The kinship matrix  analysis88 in TASSEL 5.2.8282 was 
conducted to define the degree of genetic covariance between pairs of given accessions. It was estimated using 
the complete set of markers that passed the quality filtering based on the scaled IBS method.

Genome‑wide association analysis
The Genome wide association study (GWAS) was performed using GAPIT3 package in  R89 with 32,686 filtered 
SNP markers and P. hordei responses at the seedling and at the adult plant stages. Different statistical models 
were used to investigate the best fitting model for the present study including: the general linear models 
(GLM), mixed linear model (MLM), settlement of MLM under progressively exclusive relationship (SUPER), 
multiple-locus MLM (MLMM), fixed and random model circulating probability unification (FarmCPU), 
and Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK). Finally, the MLM 
(PCA + K) model was used for GWAS analysis in this study as it was the best fitting model. Marker alleles with 
p ≤ 0.0005(− log10 p ≥ 3.3) were declared significantly associated with LR resistance as previously described by 
other researchers. A False discovery rate (FDR) of q < 0.05 was used to determine significant QTLfor multiple 
 comparisons90. In the output, R2 values were used to represent the proportion of the phenotypic variation 
explained by each marker. The sign of the allelic effect estimate is determined by the nucleotide that ranks 
second in alphabetical order. For example, if the nucleotides at a SNP are “A” and “T”, then a positive allelic 
effect (susceptibility) indicates that “T” is favorable. The p-values from different models were used to generate 
Manhattan and quantile–quantile (QQ) plots using the qqman R  package91.

QTL alignment and candidate genes
Marker sequences that revealed significant associations with resistance to barley leaf rust were annotated for 
putative candidate genes (CGs) and their function using BARLEX database (https:// apex. ipk- gater sleben. de/ 
apex/f? p= 284: 10; accessed on 2 March 2022) and Barleymap  pipeline92. Perfect match or homologous sequences 
were identified based on 100% query coverage, an Expect (E) value (0–140), and identity higher than 99%. 
Potential CGs were considered based on their functional domains involved in plant disease resistance.

To align QTL detected for P. hordei resistance in this study with QTL reported in previous association 
mapping studies, we used GrainGenes (https:// wheat. pw. usda. gov/ GG3/) database to find a strongly linked 
marker/sequence information associated with published QTL, and then align them on Morex  V393 using 
Barleymap  pipeline92.

https://github.com/YinLiLin/R-CMplot
https://apex.ipk-gatersleben.de/apex/f?p=284:10
https://apex.ipk-gatersleben.de/apex/f?p=284:10
https://wheat.pw.usda.gov/GG3/
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