
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2343  | https://doi.org/10.1038/s41598-024-53007-1

www.nature.com/scientificreports

Insights into the prediction 
of the liquid density of refrigerant 
systems by artificial intelligent 
approaches
Huaguang Li 1* & Alireza Baghban 2*

This study presents a novel model for accurately estimating the densities of 48 refrigerant 
systems, categorized into five groups: Hydrofluoroethers (HFEs), Hydrochlorofluorocarbons 
(HCFCs), Perfluoroalkylalkanes (PFAAs), Hydrofluorocarbons (HFCs), and Perfluoroalkanes (PFAs). 
Input variables, including pressure, temperature, molecular weight, and structural groups, were 
systematically considered. The study explores the efficacy of both the multilayer perceptron artificial 
neural network (MLP-ANN) and adaptive neuro-fuzzy inference system (ANFIS) methodologies in 
constructing a precise model. Utilizing a comprehensive dataset of 3825 liquid density measurements 
and outlier analysis, the models achieved  R2 and MSE values of 0.975 & 0.5575 and 0.967 & 0.7337 
for MLP-ANN and ANFIS, respectively, highlighting their remarkable predictive performance. In 
conclusion, the ANFIS model is proposed as an effective tool for estimating refrigerant system 
densities, particularly advantageous in scenarios where experimental measurements are resource-
intensive or sophisticated analysis is required.

Abbreviations
HFEs  Hydrofluoroethers
RMSE  Root mean squared error
HCFCs  Hydrochlorofluorocarbons
PFAAs  Perfluoroalkylalkanes
HFCs  Hydrofluorocarbons
PFAs  Perfluoroalkanes
MLP  Multilayer perceptron
BPT  Back propagation training
ANN  Artificial neural network
GA  Genetic algorithm
CFCs  Chlorofluorocarbons
RBF  Radial basis function
RITE  Research institute of innovative technology for the earth
FL  Fuzzy logic
MP  Montreal Protocol
AARD  Average absolute relative deviation
HAs  Halogenated alkanes
STD  Standard deviation
GC  Group contribution
R2  Coefficient of determination
EOS  Equations of state
MF  Membership function
LM  Levenberg–Marquardt
MSE  Mean Squared Error
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RDP  Relative deviation percentage
ANFIS  Adaptive neuro-fuzzy inference system

To create an economical refrigeration cycle for low temperatures, it is imperative to possess a thorough under-
standing of the thermodynamic characteristics of refrigerant systems, such as liquid  density1–4. Despite the 
extensive amount of experimental data available in the literature, there are still incongruities among various 
 datasets5,6. Therefore, it is crucial to calculate the thermodynamic characteristics of these substances for applica-
tion in any scenario where experimental data is  unavailable7,8.

Before the 1980s, in the refrigeration industry, the main refrigerants were hydrochlorofluorocarbons (HCFCs) 
and chlorofluorocarbons (CFCs)9–11. Since on January 1, 1996 production or use of CFCs was barred by Montreal 
Protocol (MP) so the quantity of CFCs decreased  briskly12,13. Because of obstruction, which the MP placed on 
CFCs, HCFCs were replaced with CFCs in different  industries14. Although HCFCs have decreased ozone layer 
damage, they still pose contamination issues and are planned to be removed by 2030. Hydro fluorocarbons 
(HFCs) because of very low ozone layer damage, coincidence to HCFCs and CFCs in terms of physical proper-
ties, limited existence in the atmosphere, minor flammability or nonflammable and economical were used as a 
substitution of CFCs and  HCFCs15. Due to the serious global warming effect of HFCs, HFEs were introduced as 
a new generation of refrigerants by  RITE16,17. Also, there are some compounds that have the potential of using 
refrigerant fluids such as perfluoroalkylalkanes (PFAAs) and perfluoroalkanes (PFAs)18. We do not have detailed 
studies that predict the thermodynamic properties of refrigerants by theoretical methods; so every author uses 
a special equation and method to forecast the thermodynamic properties of the refrigerant  systems19,20. As the 
authors are cognizant, almost all of these attempts have been confined to the finite systems, and we don’t have a 
systematical work for testing the qualification of each  method21–23. The liquid density of refrigerants calculated 
applying 14 correlations and 4 equations of state (EOS) by Nasrifar and  Moshfeghian24. Lugo et al. worked on 
aqueous solutions (secondary refrigerants) and suggested another method for calculating many of their thermo-
physical  properties25. By forecasting the density of the HAs, HFEs, and their chemical mixtures, Scalabrin and his 
colleagues suggested density with a three-parameter model dependent on corresponding  states26. Maftoon-Azad 
et al. inspected analytical EOS for predicting the density of HCFC and HFC refrigerants (compressed liquids)27 
and for predicting the volumetric behavior of just six refrigerants they used the Ihm-Song-Mason  equation28. 
In 2005, Goharshadi and Moosavi founded the density 3 HFEs and 11 HFCs and  HCFCs29,30. Also, they applied 
this EOS for finite refrigerants. Generally, the previous equations or correlations of the state some adjustable 
parameters in addition to critical constants. For modeling the various thermodynamic properties, ANNs (Arti-
ficial Neural Networks) can be a convenient  substitution31,32. A neural network is contrived from a large num-
ber of interconnected neurons that the organization of this neurons connection determines the structure of a 
 network33–35. To achieve an overall desired behavior of the network, the arrangement of the connection strengths 
is controlled by the learning  algorithms36,37. In other words, if you learn the relationship between output and input 
vectors, the ANN is a useful algorithm to prospect each function that has a limited number of  discontinuities38. 
Hence, for modeling of the nonlinear treatment of chemical properties, the ANN is an appropriate  technique39,40.

Recently, effective attempts have been made depending on the GC (group contribution) approach attached 
to the ANN model to develop the prediction models. Many researchers applied the ANN-GCM method for cal-
culating the thermodynamic properties of various  substances41,42. Namely, some properties of ionic liquids have 
been estimated with ANN-GCM methods such as melting point, density, thermal decomposition temperature, 
glass transition temperature, heat capacity, surface tension and  viscosity43–53. Furthermore, this approach can 
be applied to anticipate the temperature at which flammability limits occur for organic compounds, the solid 
vapor pressure of pure compounds, the enthalpy of sublimation for organic compounds (at 298 K), the flash point 
temperature, and the vaporization enthalpy of organic compounds. It is also useful for predicting the densities 
of hydrocarbon systems, the specific volume of polymeric systems, and forecasting the density of liquid alkali 
 metals47,54–61.

Since the last decade, for accurate prediction of the refrigerant systems thermodynamical properties, some 
bounded efforts have been made to extend ANN models. Chouai et al. utilized the ANN method for PVT depic-
tion of R32, R134a, and R143a in the temperature range of 240 to 340 K and pressure up to 20 Mega  Pa62. Also, 
Mohebbi et al. used GA-ANN (a neural network relied on the genetic algorithm) for 6 mixed and 14 pure refriger-
ants to estimate the saturated liquid  density5. Their model can predict this parameter with a mean absolute error 
(%) of 3.53 and 1.46 for mixed and pure refrigerants, respectively. The latest research in this area was conducted 
by Moosavi and his colleagues, who used ANN-GCM model to predict density of  refrigerants18. Their model has 
the ability to predict this parameter with average absolute deviation of 0.28 at testing phase.

The purpose of this study is to estimate the liquid densities for various refrigerant mixtures at a wide range of 
pressures and temperatures with three intelligent approaches that contain MLP-ANN, and ANFIS. To develop 
these models, a large data set is used. Then, different statistical methods are used to evaluate and analyze the 
obtained models. Additionally, an outlier analysis will be performed to identify suspected points.

Theory
MLP-ANN
ANN is a method that is acquired to rely on biological NNs created by a collection of interconnected nodes that 
admitted as artificial neurons. This method has the proficiency in handling signals sent by links between the 
nodes. Principally, every artificial neuron uses a non-linear aggregate of inputs of the neuron for determining 
the outputs. As well as, a weight parameter could be used to decrease or increase the strength of signals at the 
connections. Commonly, for a node, we have three categories of the activation functions that used to obtain the 
output from a determined collection of inputs (Eqs. 1–3):
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Linear function:

Sigmoid function:

Hyperbolic tangent function:

Furthermore, an effective factor in the definition of ANNs is the bias term. MLP-ANN includes hidden, input 
and output layers and it is a feed-forward type of ANN. The activation function of this kind of ANN’s nodes is 
non-linear, and a back propagation training (BPT) approach is applied in this  model63,64.

ANFIS
Primarily, Zadeh introduced the notion of Fuzzy Logic (FL), which had the capability to arrange outputs on a 
spectrum from completely false to completely true. In contrast, classical logic is only able to arrange conclu-
sions as either true or  false65. Consociate of linguistic rules of if–then and principals of fuzzy logic developed the 
model. Using the basics of fuzzy logic helps us to touch a transparent development process and outputs with more 
accuracy. Coupling ANN and fuzzy logic make it possible to get precise solutions for extraordinarily non-linear 
 systems66,67. ANFIS is created of integrating from fuzzy logic and ANN. Mamdani and Takagi–Sugeno are two 
structures for  FIS68–70. Logical explanation in progress of fuzzy if–then rules used in the first FIS type, but the next 
type of FIS generates the if–then rules rely on the performance of accessible empirical data. The Takagi–Sugeno 
type inference system used in the ANFIS method to demonstrate the non-linear reliance of  variables70. An if–then 
rule is applied in a generic ANFIS structure for Y1 and Y2 (input parameters) as follow (Eqs. 4–7):

In these equations, g shows the output parameters and respectively CiandDi(i = 1, 2) are fuzzy sets for Y1andY2 . 
Generally, this structure has 5 layers. The initial layer for fuzzification utilizes the membership function to convert 
input data into linguistic terms. In this investigation, the GM is employed and is defined as follows:

In Eq. (8), Q represents the center of the Gaussian distribution,�2 refers to the variance and O is the output 
of the layer. For getting the most accurate model, GM should be optimized. In the second layer, by computing 
the commonly referred to firing strength parameters, it becomes possible to assess the dependability of the 
preceding components (Eq. 9):

Moreover, in the third layer, the normalization of estimated firing strengths has been carried out (Eq. 10):

In Eq. (11) for output parameter the linguistic terms are defined (fourth layer):

where q , rs and pi are linear parameters for optimization. Eventually, in the fifth layer all of the rules associated 
to an output will be appear in the following formula (Eq. 12):
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Model development
Preprocessing procedure
This paper shows three strategies such as ANFIS and MLP-ANN are applied to estimate density rely on molecu-
lar mass (Mw), pressure (P), the structural groups and temperature (T). The structural groups used as input 
parameters are shown in Table 1. The computational tools and platforms employed for model development 
and evaluation were crucial components of our methodology. Specifically, MATLAB (version 2020) served as 
the primary computational environment for implementing and assessing the ANFIS and MLP-ANN strategies 
applied to estimate density. The choice of MATLAB was driven by its versatility, extensive toolboxes for neural 
network implementation, and widespread use in scientific research.

Furthermore, the dataset employed for modeling purposes, consisting of 3825 data points, is meticulously 
sourced and extensively referenced throughout the  manuscript16,71–86. These data points, carefully selected from 
reputable and relevant literature, form the foundation of our study and contribute to the robustness and validity 
of our modeling approach. Testing and training subsets got from collected data. 25% of data are applied for test-
ing, and 75% of data are occupied for training the recommended models. Normalization of data was performed 
by Eq. (13)87:

where the � is the parameter value. Norm, max, and min stand for the normalized, maximum, and minimum 
values, respectively. The normalized data spans from − 1 to 1. Density is the output of the model, and the input 
variables are the other four parameters that were mentioned earlier.

Model development
MLP‑ANN
Following parameter shows the general output parameter for this model (Eq. 14):

In Eq. (14), Wi,,Wi,3 and n are respectively, the weight vector for neurons and for output layer neurons, and 
the number of hidden layer neurons. Also, b3 is the bias term.

Additionally, decreasing the differences between real and estimated data gives us the optimum output param-
eter (using the ANN structure). The minimization occurs with regulating weight and bias parameters. In this 
task, we utilize the error function determined in Eq. (15):

The notation rji represents the ith actual output for the jth data point, while oj,li  denotes the output of the ith 
neuron in the first layer, where j is the data point index in the training dataset. Applying the Levenberg–Mar-
quardt algorithm causes optimization. Moreover, Fig. 1 shows the performance of the utilized network relies on 
the MSE calculated data by using MLP-ANN.

ANFIS
Figure 2 shows the diagram of a generic ANFIS includes two variables as input. Training the proposed ANFIS 
takes place by utilizing a genetic algorithm (GA). Equation (16) determines the whole parameters of this model 
that depends on the number of variables ( Nv ), the number of clusters ( Nc ) and the number of MF parameters 
( NMF):

In this manuscript, the MF utilized is the GM function. Zandσ 2 are the MF parameters. Pressure (P), tem-
perature (T), molecular mass (Mw), and the structural groups are input variables. So, for 480 ANFIS parameters, 
the total number was obtained. For the GA algorithm used in achieving the optimum parameters of this model, 
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Table 1.  Categories of structural groups examined in MLP-ANN and ANFIS models.

 −  CF3 CF2Cl2  −  CF2H

 −  CCl2H CF3Cl  −  CH2F

 −  CF2Cl CF4  − CFH − 

 − CFClH CCl2FH  −  CF2 − 

 −  CCl2F CF2ClH  −  CH2 − 

 −  CH3 CF3H  − O − 

CCl3F CF2H2
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the cost function is the RMSE between the real and estimated data. Figure 3 denotes the RMSE values of each 
iteration.

Models’ evaluation
For attaining to the precision of the predictive model’s, root mean squared error (RMSE), coefficient of determi-
nation  (R2), mean squared error (MSE), standard deviation (STD) and AARD are acceptable statistical criteria’s. 
Following equations are the mathematical definition of mentioned criteria (Eqs. 17–21)88:
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1
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N
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Figure 1.  MLP-ANN’s performance based on Mean Squared Error across various iterations of the LM 
algorithm.

Figure 2.  The ANFIS structure.
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where Dexp.denotes the mean experimental output value (density), exp. and cal. are an abbreviation of the experi-
mental and calculated values, and N denotes the quantity of data points.

Results and discussion
The presented strategies were hired to determine the density of various refrigerant systems by considering pres-
sure (P), temperature (T), the structural groups, and molecular mass (Mw) as input parameters. More informa-
tion about these intelligent models is brought in Table 2. Using the MLP-ANN model, density values are better 
estimated than other model (ANFIS). This fact has been proven by the statistical analysis given in the evaluation 
section of the models.

To assess the efficacy of the models employed in this study, we employed various graphical methods. Figure 4 
illustrates the plots comparing experimental and predicted density values for each model. Notably, the MLP-
ANN model emerges as the most precise performer in density prediction, demonstrating a superior alignment 
between predicted and actual values. This graphical representation provides a clear visual insight into the predic-
tive accuracy of the models, with the MLP-ANN model showcasing particularly commendable performance.

Regression plots between experimental versus predicted density values are shown in Fig. 5. The best fitting 
lines are obtained by using linear regression between the real and estimated values (Fig. 5a,b).

The relative deviations of the estimated and real data are shown in Fig. 6. It is apparent that the least deviation 
is related to the MLP-ANN model.

As a matter of fact, this is because of the accumulation of data points around the zero line. MRE values for 
MLP-ANN and ANFIS are 4.751 and 5.068, respectively. Additionally, for understanding the capability of these 
models in the prediction of the density values the statistical error analyses are done. These analyses are brought 
in Table 3.

Outlier detection
The precision of the models put forward is significantly impacted by the actual data employed in the segment 
dedicated to model  development89. In order to ensure the robustness of our models, locating and removing a 
set of data points exhibiting distinct behavior from the rest of the dataset, referred to as outliers, is regarded as 
a crucial step in enhancing the reliability of  models90. The leverage analysis is used in addition to standardized 
residuals implementation to determine potential outliers. By plotting standardized residuals (R) versus hat val-
ues (H), William’s plot, outliers are detected. This multifaceted approach allows us to thoroughly assess the data 
points that might disproportionately influence the model outcomes. Equation (22) is used to calculate diagonal 
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Figure 3.  Performance of ANFIS during the training stage employing the Particle Swarm Optimization 
approach.
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Table 2.  Additional information about models trained for density estimation.

ANFIS

Category Value/remark

MF Gaussian

Number of MF parameters 480

Number of clusters 10

Amount of data utilized for training 2926

Amount of data utilized for testing 975

Optimization technique PSO

Population size 85

Iteration 1000

C1 1

C2 2

MLP-ANN

 Number of input neuron layers 23

 Number of hidden neuron layers 20

 Number of output neuron layers 1

 Activation function for hidden layer Logsig

 Activation function for output layer Purelin

 Data used for training 2926

 Data used for testing 975

 Maximum iterations 1500

Figure 4.  Comparison between estimated density values and experimental data using different models: (a) 
ANFIS, and (b) MLP-ANN.
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Components of the hat matrix, which are expressed as hat values and are used in the identification of feasible/
suitable regions.

Taking into account n as the number of data points and k as the number of input parameters, X represents a 
(n× k) matrix. This matrix is instrumental in evaluating the influence of each data point on the model. Warning 
leverage and cut-off values on the horizontal and vertical axis make a squared area called the feasible region. 
Below equation gives the warning leverage:

This calculated warning leverage is pivotal in setting thresholds to identify potential outliers. Typically, the 
threshold value for R is deemed to be 3. Values beyond the boundaries of the feasible region are treated as outlier 
data. By meticulously considering these calculated parameters, our approach offers a comprehensive method for 
identifying and addressing outliers in the dataset. Figure 7 shows William’s plot. According to this Figure, 27 and 
17 points of the ANFIS and MLP-ANN approaches are placed outside of the feasible region.

While the presented models, MLP-ANN and ANFIS, exhibit remarkable predictive performance in estimat-
ing the densities of various refrigerant systems, it is essential to acknowledge certain limitations in the current 
study. One limitation is the reliance on a specific dataset comprising 3825 data points. Although the dataset is 
meticulously sourced from reputable literature, its scope may not cover all possible scenarios and variations in 
refrigerant properties. Additionally, the models are developed based on the selected input parameters, including 
molecular mass, pressure, structural groups, and temperature. The exclusion of certain relevant parameters or 
the consideration of additional factors could potentially impact the models’ generalizability to a broader range 
of refrigerant systems. Furthermore, the outlier analysis conducted in this study identified specific data points 
that deviate from the predicted trends. While these outliers were carefully addressed, their presence underscores 
the sensitivity of the models to anomalous data. Future research endeavors could explore ways to enhance the 
robustness of the models by incorporating more diverse datasets, exploring additional input parameters, and 

(22)H = X
(

XTX
)

−1
XT

(23)H∗
=

3(k + 1)

n

Figure 5.  Regression diagram to estimate density using different models in the training and testing steps; (a) 
ANFIS, (b) MLP-ANN.
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implementing advanced outlier detection techniques. Moreover, continuous refinement of the models through 
ongoing validation against experimental data will contribute to their reliability in practical applications.

Conclusions
In summary, the prediction of densities for 48 refrigerant systems was facilitated through the utilization of two 
intelligent models, incorporating crucial parameters such as molecular mass (Mw), pressure (P), structural 
groups, and temperature (T). The superior performance of the MLP-ANN approach over the ANFIS model, 
demonstrated by consistently lower error values, has been highlighted by the findings. Transcending its theoreti-
cal significance, the research harbors practical implications of particular relevance to scientists and engineers 
engaged in the design of economically viable low-temperature refrigeration cycles. The accuracy demonstrated 
by the MLP-ANN model establishes it as a valuable tool, one that effectively guides the optimization of system 
performance and steers the development of energy-efficient and cost-effective refrigeration technologies. These 
implications, indicative of the broader impact, underscore the study’s contribution to advancements in the field 
of refrigeration system design. The findings not only deepen the understanding of the intricacies involved but 
also actively contribute to the evolution of methodologies, offering insights that shape the trajectory of progress 
in refrigeration technology.

Figure 6.  Percentage relative deviation of testing and training data with various models: (a) ANFIS, and (b) 
MLP-ANN.

Table 3.  Assessing the effectiveness of the proposed models through statistical analysis.

Model Dataset R2 MRE (%) MSE RMSE STD

ANFIS

Train 0.966 5.233 0.7598 0.8717 0.7574

Test 0.969 4.575 0.6555 0.8096 0.7006

Total 0.967 5.068 0.7337 0.8096 0.7436

MLP-ANN

Train 0.976 4.671 0.5260 0.7252 0.5987

Test 0.969 4.990 0.6522 0.8076 0.6881

Total 0.975 4.751 0.5575 0.8076 0.6222
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Data availability
The data that support the findings of this study are available from the corresponding author, Alireza Baghban, 
upon reasonable request.
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