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Hydro‑chemical based assessment 
of groundwater vulnerability 
in the Holocene multi‑aquifers 
of Ganges delta
Asish Saha 1, Subodh Chandra Pal 1*, Abu Reza Md. Towfiqul Islam 2,3, Aznarul Islam 4, 
Edris Alam 5,6 & Md. Kamrul Islam 7

Determining the degree of high groundwater arsenic (As) and fluoride  (F−) risk is crucial for successful 
groundwater management and protection of public health, as elevated contamination in groundwater 
poses a risk to the environment and human health. It is a fact that several non‑point sources of 
pollutants contaminate the groundwater of the multi‑aquifers of the Ganges delta. This study used 
logistic regression (LR), random forest (RF) and artificial neural network (ANN) machine learning 
algorithm to evaluate groundwater vulnerability in the Holocene multi‑layered aquifers of Ganges 
delta, which is part of the Indo‑Bangladesh region. Fifteen hydro‑chemical data were used for 
modelling purposes and sophisticated statistical tests were carried out to check the dataset regarding 
their dependent relationships. ANN performed best with an AUC of 0.902 in the validation dataset and 
prepared a groundwater vulnerability map accordingly. The spatial distribution of the vulnerability 
map indicates that eastern and some isolated south‑eastern and central middle portions are very 
vulnerable in terms of As and  F− concentration. The overall prediction demonstrates that 29% of 
the areal coverage of the Ganges delta is very vulnerable to As and  F− contents. Finally, this study 
discusses major contamination categories, rising security issues, and problems related to groundwater 
quality globally. Henceforth, groundwater quality monitoring must be significantly improved to 
successfully detect and reduce hazards to groundwater from past, present, and future contamination.

Groundwater is a crucial source of drinking water, and its availability is essential for economic growth in urban 
and rural areas  worldwide1,2. Groundwater is less vulnerable to contamination and pollution than surface water 
and is widely used for domestic  purposes3,4. Due to its high percentage, reduced sensitivity to pollution, and 
large storage capacity, groundwater is more important than surface water at a socioeconomic level worldwide. 
Groundwater undergoes a natural filtration process that removes bacteria and odors, making it suitable for 
 drinking5. Groundwater has many advantages, including meeting water supply needs for industrial, agricultural, 
and other sectors. In many parts of the world, groundwater is the primary source of fresh water with 50% of 
portable water demands being met by groundwater, 40% of which is used for industry, and the remaining por-
tion used for  irrigation6. As the world’s population grows, its dependence on groundwater also increases, with 
33% of people depending on it to meet their daily  needs7,8. Unfortunately, more groundwater is being consumed 
than replenished or recharged, which stresses on the availability of this precious natural resource. As a result, 
groundwater overuse has led to declining water tables, declining water quality, and ongoing frequent land sub-
sidence  activities9.

Despite all the advantages of groundwater, many nations, especially developing countries like India and Bang-
ladesh, are quickly experiencing a crisis of diminishing groundwater quality due to misuse and  contamination10. 
Groundwater contamination can result from both natural and human causes. However, the quantity and 
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groundwater quality are highly vulnerable today. Anthropogenic activities have accelerated the rate at which 
the quality of groundwater is declining. Unplanned land-use activities owing to industrialization and subsequent 
urbanization have led to rising groundwater contamination in recent  decades11. Urbanization increases impervi-
ous surfaces, worsens ephemeral runoff, increases flood risk, and reduces subsequent groundwater recharge. In 
addition, saltwater intrusion exacerbates the situation in coastal areas, severely threatening the city’s water supply 
and lowering the living standards of residential  homes12. Human activities such as irrigation and climate change 
are currently impacting groundwater quality and increasing its sensitivity to contamination on a broader  scale13. 
Chemical fertilizers are exacerbating the critical issue of nitrate poisoning of  aquifers14.

One of the largest natural groundwater catastrophes for humanity has been reported to be arsenic (As) pol-
lution in the groundwater. A study revealed that only five Asian nations, namely “Taiwan, China, India, Bang-
ladesh, and Thailand”, were acknowledged as having groundwater contamination due to As in the late twentieth 
 century15. At least 100,000 individuals in these impacted nations are exposed to As poisoning through their 
drinking water. In India, several places in the Brahmaputra and Ganges River’s floodplain have been affected by 
groundwater contamination with arsenic at levels higher than the permitted limit of 10 µg/L16. Currently, Bang-
ladesh and India have the highest number of As contaminated areas and associated health  issues17. Specifically, 
the Ganges delta of Indo-Bangladesh region is highly affected by groundwater contamination due to  As14,18,19. 
These floodplains are made of recent alluvial aquifers from the Holocene period that originated in the Himala-
yan  region20. Consequently, people in these afflicted areas have been regularly exposed to drinking water from 
hand tube wells contaminated with arsenic. In Bangladesh, using contaminated surface water resources, such 
as, ponds, rivers, and shallow dug-wells has led to water-borne illnesses like cholera, diarrhea, and  dysentery21. 
Recent estimates suggest that 5 million people in West Bengal’s North 24 Paraganas district consume water with 
an arsenic concentration of more than 50 µg/l and As rich causing approximately 50,000 people to develop skin 
sores in West Bengal. The population impacted in the geographic area of the issue are alarmingly growing each 
 year22. Moreover, As has also entered the food chain through rice (paddy) production in the Indo-Gangetic 
plains via irrigation water carrying  As23.

From a methodological viewpoint, statistical, machine learning (ML), and artificial intelligence have been 
utilized to evaluate groundwater vulnerability globally. ML algorithms offer several advantages over statistical 
methods, as they can efficiently analyze large  datasets24,25. Additionally, geospatial approaches provide quick, 
efficient spatial, temporal, and spectral analysis of data over a wide  area26. As a result, numerous researchers have 
combined geospatial technology with ML algorithms, such as the deep learning network used by Elzain et al.27 
in south Korea, the BRT model used  by28 in Iran, RF used by Pal et al.14 in coastal areas of West Bengal, and the 
Bayesian model averaging (BMA) used by Gharekhani et al.29 in West Azerbaijan, Iran, to assess groundwater 
vulnerability.

Considering the ongoing phenomena related to groundwater resources worldwide, particularly in the Ganges 
delta, very few studies have been undertaken that couple hydrochemical factors with ML  algorithms30–32. Litera-
ture review on groundwater vulnerability highlights that the Ganga–Brahmaputra delta in the Indo-Bangladesh 
region stands out as a significant area globally affected by arsenic  contamination17,33. The widespread use of tube 
wells for water supply in the Ganges Delta is a critical concern, leading to severe arsenic poisoning. In addition 
to arsenic, some regions in India also face challenges with elevated fluoride levels in groundwater. The Ganges 
Delta, marked by high population density and robust agricultural activity, necessitates sustainable water resource 
management to ensure optimal utilization. Hence, our study focuses on assessing groundwater vulnerability 
in the Ganges delta, emphasizing the urgency of effective water resource management in this crucial region. 
Therefore, researching groundwater vulnerability in this area is crucial for managing groundwater effectively and 
making it safe for consumption. In this regard, the presents study uses geospatial techniques and ML algorithms, 
including the LR, RF, and ANN models, to evaluate groundwater vulnerability in the study region. The distinctive 
aspect of this research resides in integrating statistical, ML, and neural network algorithms with hydrochemical 
factors. This fusion aims to comprehend the fluctuations in modeling outcomes and their corresponding spatial 
distribution in such a vast region. Furthermore, quality assessment for irrigation water in this study region has 
been assessed using USSL and Wilcox’s diagram. This study has distinctive contribution in its novel outcomes 
and insights, which contribute optimal perspectives to the current body of existing literatures. Furthermore, the 
research insight into regional disparities, illuminating differences or distinctions within a specific geographical 
area. The outcomes of this study will be helpful to environmentalists and policy-makers in planning for the local 
people regarding the safe consumption of water resources.

Study area
The Ganges and Brahmaputra delta, known as the Ganges delta, is one of the mega-deltas in the world, cover-
ing an area of approximately 105,000  km2. It consists of Bangladesh and parts of India’s state of West Bengal, 
formed by sedimentation of the Ganga, Meghna and Brahmaputra rivers at the Bay of Bengal during the late 
Holocene to recent  times20. The delta stretches from 21° 10′ 42″ to 24° 50′ 39″ N latitude and 87° 30′ 21″ to 91° 
26′ 46″ E longitude (Fig. 1) and has a shoreline of nearly 350 km along the Bay of Bengal. The Ganges delta 
has been divided into three parts from a geological perspective i.e., “Moribund delta, Active delta and Mature 
delta”34. The delta’s stratigraphic section shows alternating sand-dominated and fine-grained phases with intricate 
interfingerings between  them33. This delta enclosed by “Precambrian crystalline rocks” to the north and west 
and the “Assam-Arakan Neogene fold belt” to the east, signifies a comprehensive sedimentation history during 
the late Quaternary  period35. Literatures indicates that numerous elevated terraces from the Pleistocene era are 
present both within and along the periphery of its alluvial  plain36. Present evidence considering remote sensing 
supporting neotectonics activities in the Gangetic  plain37. Salinity has impacted aquifers in the coastal regions of 
Bangladesh, reaching depths of up to 350 m, furthermore the salinity levels in the upper aquifers of the coastal 
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region, reaching depths of 200–250 m, demonstrate notable fluctuations and experience abrupt changes over 
short  distances38. The monsoon season (June–October) accounts for more than 80% of the annual rainfall, which 
ranges from 1500 to 2000  mm39. During the monsoon months, high rainfall and frequent tropical cyclones cause 
catastrophic flooding and saltwater intrusion in the land areas. The minimum seasonal temperature of the region 
varies from 12 to 24 °C, and the maximum ranges from 25 to 35 °C. The area has the largest population density 
compared to other deltaic regions due to the high soil  fertility30. The Sundarbans, the world’s largest mangrove 
forest, covers the southernmost part of this deltaic region also known as the Sunderban delta. Borehole data 
indicates that sediment primarily consists of sand and clay types.

Materials and methods
Methodology
In this study, the following methodological steps have been followed to fulfill the current research objectives:

• In the initial stage, 352 water samples were collected from the existing tube-wells in the field to assess different 
hydro-geochemical properties. Additionally, 352 non-sample points were created for modelling purposes. 
Furthermore, it is necessary to divide the dataset into train and test to assess how well machine learning 
models are performed. Where, train dataset is used to fit the model and the test dataset is used for validation 
of the respective model. The entire dataset was split into two categories in a “70:30 ratio for training and 
validation” of the respective models.

• A total of fifteen hydro-geochemical parameters were identified for modelling groundwater vulnerability. 
These parameters are “Depth (m), pH, EC (μS/cm), Salinity (ppt),  Ca2+ (mg/l),  Mg2+ (mg/l),  Na+ (mg/l),  K+ 
(mg/l),  Cl− (mg/l),  HCO3

− (mg/l),  NO3
− (mg/l),  SO4

2− (mg/l),  PO4
2− (mg/l),  F− (mg/l), As (μg/l)”.

• Statistical analysis, including “Pearson’s correlation coefficient, principal component analysis (PCA) and 
multicollinearity (MC)” test, was conducted to understand the nature of data.

• Statistical, ML and neural network algorithms i.e., “logistic regression (LR), random forest (RF) and artificial 
neural network (ANN)” were used for groundwater vulnerability assessment.

Figure 1.  Details about the study area: (a) Ganges delta in a transnational boundary of Indo-Bangladesh region, 
(b) Ganges delta and its morphological types and (c) litholog profile of some selected points (this map was 
generated using ArcGIS, version: 10.3.1, www. esri. com/ arcgis).

http://www.esri.com/arcgis
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• Statistical evaluation metrices, such as “sensitivity, specificity, AUC-ROC, F score, Kappa coefficient, and 
graphical measures such as the Taylor diagram” were used to optimize the assessment of modelling output.

• “USSL and Wilcox’s diagram” used to assess groundwater quality.

The following sub-section described in details regarding the methods used in this study.

Sampling and inventory dataset
Field-based water sample collection was the primary task to prepare several hydro-chemical parameters for 
assessing groundwater vulnerability. In this regard, a “random stratified” sampling method was used to collect 
water sample across the study region. A total of 352 water samples were collected to prepare the inventory dataset 
(Fig. 1). Standard procedures were followed during the collection of water samples. Sampling was done by run-
ning wells for 5 min as it removes the stagnant water from bore wells as well as hand pumps. The sample tube 
well was kept pumping until the pH and EC achieved stable conditions. Two independent (dry and clean) sample 
kits were used each with its own collection methods and safety measures, to keep the water samples that were 
taken. In order to transport each water sample from the field to the lab and keep it at 4 °C, we stored it in a water 
sample kit during sample collection. Measurements were made to analyze the groundwater samples obtained 
both on-site and off-site. The analyzed samples were split into two categories on the ArcGIS 10.4.1 platform 
based on a ratio of 70:30. The sample was used for training (70%) while the other was used for validation (30%).

In our current research, we opted for dry season (March–early June) data to model and map groundwater 
vulnerability in this susceptible region, excluding wet season data. Existing literature indicates a prevalent use 
of dry season data in studies related to arsenic-induced vulnerability  studies40, as it is deemed more suitable for 
assessing vulnerability to arsenic-related risks. In the wet season, groundwater contamination occurs through 
the percolation and infiltration of surface water, facilitated by ample rainfall. This leads to the transfer of various 
particles, metals, and ions from surface water bodies to groundwater, resulting in temporary water contamina-
tion, which is not ideal for assessing water-related health hazards. In contrast, during the dry season, water 
levels remain normal, and there is no risk of water contamination through surface metals or other substances. 
Therefore, based on these considerations, we have exclusively utilized dry season data in our study.

MC test
To ensure the accuracy of the model’s output, it is crucial to select appropriate parameters for any vulnerability 
assessment. To achieve this, MC analysis is one of the most important techniques. Correlation analysis has shown 
that a link between two or more input variables can create deviations. “Tolerance (TOL) and Variance Inflation 
Factor (VIF)” are two statistical measures often used to test multi-collinearity among distinct components. The 
predictor variables have a high degree of multicollinearity when the “TOL value is < 0.10 and the VIF value 
is > 5”. If the MC result exceeds this limit, the highly correlated factors are not suitable for modelling purposes 
and should be removed from the dataset; otherwise, the output result will not be optimal. The equations for TOL 
and VIF are presented below:

where R2
j  is the R-squared value of regression using the j on all other variables regression model.

Adopted methods for groundwater vulnerability modelling
LR
One can create a multivariate regression relationship between a dependent variable and several independent 
factors using LR. LR is a multivariate analysis model that can be used to forecast the existence or absence of 
a characteristic or result based on the values of many response variables. Many studies used LR as a standard 
or conventional way to verify the effectiveness of a new algorithm in vulnerability studies. The benefit of LR 
is that, unlike traditional linear regression, where the variables must all have normal distributions, it can use 
any combination of continuous and discrete variables as well as appropriate link  functions41. The challenge in 
conducting vulnerability analysis using a LR model is choosing the appropriate sample size for the dependent 
and independent  variables42. The components in multi-regression analysis must be numerical, and the variables 
in discriminant analysis, a related statistical model, should have a normal distribution. After converting the 
dependent variable into a logit variable, the LR procedure uses maximum likelihood  estimation43. This is how 
LR calculates the likelihood of a specific event  occurring44. The fundamental idea behind LR is investigating a 
problem in which a result assessed using dichotomous variables i.e., true or false (0 and 1) is determined based 
on a single or a series of independent  factors45. The LR can expressed by the following equation:

where z indicates a linear combination of a constant and the independent variables’ product, and their cor-
responding coefficients. The value of z varies from − ∞ to ∞, subsequently f(z) ranges from 0 to 1”:

(1)TOL = 1− R2
j

(2)VIF =
1

TOL

(3)f (z) =
1

1+ e−z

(4)z = α + β1X1 + β2X2 + . . . βnXn
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where α indicates constant; β1, β2, . . . βn represent the coefficients and X1, X2, . . .Xn are the independent 
variables”.

RF
The RF model is a reliable AI method for classifying various natural hazards, including groundwater vulner-
ability.  Breiman46 proposed a potent ensemble-learning method called random forest, which is one of the most 
widely used classifier ensemble techniques for feature selection, regression, and classification applications. RF 
is a tree-based ensemble learning technique that builds several decision trees while constructing models. Each 
tree structure in the ensemble model uses the original input data to train a bootstrapped  sample47. Decision trees 
use a collection of binary rules to select a target variable. The data used to train the model comprises the target 
variable being predicted and a set of predictor variables. Using the predictor variables, the decision tree divides 
the data into homogenous datasets based on the target variable. The programme then assesses each predictor 
variable’s ability to categorize the predicted value into the two groups. The splitting process continues until there 
are no more splits to be  made48. RF prediction is viewed as the unweighted majority of class votes when solving 
classification issues. The bagging approach is used to select random samples of variables as part of the training 
dataset for model  calibration49. The algorithm for RF is expressed as follows:

where ik represents flood occurrence conditioning factors; 1, 2,…n are input vector x.
In a RF the general errors can be defined as follows:

where x and y indicate the different flood occurrence conditioning factors, and mg represents the margin 
function. Again, margin function” can be described as follows

ANN
The ANN is a computational method that can obtain, display, and compute mapping from one multivariate 
data space to another. The objective of the ANN model is to provide a technique for forecasting results from 
inputs that have not been used in the modelling  process50. An artificial neural network is trained using a series 
of examples of related input and output values. The goal of an artificial neural network is to create a model of the 
data-generation process in order to generalize and predict outcomes from inputs that it has never seen before. 
Back-propagation learning is the neural network approach that is most often utilized in the ANN  model51. This 
neural network learning technique has three levels: an input layer, hidden layers, and an output layer. The network 
is trained using the back-propagation technique until a predetermined minimal error between the network’s 
desired and actual output values is reached. When training is complete, the network is utilized as a feed-forward 
structure to provide a classification for the entire database (Paola and  Schowengerdt52). The ANN assigns each 
input element a specific weight, multiplies the results, adds them up, and then uses a nonlinear transfer function 
to construct the outcomes. The back propagation of the ANN model is expressed by the following equations:

The net input of jth neuron of layer l and I iteration

δ Factor for neuron jth in the output layer ith

δ factor for neuron jth in the hidden layer ith

where α is the momentum rate and n is the learning rate within this model.

(5)h(x, ik), k = 1, 2, . . . n

(6)GE = Px,y
(

mg
(

x, y
)

< 0
)

(7)mg
(

x, y
)

= avkI
(

hk(x) = y
)

−maxj �=iavkI
(

hk(x) = j
)

(8)netlj(t) =

p
∑

i=o

(yi−1
i (t)wl

ji(t))

(9)ylj(t) = f (net
(l)
j (t)

(10)f (net) =
1

1+ e(−net)

(11)ej(t) = cj(t)− aj(t)

(12)δlj (t) = elj(t)aj(t)
[

1− ajx(t)
]

(13)δlj (t) = ylj(t)
[

1− yj(t)
]

∑

δlj (t)w
(l+1)
kj (t)

(14)wl
ji(t + 1) = wl

ji(t)+ α

[

wl
ji(t)− wl

ji(t − 1)
]

+ nδ
(l)
j (t)y

(l−1)
j (t)
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Selected evaluation measures
Evaluating a model’s performance, which establishes whether it is relevant or not, is one of the key goals of model 
comparison. In the geoscientific discipline, assessment metrics for applied models are crucial to estimating their 
best-case performance in making predictions, especially for modelling approaches based on machine learning. 
Henceforth, several evaluation measures have been used by many researchers in different fields of study to opti-
mally assess the modelling  output14,24,53,54. After a rigorous literature survey, five prevalent evaluations metrics 
i.e., “sensitivity, specificity, PPV, NPV, ROC-AUC, Kappa-coefficient and F-score”, were selected for this study. 
Alongside, the Taylor diagram is also applied in this study, which is a graphical representation of evaluation 
measures expressing the relationship. A useful tool for displaying and assessing classifiers is the “receiver operat-
ing characteristics (ROC) curve” the common name for a performance indicator for classification problems at 
different threshold levels is the AUC-ROC curve. The ROC curve, which is a graph based on the true positive rate 
(sensitivity) and the false positive rate (1-specificity), may be thought of as a statistic that measures how well the 
model performed  overall55. The AUC-ROC value ranged from 0 to 1 and indicates a poor and good performance 
 accordingly56. The following formulas were used to create the performance evaluation criteria for this study:

Here, “TP is true positive, TN is true negative, FN is false negative, FP is false positive, and kappa coefficient 
is represented by k, observed samples by Po and predicted result by Pe”.

Result
Statistical measures of selected hydrochemical parameters
In this study, three statistical tests were conducted on the selected hydrochemical dataset: MC, correlation 
coefficient, and PCA. The MC test (Table 1) showed that all factors were within the threshold value of MC, and 
therefore suitable for modelling purposes., The depth factor had the highest TOL and lowest VIF (0.66 and 1.515 
respectively), while the  Ca2+ factor had the lowest TOL and highest VIF (0.38 and 0.632 respectively). Pearson’s 
correlation coefficient was used to understand the nature of the substantial association between physical and 
chemical properties. The correlation coefficient (r) ranges from − 1 to + 1, with values of 0.5, 0.5–0.8 and 0.8 indi-
cating weak, moderate, and strongly correlation, respectively. The highest correlation values were found between 
pH and  K+ (0.952) and EC and CI (0.973), while moderate relationships were found between pH and salinity 
(0.546), pH and  Mg2+ (0.506), EC and  Na+ (0.644),  Mg2+ and  K+ (0.593),  Na+ and CI (0.613), and the lowest values 
were found between  Ca2+ and  Mg2+ (0.422), EC and  Ca2+ (0.365), depth and  HCO3

− (0.359), etc. Details about 
the correlation coefficient map and table are presented in Fig. 2 and Table 2. PCA analysis showed that PC 1 con-
sisted of 43.21% eigenvalue, followed by PC 2 and PC 3, which had 31.02% and 17.08% eigenvalue, respectively. 
In PC 1, the dominant factors were EC (0.933), salinity (0.927),  Mg2+ (0.874) and CI (0.924), while important 
factors in PC 2 important factors were  F− (0.765), As (0.599) and  HCO3- (0.582) and in PC 3 dominant factors 
were  PO4

2− (0.620),  NO3 (0.582) and  K+ (0.339). The biplot map of PC 1, PC 2 and PC 3 is presented in Fig. 3.

Assessment of groundwater vulnerability
Groundwater vulnerability in the aquifers of Ganges delta was assessed using LR, RF and ANN models, and the 
results are presented in Fig. 4. Statistical, ML, and neural network algorithms were used to understand the spatial 
distribution of groundwater vulnerability in the vulnerable mega-delta region. We used ArcGIS 10.5 software 

(15)Sensitivity = TP/(TP+ FN)

(16)Specificity = TN/(FP+ TN)

(17)PPV =
TP

FP + TP

(18)NPV =
TN

TN + FN

(19)AUC =
(
∑

TP +
∑

TN)

(P + N)

(20)Precession =
TP

TP+ FP

(21)Recall =
TP

TP+ FN

(22)Fscore = 2 ∗
Precession ∗ Recall

Precession+ Recall

(23)k =
Po − Pe

1− Pe
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Table 1.  Multi-collinearity analysis of selected factors.

Factors VIF TOL

Depth (m) 1.515 0.66

pH 2.564 0.39

EC (μS/cm) 2.041 0.49

Salinity (ppt) 1.852 0.54

Ca2+ (mg/l) 2.632 0.38

Mg2+ (mg/l) 1.818 0.55

Na+ (mg/l) 2.128 0.47

K+ (mg/l) 2.564 0.39

Cl− (mg/l) 1.852 0.54

HCO3
− (mg/l) 2.381 0.42

NO3
− (mg/l) 2.778 0.36

SO4
2− (mg/l) 1.852 0.54

PO4
2− (mg/l) 2.083 0.48

F− (mg/l) 1.724 0.58

As (μg/l) 2.326 0.43

Figure 2.  Pearson’s correlationship among the factors.
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to map the final spatial distribution of vulnerability using the respective modelling outcomes. Each map was 
classified into five vulnerability zones namely “very low, low, moderate, high and very high” using “Jenk’s natural 
break method”. The final vulnerability maps show that very high groundwater vulnerability zones are found in 
the eastern and some isolated south-eastern and central middle portions. Conversely, very low groundwater 
vulnerability zones are found in the north-western, eastern, and south-western parts. The moderate vulnerability 
zone is found in the central part and isolated patches of the south-eastern and southern parts of the study area. 
Due to the high concentration of As and other contaminated factors in the groundwater, the eastern part of the 
Ganges delta, i.e., the region of Bangladesh, is very vulnerable to groundwater compared to the western part of 
the delta region, i.e., the state of West Bengal in India. Although two isolated patches are found to be in the very 
high vulnerable zone in the western region of the Ganges delta i.e., part of India in RF and ANN models (Fig. 4).

Importance hydrochemical parameters for groundwater vulnerability
It is a fact that all selected hydrochemical parameters have not equal responsibility for groundwater vulnerability 
assessment in this study. Therefore, it is fundamental to determine the dominant factors in each applied learning 
model for groundwater vulnerability. The most dominant factors were identified for the three applied models, 
i.e., LR, RF, and ANN. The results of the dominant factors for groundwater vulnerability are presented in Table 3 
for the three applied models. Factors such as  F− (0.74),  Na+ (0.77), As (0.69),  Mg2+ (0.58) and  HCO3 (0.54) are 
more dominant, while  SO4

2 (0.2), pH (0.21), EC (0.31) and  PO4
2 (0.32) are less dominant in the LR model. The 

“mean decrease accuracy (MDA) method of RF algorithm” revealed that  Na+ (0.84),  F− (0.77) and As (0.72) are 
the most influential factors on groundwater resources followed by  HCO3 (0.55), and  Mg2+ (0.54). In ANN, the 

Figure 3.  Bi-plot among the applied hydro-chemical factors.

Figure 4.  Groundwater vulnerability maps of Ganges delta: (a) LR, (b) RF and (c) ANN.
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dominant factors are  Na+ (0.88),  F− (0.81), As (0.78) and  HCO3 (0.67), and the less dominant factors are SO42 
(0.19), pH (0.24), salinity (0.31), and EC (0.33).

Evaluation assessment
All three models were evaluated using various metrics such as “sensitivity, specificity, NPV, PPV, ROC-AUC, 
Kappa-coefficient, and F-score”. Among the three models, the ANN model is the most suitable for modelling 
groundwater vulnerability, with a ROC value of 0.912 and 0.902, for training and validation, respectively. This 
is followed by the RF model with 0.817 and 0.792 for training and validation, and then the LR model with 0.749 
and 0.712 for training and validation. The PPV and NPV are also high in the ANN model, with values of 0.883 
and 0.885 in the validation stage. The sensitivity analysis showed that the ANN model had the highest result at 
0.889, followed by RF and LR, with 0.782 and 0.721, respectively, in the validation stage. The Kappa and F-score 
also indicate that the ANN model is the best fit with values of 0.643 and 0.882 in the validation stage, followed 
by RF and LR (Table 4). The Taylor diagram in Fig. 5 also shows that the ANN is optimal based on standard 
deviation and correlation.

Quality assessment of groundwater
Piper, USSL, and Wilcox diagrams were used to assess the hydrochemical properties and quality of groundwater 
in the Ganges delta region. The Piper diagram (Fig. 6a) showed that alkaline earth  (Ca2++Mg2+) dominates over 
alkalies (Na+K) and that CI and  NO3 dominate over  HCO3. The Wilcox diagram (Fig. 6b) showed that two 
samples were unsuitable, while the others fell into the doubtful to unsuitable, permissible to doubtful, good to 
permissible and excellent categories. The USSL diagram (Fig. 6c) revealed a high salinity, low sodium and alkali 
hazard dominance. The collected datasets were grouped and analyzed using a hierarchical clustering method, 
which showed that the second cluster, and to a lesser extent, the first cluster, significantly influenced the state 
and the groundwater quality. The dendrogram (Fig. 6d) showed that the first cluster covered approximately 32% 
of the datasets, the second cluster covered the maximum dataset (47%) and the third cluster covered the lowest 
dataset (21%).

Table 3.  Variables importance of selected factors through applied three models.

Factors LR RF ANN

NO3 0.44 0.35 0.41

AS 0.69 0.72 0.78

PO4
2− 0.32 0.21 0.38

SO4
2− 0.2 0.22 0.19

Salinity 0.32 0.24 0.31

HCO3 0.54 0.55 0.67

CI 0.41 0.38 0.47

K+ 0.24 0.25 0.28

Na+ 0.77 0.84 0.88

Mg2+ 0.58 0.54 0.51

F− 0.74 0.77 0.81

pH 0.21 0.28 0.24

EC 0.31 0.39 0.33

Depth 0.4 0.41 0.41

Ca2+ 0.33 0.31 0.35

Table 4.  Evaluation metrices of applied models.

Models Stage

Parameters

Kappa F-ScoreSensitivity Specificity PPV NPV AUC 

LR
Train 0.741 0.749 0.752 0.721 0.749 0.532 0.811

Validation 0.721 0.722 0.711 0.701 0.712 0.513 0.792

RF
Train 0.821 0.812 0.813 0.825 0.817 0.63 0.863

Validation 0.782 0.751 0.794 0.744 0.792 0.601 0.841

ANN
Train 0.907 0.903 0.901 0.901 0.912 0.651 0.912

Validation 0.889 0.891 0.883 0.885 0.902 0.643 0.882
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Discussion
The fundamental reasons for spatio-temporal fluctuations in the groundwater supply are increasing water 
demand across all sectors and changing climatic  conditions57. These factors present a significant challenge to 
water resource planners. This study has demonstrated that considerable concentrations of elevated arsenic and 
nitrate in groundwater, as well as salinization, are among the groundwater quality issues in the coastal areas 
of the multi-aquifers of the Ganges delta. The quality of groundwater along the coast primarily depends on 
geological conditions, hydrogeological processes, and chemical  activities58. Therefore, a trustworthy assessment 
of groundwater vulnerability is a crucial first step in choosing the best design or framework for future water 
resource development.

It can be challenging to select a preferred model for assessing inherent vulnerability that can effectively match 
the research topic’s features and the study area’s geo-environmental characteristics. The literature reveals that 
many academics have compared two or more vulnerability indices to create a meticulously tailored intrinsic 
vulnerability model for their research, aiming to achieve optimal  output59,60. In the current scenario, statistical 
and machine learning (ML) algorithms are widely employed in groundwater-related studies worldwide. For 
example, Yu et al. (2022)Vu61 applied an integrated Variable Weight Model (VWM) and DRASTIC model to 
assess groundwater vulnerability in China and found that the VWM-DRASTIC combination provided optimal 
predictive analysis. Vu et al.62 used a numerical model and the index-overlay method in conjunction with cli-
mate scenarios (RCPs) to evaluate groundwater vulnerability and associated sustainability in Taiwan, and they 
recommended optimal predictive analysis. Furthermore, several machine learning models have been utilized 
in various groundwater-related studies, including groundwater  vulnerability4,14,18,63, nitrate concentration in 
 groundwater64–66, and more. The random forest (RF) model is well-known for its numerous advantages and has 
been employed in various geoscientific fields, including groundwater vulnerability studies. Lahjouj et al.67 utilized 
the RF algorithm in a survey of groundwater vulnerability to nitrate concentration in Morocco and achieved an 
accuracy assessment of 0.822 in terms of AUC-ROC. Similarly, Saha et al.18 used RF to assess hydrochemical-
based groundwater vulnerability in parts of the Ganges delta and achieved optimal accuracy rates of 0.849 and 
0.812 in the training and validation data of the ROC. Various statistical techniques are available, ranging from 
straightforward descriptive statistics of concentrations of specific contaminants to more complex regression 
analyses that consider the impacts of multiple predictor  variables68. Binary logistic regression, sometimes known 
as logistic regression (LR), is a frequently used statistical technique for estimating groundwater vulnerability. 
LR models relate the potential influencing factors to the likelihood that a pollutant concentration will exceed a 
threshold value. Mohammaddost et al.69 employed DRASTIC, EBF, and LR models in the Kabul basin of Afghani-
stan to assess groundwater vulnerability, and they found that LR provided 66% accuracy in AUC-ROC prediction 
analysis. Adiat et al.70 applied LR for the same assessment in the Ilesa gold mining area of Nigeria, achieving an 
85.7% accuracy in model prediction. Recently, with the significant advantages of neural network algorithms, 
several neural network models have also been used in groundwater studies. For instance, Elzain et al.27 used the 
DLNN model in aquifer vulnerability studies in South Korea, while Elzain et al.71 employed the RBNN model to 
assess groundwater vulnerability to nitrate contamination in the southern part of Korea.

Based on the discussion above and considering the significant advantages of statistical, machine learning 
(ML), and neural network algorithms, three popular learning algorithms, namely logistic regression (LR), ran-
dom forest (RF), and artificial neural network (ANN), were selected for the optimal assessment of groundwater 
vulnerability in the mega delta of the Ganges delta, taking into account field-based hydrochemical parameters. 
The findings of this study demonstrate that among the applied models, ANN yields the most optimal results, 

Figure 5.  Graphical evaluation measure of applied models using Taylor diagram.
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with AUC-ROC scores of 0.912 and 0.902 in training and validation, respectively, for groundwater vulnerability 
studies. RF follows with scores of 0.817 and 0.792 in training and validation, and LR with scores of 0.749 and 
0.712 in training and validation. The high performance of the ANN model can be attributed to its capacity for 
parallel processing, enabling it to handle multiple tasks simultaneously. The statistical analysis of all selected 
hydrochemical parameters reveals that pH and  K+ (0.952) and EC and  Cl− (0.973) are highly correlated, while 
pH and salinity (0.546), pH and  Mg2+ (0.506), EC and  Na+ (0.644),  Mg2+ and  K+ (0.593), and  Na+ and  Cl− (0.613) 
show moderate correlations. It is also found that pH,  NO3

−, As, and  K+ are the most influential factors for ground-
water vulnerability in this study region.

Henceforth, studies on groundwater vulnerability serve as crucial measurements for the sustainable manage-
ment of water resources, environmental preservation, and the guarantee of a secure and uncontaminated drinking 
water supply for both present and future generations.

Nonetheless, it is a fact that employing combined techniques and methodologies can aid in resolving ambigui-
ties related to GIS-based vulnerability assessment frameworks in geoscientific fields. The approaches presented 
in this research can be tested in various hydrogeological and geo-environmental contexts to understand the 
spatial distribution of vulnerability. Evaluating groundwater vulnerability studies requires careful consideration 
of the data and tools used for validation. Furthermore, the limitations of this study are not considered various 
important factors, such as the hydrogeological process of groundwater, land use land cover, and aquifer and soil 
characteristics, as all of these factors affect groundwater quality. In the future, other neural networks and deep 
learning algorithms can be beneficial for the optimal assessment of groundwater vulnerability in the mega-delta, 

Figure 6.  Quality assessment of groundwater: (a) Piper diagram, (b) Wilcox’s diagram, (c) USSL diagram, and 
(d) cluster analysis using dendrogram.
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considering changing climate and land use land cover. Therefore, the results of this study will be valuable to land 
use planners and provide fundamental information for the optimal assessment and management of groundwater 
risk zones accordingly.

Conclusion
Globally, assessing susceptibility to groundwater contamination is crucial for proactive management aimed at 
safeguarding groundwater resources for various uses. Creating more effective sustainable development policies 
regarding potential groundwater pollution by utilizing more precise vulnerability maps. In the Ganges deltaic 
region, the high concentrations of contaminants, such as arsenic (As), are primarily responsible for groundwater 
vulnerability, and the associated human health hazards are a significant concern for global researchers. In the 
present research, there is a focus on creating an effective vulnerability map for a mega-delta, specifically the 
Ganges delta. This involves the application of LR, RF, and ANN models in the modelling and mapping process. 
Sensitivity analysis indicates that the ANN output is the most optimal, followed by RF and LR. The study reveals 
that the neural network algorithm is the best suited for assessing groundwater vulnerability related to contamina-
tion in the study region, surpassing traditional statistical analysis. Hydrochemical parameters such as pH,  NO3

−, 
As, and  K+ dominate this deltaic aquifer, contributing to vulnerability. Overall, all vulnerability maps indicate 
that the study area’s western, central, south, and eastern parts are highly vulnerable. Due to elevated levels of As 
and various ion contaminations, most groundwater samples from the Ganges delta are unsuitable for drinking 
and irrigation. Consequently, the improper implementation of government policies, a lack of awareness, and 
inadequate management are the primary concerns leading to groundwater deterioration in this region. Therefore, 
immediate action is necessary to sustain and conserve groundwater resources in the world’s largest and most 
densely populated deltaic region. Henceforth, in future application of deep learning and both the dataset i.e., 
dry and wet season for sampling procedure will be helpful for better understanding of groundwater vulnerability 
in this vulnerable region.

Data availability
The datasets used and/or analyzed during the current study are available from the reasonable request.
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