
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1041  | https://doi.org/10.1038/s41598-024-51540-7

www.nature.com/scientificreports

Dynamics of the optimality control 
of transmission of infectious 
disease: a sensitivity analysis
Yasir Nadeem Anjam 1, Iqra Shahid 1, Homan Emadifar 2,3,4*, Salman Arif Cheema 1 & 
Mati ur Rahman 5,6

Over the course of history global population has witnessed deterioration of unprecedented scale 
caused by infectious transmission. The necessity to mitigate the infectious flow requires the launch 
of a well-directed and inclusive set of efforts. Motivated by the urge for continuous improvement in 
existing schemes, this article aims at the encapsulation of the dynamics of the spread of infectious 
diseases. The objectives are served by the launch of the infectious disease model. Moreover, an 
optimal control strategy is introduced to ensure the incorporation of the most feasible health 
interventions to reduce the number of infected individuals. The outcomes of the research are 
facilitated by stratifying the population into five compartments that are susceptible class, acute 
infected class, chronic infected class, recovered class, and vaccinated class. The optimal control 
strategy is formulated by incorporating specific control variables namely, awareness about 
medication, isolation, ventilation, vaccination rates, and quarantine level. The developed model is 
validated by proving the pivotal delicacies such as positivity, invariant region, reproduction number, 
stability, and sensitivity analysis. The legitimacy of the proposed model is delineated through 
the detailed sensitivity analysis along with the documentation of local and global features in a 
comprehensive manner. The maximum sensitivity index parameters are disease transmission and 
people moved from acute stages into chronic stages whose value is (0.439, 1) increase in parameter by 
10 percent would increase the threshold quantity by (4.39, 1). Under the condition of a stable system, 
we witnessed an inverse relationship between susceptible class and time. Moreover, to assist the 
gain of the fundamental aim of this research, we take the control variables as time-dependent and 
obtain the optimal control strategy to minimize infected populations and to maximize the recovered 
population, simultaneously. The objectives are attained by the employment of the Pontryagin 
maximum principle. Furthermore, the efficacy of the usual health interventions such as quarantine, 
face mask usage, and hand sanitation are also noticed. The effectiveness of the suggested control plan 
is explained by using numerical evaluation. The advantages of the new strategy are highlighted in the 
article.

The capability of infectious diseases in disrupting daily life is well documented in the existing literature of multi-
disciplinary nature. In recent years, more aggressive eruptions of the viral flow are  witnessed1. For example, the 
veracity of the more recent viral explosion of COVID-19 is unprecedented in modern history. To date, more 
than 6.8 million deaths have been reported globally due to the aforementioned  virus2. More disturbingly, the 
transmission of the SARS-CoV-2 virus was accompanied by existing pathogens such as Ebola, SARS, and ZIKA. 
Recently, the World Health Organization (WHO) announced the onset of the newest transmissible infection 
called Monkeypox (MPX), named after the host of the  virus3. More alarmingly, many researchers have noticed 
and documented the novel biological alterations assisting the flow of viral transmission. For example, the case 
of COVID-194 noted consistent alterations in the gene expression of many different immune cell types. Simi-
larly,5 documented the presence of EBOLA virus in epidermal and seminal vesicular tubular epithelial cells. 
Furthermore,6–8 has reported one case in Spain where an individual was detected with the co-presence of MPX, 
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COVID-19, and HIV viruses. The scope and the coverage of research activities are mammoth while researchers 
from every corner of the globe are responding to the wake of infectious transmissions. A careful and tedious 
review of the available literature reveals that the ongoing research efforts regarding infectious diseases most 
commonly target three fronts such as, (i) - exploration of the clinical nature of the  virus9, (ii) - mathematical 
encapsulation of the flow dynamics of the  infection10, and (iii) - study of the socio-economic impacts of the 
upshots of viral  flow11. This research is aligned with the second stream of the ongoing multi-disciplinary efforts 
aiming at understanding the flow dynamics of infectious transmissions.

A considerable amount of time and energy is being dedicated to understanding the mathematical nature of 
infectious disease transmission. For example, Biswas, launched a Susceptible Exposed Infected Recovered (SEIR) 
model to explore the control of infectious disease when health interventions are  employed12. Similarly, Wangari 
(2015) studied the utility of the SEIR model to establish the conditions for global stability of the model when 
interest lies in the explanation of primary infection  mechanisms13. Moreover, in adjacent past the consideration 
of optimal control strategies is gaining momentum to attain better management of the viral flow. The usage of 
optimal control is not restricted towards medical applications but covers numerous phenomena including, policy 
 formulation14, emergency  planning15, engineering hazard  assessment16, and the development of more effective 
control  program17. Fundamentally, an optimal control strategy is defined to assist the determining optimal proto-
cols while dealing with complex multi-frontier problems. The resultant optimization problem is then persuaded 
by specifying control variables and profiling dynamics of the system under a set of given parameters, while main-
taining the notion of  parsimony18  and19. Many researchers have appreciated the utility of these methods to gain 
better control over the ongoing stochastic processes. For example, Zhilan Feng advocated the optimal control 
strategy in order to gain timely identification of the emergence of infectious  diseases20. Furthermore, Kar and 
Soovoojeet (2016)21 conducted a theoretical investigation into the mathematical modeling of infectious disease 
with the application of optimal  control21. Moreover, Liddo provided an elaborative account of the applicability 
of optimal control in demonstrating the treatment of infectious  diseases22.  Additionally23, Lennon-O- Naraigh 
and Aine Byrne studied about the Piece wise-constant optimal control strategies for controlling the outbreak of 
COVID-19 in the Irish population.

By using optimal control,  Verma24 proposed and analyzed a non-linear smoking model to prevent interaction 
between those who are smokers and those who are smoking quitters. A mathematical model was proposed by 
Verma et al.25 to investigate the dynamics of coronavirus with lockdown effects as an epidemiological model. 
Moreover, the introduction of the optimal control strategy  by26 for COVID-19, Dengue, and HIV through a 
mathematical model represents interactions between these infectious diseases. Further,27 aimed at the stability 
analysis of a co-circulation model for COVID-19, Dengue, and Zika, incorporating nonlinear incidence rates 
and vaccination strategies to enhance our understanding of the dynamic interactions among these infectious 
diseases. Many researchers have employed the optimal approach to model and predict the efficiency of health 
surveillance synergies. One may consult the account  of28 aimed at SARS-COV-2 and HBV co-dynamics mod-
eling,  and29 explores the modeling of backward bifurcation and optimal control in a co-infection model for 
SARS-CoV-2 and ZIKV. Researchers have examined pioneer work in different areas of mathematical modeling, 
economics problems such  as30–33.

Stirred by the significance of the above-documented issue, this research contributes to the existing literature 
on the applicability of the optimal control theory by introducing a new mathematical formation capable of 
explaining the dynamics of the infectious disease flow in a community. While simultaneously creating a trade 
between the number of infectious individuals and the cost of the considered health interventions. The whole 
population is classified into five mutually inclusive classes namely, susceptible class, acute infected class, chronic 
infected class, recovered class, and vaccinated class. Firstly, we will thoroughly examine the developed model to 
ensure its validity by proving pivotal delicacies such as positivity, invariant region, equilibrium points, repro-
duction number, and stability analysis. Along with showing complete stability analyses at equilibrium points to 
evaluate both local and global stability. The rationale of the optimal control scheme remains to assert plausible 
control law facilitating the optimization of certain performance indices. Further, the research environment is 
enriched by the addition of relevant control parameters such as medication, isolation, ventilation, vaccination, 
and quarantine levels. The existence of optimal control is proved with Pontryagin’s maximum principle (Pon-
tryagin et al. 1962), and examine the optimal control problem to identify the required conditions for optimality. 
The parametric setting incorporates various scenarios.

This article is primarily alienated into six sections. Section 2 presents the qualitative analysis of the model, and 
Section 3 is dedicated to the sensitivity analysis of the infectious disease model, whereas, Section 4 reports the 
stability features of the considered model. Section 5 outlines the incorporation of optimal control with the focus 
of launching more feasible health interventions. Lastly, Section 6 concludes all the major findings of this study.

Model structure
Mathematical models of infectious diseases are crucial for comprehending the patterns of disease spread and 
devising effective disease control strategies. Consequently, when constructing such models, emphasis should 
be placed on delineating the epidemiological characteristics of the disease and identifying pivotal, modifiable 
parameters for disease control. Numerous epidemiological models, rooted in diverse disease transmission mecha-
nisms, have been established and documented in the literature,  see34. These models have played a pivotal role in 
shaping and crafting control strategies for various diseases.

Let us consider that, for any time t > 0 , the vulnerable populations under the study, say N(t), is divided into 
five compartments such as Susceptible class S(t) , Acute infected class I1(t) , Chronic infected class I2(t) , Recov-
ered class R(t) , and Vaccinated class V(t) . The humans specified by S(t) are those who are at risk of contracting 
a specific infectious disease. Thus, the susceptible who are currently infected are moved into two classes namely 
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Acute infected class I1(t) and Chronic infected class I2(t) means that if people have the time period of disease 
are less than six month they moved into acute infected class, if people have time period of disease beyond the 
six month they moved into chronic infected class, and those who are vaccinated at the rate σ move to V(t) . The 
vaccinated individuals may either move to Recovered class R(t) at the rate φ after receiving an infection as a result 
of having contact with an infectious person. Moreover, some parameters are also used in the model formula-
tion, such as the u rate of vaccinated people, σ rate of vaccinated individuals become susceptible again, β disease 
transmission rate,γ reduced the rate of the incubation period, ρ1 and ρ2 recovery rate from acute and chronic 
stages naturally, γ2 and γ3 recovery rate of the acute and chronic stage, d untreated death rate, d1 disease-related 
death rate, φ a treated person could regain into susceptible since vaccination rate is not perfect and γ1 people in 
the acute stage are moved into chronic stage.

The proposed model leverages some key assumptions grounded in biological evidence to illuminate infec-
tious disease dynamics under optimal control strategies. One critical assumption is that the infectious disease 
system exhibits backward bifurcation, implying complex and non-linear interactions that contribute to sustained 
transmission. This assumption aligns with empirical observations in infectious disease ecology, where factors 
such as host heterogeneity and co-infection dynamics often lead to intricate and non-trivial system behavior. 
Moreover, the incorporation of optimal control strategies into the model reflects the imperative of intervention 
measures in disease management. Biological evidence supporting this assumption can be drawn from successful 
instances of interventions like vaccination campaigns and quarantine measures that have demonstrated efficacy in 
mitigating disease spread. While the model’s novelty or modification status is not explicitly stated, its integration 
of biological evidence and optimal control strategies contributes to advancing our understanding of infectious 
disease dynamics and intervention  planning35.

Therefore, based on the aforementioned considerations, the interaction flow pattern between infectious dis-
ease states is depicted in Fig. 1.

Thus, the whole human population at any time t is given by

 The infectious disease model is depicted through a non-linear system of ordinary differential equations while 
connecting considered compartments in deterministic formation such as.

N(t) = S(t)+ I1(t)+ I2(t)+ R(t)+ V(t).

Figure 1.  Schematic diagram illustrates the transmission dynamics of infectious disease behavior.
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The initial conditions are defined as follows,

Furthermore, the details of each term of the equations influencing the system given in the model (1) are docu-
mented in Table 1.

Qualitative analysis of the model
Here, in this section, some significant results of the proposed model, namely positivity, invariant region, equi-
librium point, and basic reproduction number are given.

Positivity
Positivity is enforced upon the initial conditions or parameters inherent in the model. It ensures that the values of 
the initial conditions and the parameters in the proposed model are endured greater than zero or non-negative. 
Therefore, reorganize the model (1) in terms is explained by

whereη(t) = (η1, η2, η3, η4, η5)
T :=

(

S, I1, I2,R,V)
T , η(0) = (S(0), I1(0), I2(0),R(0),V(0)

)T
ǫR5

+ , and

The situation is stress-free Gi(η)|ηi=0 ≥ 0, i = 1, ..., 5 . According to the well-known  Nagumo36 finding, the model 
(1) solution with an starting point η0 ∈ R5

+ , such as η(t) = η(t; η0), is such that η(t) ∈ R5
+, ∀ t > 0.

Invariant region
We determined the invariant region where the solution of the proposed model is bounded. Now, consider the 
total population of the given model as

Differentiate (4) respecting the solution of the model (1) provides

(1)

dS

dt
= (1− u)α − β(I1 + γ I2)S− dS+ φR+ σV+ ρ1γ2I1 + ρ2γ3I2,

dI1

dt
= β(I1 + γ I2)S− (γ1 + γ2 + d)I1,

dI2

dt
= γ1I1 − (d + d1 + γ3)I2,

dR

dt
= (1− ρ1)γ2I1 + (1− ρ2)γ3I2 − (φ + d)R,

dV

dt
= uα − (σ + d)V.

S(0) = S0 ≥ 0, I1(0) = I1,0 ≥ 0, R(0) = R0 ≥ 0, I2(0) = I2,0 ≥ 0, V(0) = V0 ≥ 0.

(2)η̇(t) = G(η(t)),

(3)G(η) =











G1(η)
G2(η)
G3(η)
G4(η)
G5(η)











=











(1− u)α − β(I1 + γ I2)S− dS+ φR+ σV+ ρ1γ2I1 + ρ2γ3I2
β(I1 + γ I2)S− (γ1 + γ2 + d)I1

γ1I1 − (d + d1 + γ3)I2
(1− ρ1)γ2I1 + (1− ρ2)γ3I2 − (φ + d)R

uα − (σ + d)V











.

(4)N(t) = S(t)+ I1(t)+ I2(t)+ R(t)+ V(t).

Table 1.  Description of each term of the equations of the model (1).

Terms of each equations Description

α Total recruitment

u Rate of vaccinated people

σ Rate of vaccinated individuals become susceptible again

 β  Disease transmission rate

γ Reduced the rate of the incubation period

 ρ1 and ρ2 Natural recovery rate of acute and chronic infected people

 γ2 and γ3  Recovery rate of acute and chronic infected people

 d  Untreated death rate

 d1  Disease related death rate

 φ A treated person of recovered people

 γ1  People in the acute stage are moved into chronic stage
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Therefore, by substituting all the state equations from the model (1) in Eq. (5), then one gets

Taking the integration on both side of (6) with t → ∞ , one obtain

Clearly, � is positively invariant, inside which the model is considered to be epidemiological meaningful and 
mathematically well-posed.

Equilibrium points
Equilibrium points indicate a stable condition in the progression of the disease, where the occurrence of new 
infections is offset by the combined occurrences of recoveries and deaths. This section outlines the calculation of 
the disease-free equilibrium point and the endemic equilibrium point of the proposed system. The equilibrium 
points associated with the model (1) by solving dSdt = dI1

dt = dI2
dt = dR

dt = dV
dt = 0 . Accordingly, the disease-free 

equilibrium point F0 , is attained by letting for I1 = 0, I2 = 0, R = 0, V = 0 such as,

Now, the endemic equilibrium point is denoted as F∗ =
(

S
∗, I∗1, I

∗
2, R

∗, V∗
)

 , where,

where ξ = (σ + d)(φ + d)(d + d1 + γ3), ξ1 = (σ + d)(d + d1 + γ3), and η = γ1 + γ2 + d,ψ = ρ1γ1βγ .

The basic reproduction number
The basic reproduction number R0 is a prevailing metric for evaluating the contagiousness or transmissibility of 
a communicable disease. It signifies the average number of individuals that are infected by one infectious indi-
vidual in a susceptible population. Biologically, it reflects the contagiousness and transmissibility of a pathogen. 
If R0 > 1 , it indicates that the disease has the potential to sustain transmission within the population, leading to 
an outbreak. Conversely, if R0 < 1 , the infection is unlikely to establish a self-sustaining chain of transmission, 
and it may eventually die out in the population. Moreover, the reproduction number is estimated by using the 
method of Darraish and  Wathmough37, and with the principle of the next-generation matrix, we have

Therefore, the reproduction number R0 for our proposed model (1) is the spectral radius of the next generation 
matrix FV−1 and calculated as,

Therefore, from (7), the reproduction number R0 is calculated as,

where η1 = (γ1 + γ2 + d),  η2 = d + d1 + γ3 . The disease will spread in the population if the basic reproduction 
number R0 > 1.

(5)
dN

dt
=

dS

dt
+

dI1

dt
+

dI2

dt
+

dR

dt
+

dV

dt
.

(6)
dN

dt
= α − dN .

� =

{

S, I1, I2,R,VǫR
5
+ : S+ I1 + I2 + R+ V+ ≤

α

d

}

.

F0 =
(

S0, 0, 0, 0, 0
)

=

(

(1− u)α

βγ + d
, 0, 0, 0, 0

)

,

S
∗ =

(1− u)dξ + φξ1((1− ρ1)γ2I
∗
1 + (1− ρ2)γ3I

∗
2)+ σu1αξ1 + ρ2γ3[(φ + d)(σ + d)]

ψI
∗
2ξ(βS− η)

,

I
∗
1 =

βγ I2S

βS− (γ1 + γ2 + d)
,

I
∗
2 =

γ1I1

(d + d1 + γ3)
,

R
∗ =

(1− ρ1)γ2I1 + (1− ρ2)γ3I2

(φ + d)
,

V
∗ =

uα

σ + d
,

F =

(

−βS βγS
0 0

)

and V =

(

−(γ1 + γ2 + d) 0
γ1 − (d + d1 + γ3)

)

.

(7)FV−1 =

((

βS
γ1+γ2+d −

βSγ γ1
(γ1+γ2+d)(d+d1+γ3)

)

βγS
d+d1+γ3

0 0

)

.

(8)R0 =
β S0 η2 + β S0 γ γ1

η1 η2
,
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Sensitivity analysis
The degree of influence of input parameters over the dynamics of the infectious disease model is an asset through 
the launch of sensitivity analysis. The sensitivity indices of the infectious disease model given in (1) are deduced 
by using the approach of Chitnis et al.38. We calculate the normalized forward sensitivity indices of a parameter 
x of R0 . Let

 The estimated sensitivity projected in reproduction number with respect to various parameters is given as

Table 2 comprehends the directional projection of the parameters involved in the considered model explain-
ing the viral infectious disease transmission flow. The existence of a positive relationship is voted through the 
plus sign whereas the negative sign avows the showing of the negative relationship between parameters and the 
transmission rate. One may be noted that an increase in the reproduction number remains associated with an 
increase in parameters such as disease transmission rate, reduced incubation period, rate of transfer from the 
acute stage to the chronic stage, and untreated death rate. Whereas, the reproduction number is estimated to 
be negatively associated with parameters such as disease-related death rate, and recovery rates belonging to the 
acute stage and chronic stage.

Figure 2 shows the dynamical behavior of the sensitivity analysis of the basic reproduction number R0 , in 
the context of the disease transmission. Moreover, this analysis helps us to understand the significance of vari-
ous factors that play a vital role in the transmission of infectious diseases. We plotted the reproduction number 
R0 as a function of γ3, d1, γ1, γ2,β and d. Figure 2a shows the effect of effectual disease-related death rate and 
recovery rate of chronic infected patients on the reproduction number, we can see that these two parameters 
may increase to R0 greater than unity if the value of γ3 remain up to greater than 1 and the recovery rate also 
remains greater than 1. The combined effect of transmission and recovery rate on R0 is shown in Fig. 2b. As one 
parameter β is directly proportional and γ1 is inversely related to R0 , thus we can see that the basic reproduction 
number value may be reduced below unity even if the transmission rate β approaches 1 and the recovery rate 
of acute and chronic infected increases. Figure 2c shows the effect of transmission rate β and d. We can see that 
these two parameters have a considerable impact in reducing or increasing the value of the basic reproduction 
number R0 . Furthermore, Fig. 2d shows the effect of recovery rate gamma2 and disease-related death rate d, and 
also Fig. 2e shows the inverse relationship between R0 and parameters. Similarly, Fig. 2f shows the impact of 
reducing or increasing the value of reproduction number R0.

Stability analysis
In this section, we analyze the local and global stabilities of the proposed model at equilibrium points. Local 
stability is often determined by examining the eigenvalues of the Jacobian matrix evaluated at the equilibrium 
point. If all eigenvalues have negative real parts, the equilibrium is locally stable. Global stability considers 
the system’s behavior across its entire range, often requiring more advanced mathematical techniques such as 
Lyapunov analysis.

Local stability analysis
The aim of conducting local stability analysis is to determine whether a minor disturbance in the disease system 
would lead to the persistence or elimination of the disease. In the realm of epidemiological models, comprehend-
ing the concept of local stability at equilibrium points holds significance. It provides insights into the dynamics of 
infectious diseases and their transmission within a population. The endemic equilibrium point and disease-free 
equilibrium point, which are locally asymptotically stable, are illustrated in the following theorem.

Theorem 4.1 The disease-free equilibrium point F0 is locally asymptotically stable when R0 < 1, however, when 
R0 > 1 , it is unstable.

�R0
x =

∂R0

∂x

x

R0
.



















�
R0
β = ∂R0

∂β
β
R0

= 1, �R0
γ = ∂R0

∂γ
γ
R0

= 0.270,

�R0
γ2

= ∂R0
∂γ2

γ2
R0

= −0.5, �R0
γ3

= ∂R0
∂γ3

γ3
R0

= −0.876,

�
R0
d = ∂R0

∂d
d
R0

= 0.185, �
R0
d1

= ∂R0
∂d1

d1
R0

= −0.239,

�R0
γ1

= ∂R0
∂γ1

γ1
R0

= 0.439.

Table 2.  Sensitivity indices and parameters of the reproduction number R0.

Parameters Sensitivity indices Parameters Sensitivity indices

β + γ +

γ1 + γ2 –

d + γ3 –

d1 – γ1 +
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Proof The Jacobin matrix of disease-free equilibrium point F0 for the proposed model is given as

The evaluation of the jacobian at drinking-free equilibrium provides

(9)J(F0) =











−β(I1 + γ I2)− d − βS0 + ρ1γ2 βγS0 + ρ2γ3 φ 0
−β(I1 + γ I2) βS0 − (γ1 + γ2 + d) βγS0 0 0

0 γ1 − (d + d1 + γ3) 0 0
0 (1− ρ1)γ2 (1− ρ2)γ3 − (φ + d) 0
0 0 0 0 − (σ + d)











.

Figure 2.  The graphical result shows the dynamics of various compartmental parameters and their effects on 
the reproduction number R0.
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With the aid of the Jacobin matrix of the disease-free equilibrium point, the resultant eigenvalues are 
�1 = −β(I1 + γ I2) < 0, �2 = −(σ + d) < 0, whereas,

�4 = −(d + d1 + γ3), �5 = −(φ + d), and �3 = βS0 − (γ1 + γ2 + d) < 0 . �1, �2, �4, and�5 are real and negative. 
Further, �3 is negative and real if R0 < 1 . Using the Routh-Hurwitz  criterion39, it is verified that, each eigenvalue of 
the polynomial equation contains a non-positive real parts when R0 < 1 . As a result, the disease-free equilibrium 
point F0 is locally asymptotically stable.   �

Theorem 4.2 The endemic equilibrium point F∗ will be locally asymptotically stable if the value of R0 > 1, however, 
when R0 < 1 , it is unstable.

Proof The determination of the Linearization for model (1) at the endemic equilibrium point F∗ is carried out by

By using row matrix transformation the following matrix is given by:

where, let µ = β(I1 + γ I2)− d, µ1 = (γ1 + γ2 + d), µ2 = (d + d1 + γ3), µ3 = (φ + d), and µ4 = (σ + d). It is 
clear that all of eigenvalues values of J(F∗) have negative and real if R0 > 1 .   �

Global stability analysis
Global stability in a disease model examines whether, over the entire range of conditions, the system converges 
to a stable state in terms of disease behavior. It is crucial for understanding the persistent, long-term dynamics 
and overall prevalence of drinking in a population. The endemic equilibrium point and disease-free equilibrium 
point, which are locally asymptotically stable, are illustrated in the subsequent theorem.

Theorem 4.3 The disease free equilibrium point F0 is globally asymptotically stable for R0 < 1 , otherwise, unstable 
for R0 > 1.

Proof The following Lyapunov function has been properly defined and satisfies the condition of being positive 
definite and its derivative is negative definite. By focusing on infected and susceptible individuals, the Lyapunov 
function effectively quantifies the balance between disease transmission and population susceptibility, providing 
insights into the long-term behavior and stability of the epidemic model. To show the result, Firstly, we state the 
Lyapunov function is specified by,

Where f1, f2 and f3 are positive constant and derivative of L is given by

Now, by arranging the above terms yield,

(10)J(F0) =











−d − βS0 + ρ1γ2 βγS0 + ρ2γ3 φ 0
0 βS0 − (γ1 + γ2 + d) βγS0 0 0
0 γ1 − (d + d1 + γ3) 0 0
0 (1− ρ1)γ2 (1− ρ2)γ3 − (φ + d) 0
0 0 0 0 − (σ + d)











.

∣

∣J(F0)− �I
∣

∣ =

∣

∣

∣

∣

∣

βS0 − (γ1 + γ2 + d)− � βγS0 0
γ1 −(d + d1 + γ3)− � 0

(1− ρ1)γ2 (1− rho2)γ3 −(φ + d)− �

∣

∣

∣

∣

∣

= 0,

J(F∗) =











−β(I1 + γ I2)− d − βS+ ρ1γ2 βγS+ ρ2γ3 φ 0
−β(I1 + γ I2) βS− (γ1 + γ2 + d) βγS 0 0

0 γ1 − (d + d1 + γ3) 0 0
0 (1− ρ1)γ2 (1− ρ2)γ3 − (φ + d) 0
0 0 0 0 − (σ + d)











.

(11)J(F∗) =











−µ − 0 0 0 0
−β(I1 + γ I2) − µ1 0 0 0

0 γ1 − µ2 0 0
0 (1− ρ1)γ2 (1− ρ2)γ3 − µ3 0
0 0 0 0 − µ4











.

(12)L = f1S+ f2I1 + f3I2,

L
′

=f1S
′

+ f2I
′

1 + f3I
′

2,

L
′

=f1

{

(1− u)α − β(I1 + γ I2)S0 − dS0 + φR+ σV+ ρ1γ2I1 + ρ2γ3I2

}

+ f2

{

β(I1 + γ I2)S0 − (γ1 + γ2 + d)

}

+ f3

{

γ1I1 − (d + d1 + γ3)I2

}

,
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where F0 = (1−u)α
βγ+d  . Further, for S > S0 and R0 < 1, then L′

(t) < 0 . Also if S = S
0 then L′

(t) = 0 . By Lasla invari-
ence  principle40,41, I1 = I2 = 0. The Lyapunov function conditions are all positive definite, the function is positive 
definite and its derivative is negative definite. Therefore the disease-free equilibrium F0 is globally asymptotically 
stable.   �

Theorem 4.4 The endemic equilibrium point F∗ is globally asymptotically stable, if the value of R0 > 1 , however, 
when R0 < 1 , it is unstable.

Proof In order to prove the global stability of the proposed model (1) at the endemic equilibrium point F∗ , the 
Castilo Chevez method is used  from42,43. Further, we consider (1) as:

Taking the jacobian and the additive compound matrix of order 2 for the Eq. (13), get the following matrix,

Consider a function Q(x) = Q (S, I1, I2) = diag

{

S

I1
, S

I1
, S

I1

}

, thenQ−1(x) = diag

{

I1
S
, I1
S
, I1
S

}

 , then the time 

derivative of the function, Qf (x) , suggests that

Now Qf (x)Q
−1 = diag

{

Ṡ

S
− İ1

I1
, Ṡ
S
− İ1

I1
, Ṡ
S
− İ1

I1

}

 and QJ |2|2 Q−1 = J
|2|
2  . A = Qf Q

−1 + QJ
|2|
2 Q−1 , which can be 

described as

where

Let (b1, b2, b3) be a vector in R3 and the || · || of (b1, b2, b3) is specified by ||b1, b2, b3|| = max{||b1|| + ||b2|| + ||b3||}. 
Now, we yield the Lozinski measure defined  by44, l(A) ≤ sup{h1, h2} = sup{l(A11)+ ||(A12)||, l(A22)+ ||(A21)||}, 
where hi = l(Aii)+ ||(Aij)|| for i = 1, 2 and i  = j, which implies that

where l(A11) =
PS

S
−

PI1
I1
− β(I1 + γ I2)− (γ1 + γ2 + d),

L
′

=

{

f1−β(I1 + γ I2)+ f3β(I1 + γ I2)− f1d

}

(S− S0)+

{

f1ρ1γ2 − f2(γ1 + γ2 + d)

+ f3γ1

}

I1 +

{

f1ρ2γ3 − (d + d1 + γ3)

}

I2 + φRf1 + σVf1.

(13)

dS

dt
= (1− u)α − β(I1 + γ I2)S− dS+ φR+ σV+ ρ1γ2I1 + ρ2γ3I2,

dI1

dt
= β(I1 + γ I2)S− (γ1 + γ2 + d)I1,

dI2

dt
= γ1I1 − (d + d1 + γ3)I2.

(14)

J =

(

−a11 a12 a13
a21 − a22 0
0 a32 − a33

)

,

J |2| =

(

−(a11 + a22) a23 − a13
a32 − (a11 + a22) a12
−a31 a21 − (a22 + a33)

)

.

(15)Qf (x) = diag

{

Ṡ

I1
−

Sİ1

I
2
1

,
Ṡ

I1
−

Sİ1

I
2
1

,
Ṡ

I1
−

Sİ1

I
2
1

}

.

(16)A =

(

A11 A12

A21 A22

)

,



































































A11 =
Ṡ

S
− İ1

I1
− β(I1 + γ I2)− (γ1 + γ2 + d),

A12 =
�

0 ρ2γ3
�

,

A21 =

�

γ1
0

�

,

A22 =

�

x11 x12

x21 x22

�

,

x11 =
Ṡ

S
− İ1

I1
− β(I1 + γ I2)− (γ1 + γ2 + d),

x12 = ρ1γ2,
x21 = β(I1 + γ I2),

x22 =
Ṡ

S
− İ1

I1
− (γ1 + γ2 + d)− (d + d1 + γ3).

(17)h1 = l(A11)+ ||(A12)||, h2 = l(A22)+ ||(A21)||,
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l(A22) = max

{

Ṡ

S
− İ1

I1
− β(I1 + γ I2)− (γ1 + γ2 + d), β(I1 + γ I2)

}

=

{

Ṡ

S
− İ1

I1
− β(I1 + γ I2)− (γ1 + γ2 + d)

}

, ||(A12)|| = ρ2γ3 and ||(A21)|| = max{γ1, 0} = γ1 . Therefore, h1 

and h2 becomes, such that h1 ≤ Ṡ

S
− (γ1 + γ2 + d)− (d + d1 + γ3) and h2 ≤ Ṡ

S
− γ1 −min γ1, γ2 , which shows 

that l(A) ≤
{

Ṡ

S
− γ1 −min{γ1, γ2} + γ2

}

 . Hence, l(A) ≤ Ṡ

S
− γ1 . Taking integral of l(A), one get

Hence the model (1) is globally asymptotically stable.   �

Numerical results of stability analysis
The Runge-Kutta method is widely employed in epidemiological models for numerical simulation due to its 
robustness and accuracy in solving differential equations that govern disease dynamics. Epidemiological models 
often involve a system of coupled differential equations that describe the interactions between various population 
compartments, such as susceptible, infected, and recovered individuals. The Runge-Kutta fourth-order method is 
renowned for its high accuracy in approximating solutions of differential equations, providing reliable and precise 
numerical results. Additionally, RK-4 exhibits strong convergence properties, ensuring stability and efficiency 
in solving a wide range of mathematical problems. Its versatility makes it suitable for capturing the complex and 
dynamic nature of infectious disease spread, allowing researchers to explore different scenarios and intervention 
strategies. The RK method’s efficiency and accuracy contribute to the reliability of numerical simulations, aiding 
in the understanding and prediction of epidemiological dynamics essential for public health decision-making.

In this section, we used the fourth-order Runge-Kutta method to solve the deterministic mathematical model 
and verify the  analysis45. Additionally, the use of numerical simulations can provide valuable insights into the 
dynamic behavior of the model. However, it’s important to note that the selection of parameter approximations 
should be justified and explained in detail. Additionally, it would be useful to discuss any potential limitations or 
assumptions made in using the Runge-Kutta method and how it affects the accuracy of the results. Variables and 
parametric values are given in Table 3, which are used for simulations. Furthermore, the time interval is taken 
from 0 - 200 units with initial problems for Susceptible class S(t) , Acute infected class I1(t) , Chronic infected 
class I2(t) , Vaccinated class V(t) , and Recovered class R(t) . The applications of the Runge-Kutta method of fourth 
order on the proposed model lead to the following system:

Algorithm
Step 1: S(0) = 0 , I1(0) = 0 , I2(2) = 0 , R(0) = 0 , V(0) = 0.

Step 2: for i=1,2,3,...,n-1.

Step 3: for i = 1, 2, 3, ..., n− 1 , write S∗(ti) = S
∗ , I∗1(ti) = I

∗
1 , I

∗
2(ti) = I

∗
2 , R∗(ti) = R

∗ , V∗(ti) = R
∗.

By running the above findings with the aid of the Matlab software, the graphs presented in the Figs. 3, 4, 5, 6, 
7, which shows the dynamic behavior of Susceptible class S(t) , Acute infected class I1(t) , Chronic infected class 
I2(t) , Vaccinated class V(t) and Recovered class R(t).

Figures 3, 4, 5, 6, 7 present the dynamics of the stability behavior of all considered classes of the population 
while taking into account all the employed initial conditions. The magnitude of the susceptible class is varied 
for values such as 100, 95, 80, and 85 in Fig. 3. The susceptible population increase in starting time after-some 
time the population decreases rapidly with time. Next, Fig. 4 depicts the stability attainment for varying sizes 
of the acute infected class such as 20, 18, 16, and 14. Time to gain stability increases with the decrease in the 
population of the acute infected class. Figure 5. present the relationship between stability and varying extent of 

(18)
lim
t→∞

sup sup
1

t

∫ ∞

0
l(A)dt < −γ1,

k = lim
t→∞

sup sup
1

t

∫ t

0
l(A)dt < 0.































S
i+1−S

i

l = (1− u)α − β(Ii1 + γ Ii2)S
i+1 − dSi+1 + σVi+1 + ρ1γ2I

i+1
1 + ρ2γ3I

i+1
2 ,

I
i+1
1 −I

i

l = β(Ii+1
1 + γ Ii+1

2 )Si+1 − (γ1 + γ2 + d)Ii+1
1 ,

I
i+1
2 −I

i

l = γ1I
i+1
1 − (d + d2 + γ3)I

i+1
2 ,

R
i+1−R

i

l = (1− ρ1)γ2I
i+1
1 + (1− ρ2)γ3I

i+1
2 − (σ + d)Ri+1,

V
i+1−V

i

l = uα − (σ + d)Vi+1.







































S
i+1 =

l (1−u) α−l β (Ii1 + γ I
i
2)+ l σ V

i+1

lβ (Ii1 + γ I
i
2)−d

,

I
i+1
1 =

I
i
1+lβIi1γS

i

1−l β((Si+l (γ1+γ2+d)
,

I
i+1
2 =

lγ1I
i
1+Ii2

1+l (d+d1+γ3)
,

R
i+1 =

l (1−ρ1)γ2I
i
1+l (1−ρ2)γ3I

i+1
2 +R

i

1+l(φ+d) ,

V
i+1 = luα+V

i

1+l(σ+d) .
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Figure 3.  The effects of variations in the Susceptible class S(t) are described by simulation results.

Figure 4.  The effects of variations in the Acute Infected class I1(t) are described by simulation results.

Figure 5.  The effects of variations in the Chronic Infected class I2(t) are described by simulation results.
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the chronic infected class for values such as 15, 12, 9, and 6. In starting the population decreases rapidly after 
65 days population is constant with time. In Fig. 6 The recovered class is varied for values as, 4, 5, 3, and 2. The 
recovered population increase starting time after-some time the population decreases rapidly with time. Lastly, 
Fig. 7 shows the relationship between stability and vaccinated population for values such as 10, 8, 6, and 4. Vac-
cinated class increase in starting time after a short time the population decreases rapidly with time.

Figure 6.  The effects of variations in the Recovered class R(t) are described by simulation results.

Figure 7.  The effects of variations in the Vaccinated class V(t) are described by simulation results.

Table 3.  Parameters and its values.

Parameters Values Source Parameters Values Source

β 0.005 34 γ 0.2 Estimated

u 0.05 35 α 0.01 35

ρ1 0.78 35 ρ2 0.93 34

d 0.02 34 σ 0.05 35

d1 0.04 34 γ1 0.065 34

γ2 0.59 Estimated γ3 0.065 34

ρ3 0.65 34 φ 0.4 Estimated
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Optimal control strategy
This section is dedicated to exploring the applicability of the infectious disease model with respect to the optimal 
control strategy. The employment of optimal control is initiated to intervene in the transmission of infectious 
disease in a particular community. Control strategies are formulated by employing sensitivity analysis and exam-
ining the dynamics of the proposed model. The maximum sensitivity index parameter is (γ1,β) whose value is 
between the interval (0.439, 1) increase in this parameter by 10 percent would increase the threshold quantity 
by (4.39, 1). Therefore, by using the control variable u1(t) ,  u2(t) , and u3(t) , we must reduce these values to stop 
the sickness from spreading. u1(t) and u2(t) represent (awareness about medication, isolation, and ventilation). 
We employ the control of another variable u3(t) signify (the vaccination rates and quarantine level). Here, our 
aim is to reduce the infectious population by increasing the number of recovered people and decreasing the 
number of infected people and vaccinated people by incorporating the time-dependent control parameters, 
u1(t), u2(t), and u3(t) which are described as

• u1(t) is the control variable that characterizes the awareness about medication.
• u2(t) is the control variable that characterizes the isolation and ventilation.
• u3(t) is the control variable that characterizes the Vaccination rates and quarantine level.

The differential equation of the model (1), with the inclusion of the control variables, is, now given as

along with the initial conditions are

The objective of this work is to show that time-dependent parameters minimize the cost of implementing those 
control measuring  techniques46. In optimal control of infectious disease models, utilizing three classes of objective 
functions allows for a comprehensive assessment of intervention strategies. By considering objectives related to 
minimizing infections, controlling transmission rates, and maximizing the number of recovered people. There-
fore, the objective function is specified as

where, z1, z2, z3, z4, z5, and z6, represents weight constant associated with each class. The weight constant 
z1, z2, z3, represents the cost of acute infected people, chronic infected people, and vaccinated people, while 

z4, z5, z6, represents the control variables. Further, 
{

1
2 z4 u

2
1,

1
2 z5u

2
2,

1
2 z6u

2
3

}

 describes the awareness about medi-

cation, isolation and ventilation, vaccination rates and quarantine level. Our objective is to find the optimal 
control variables u∗1 , u∗2 , u∗3 such that

dependent on control system (19), where we define the control set U as

Existence of the optimal control system
The existence of optimal control is persuaded by considering initial time t = 0 for the fulfillment of each con-
dition of the control system. To achieve the goal, the bounded Lebesgue measurable  control47 by considering 
the initial conditions and ensuring an upper-bound solution for the system. The matter of optimal control is 
addressed by delving into the Lagrangian and Hamiltonian, whereas the following equation illustrates the optimal 
control problem within the Lagrangian framework as

(19)



























































dS
dt

= (1− u)α − β(I1 + γ I2)S(1− u1)− dS+ φR
+ σV+ ρ1γ2I1 + ρ2γ3I2,

dI1
dt

= β(I1 + γ I2)S(1− u1)− (γ1 + γ2 + d)I1 − (u2 + u3)I1,
dI2
dt

= γ1I1 − (d + d1 + γ3)I2 − (u2 + u3)I2,
dR
dt

= (1− ρ1)γ2I1 + (1− ρ2)γ3I2 − (φ + d+u3)R,
dV
dt

= uα − (σ + d)V− u1V,

S(0) ≥ 0, I1(0) ≥ 0, I2(0) ≥ 0, R(0) ≥ 0, V(0) ≥ 0.

(20)J
(

u1(t), u2(t), u3(t)
)

=

∫ T

0

{

z1I1 + z2I2 + z3V+
1

2

(

z4 u
2
1(t)+ z5 u

2
2(t)+ z6 u

2
3(t)

)

}

dt,

(21)J(u∗1 , u
∗
2 , u

∗
3) = min

{

J(u1, u2, u3), u1, u2, u3ǫU

}

,

(22)U =

{

(u1, u2, u3)/ui(t) is lebesgue measurable on [0, 1], 0 ≤ ui(t) ≤ 1, i = 1, 2, 3

}

.

{

L
{

(S, I1, I2,R,V, u1, u2, u3)
}

= z1I1 + z2I2

+z3V+
1

2

(

z4 u
2
1
(t)+ z5 u

2
2
(t)+ z6 u

2
3
(t)

)

.
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The minimal possible value of optimal control is achieved by providing the Hamiltonian function H in the 
subsequent form

Henceforth in this way the presence of optimal control, we consider the subsequent resultant. First we have to 
show that (u∗1 , u

∗
2 , u

∗
3) these control variables are exist.

Theorem 5.1 There exists an optimal control U∗ = (u∗1 , u
∗
2 , u

∗
3) ǫU , to the control problem (19) and objective 

function (20).

Proof In order to prove the existence of an optimal control, thru the result  in48. Subsequently, the state 
variables and the control variables have all positive values. It is also detected that the control variable 
set U is convex and closed by the declaration. Furthermore, the control system is bounded which states 
the compactness of the considered problem. One may notice the convex nature of integrand involves in 
[

z1I1 + z2I2 + z3V+ 1
2 (z4 u

2
1(t)+ z5 u

2
2(t)+ z6 u

2
3(t))

]

 concerning control set U which guarantees the exist-
ence of the optimal control (u∗1 , u

∗
2 , u

∗
3) .   �

Optimality condition
To define an optimal approach to the problem (19) and (20). First, we investigate the optimal control issues of 
Eqs. (19) and (20) using Lagrangian and Hamiltonian functions. The Lagrangian shows the optimal control 
problem is presented by the subsequent equation

The associated Hamiltonian (H) is defined via the following notion F = (F1, F2, F3, F4, F5) and 
� = (�1, �2, �3, �4, �5) . For the minimal value of the Lagrangian, we govern the Hamiltonian (H) for the optimal 
control problem by way of

where,

Further,

We revive the use of the Pontryagin maximum  principle49,50 for finding the optimal solution to the proposed 
model (19). Further, the existence of the non-trivial vector functions such as � = (�1, �2, �3, �4, �5) is noticeable, 
especially when (x∗, u∗) is considered as the optimal procedure for the launched control problem in regarding

The Maximality condition

describe the transversally condition as �(tf ) = 0.

Theorem 5.2 Given an optimal state (u∗1 , u
∗
2 , u

∗
3) variables and solution S∗, I∗1, I

∗
2,R

∗,V∗ of the equivalent state 
systems (19) and (20), there exist adjoint variables �(t) satisfying

H = L(S, I1, I2,R,V, u1, u2, u3)+ �1
dS(t)

dt
+ �2

dI1(t)

dt
+ �3

dI2(t)

dt
+ �4

dV(t)

dt
+ �5

dR(t)

dt
.















L(I1, I2,V,w1,w2,w3) =

�

z1I1 + z2I2

+z3V+ 1
2

�

z4 u
2
1(t)+ z5 u

2
2(t)+ z6 u

2
3(t)

�

�

.

H(x, u, �) = L(x, u)+ �F(x, u),

{

x = (S, I1, I2,R,V), � = (�1, �2, �3, �4, �5),
F(x, u) = F1(x, u), F2(x, u), F3(x, u), F4(x, u), F5(x, u).

(23)



















F1(x, u) = (1− u)α − β(I1 + γ I2)S(1− u1)− dS+ φR+ σV+ ρ1γ2I1 + ρ2γ3I2,
F2(x, u) = β(I1 + γ I2)S(1− u1)− (γ1 + γ2 + d)I1−(u2 + u3)I1,
F3(x, u) = γ1I1 − (d + d1 + γ3)I2−(u2 + u3I2,
F4(x, u) = (1− ρ1)γ2I1 + (1− ρ2)γ3I2 − (φ + d + u3)R,
F5(x, u) = uα − (σ + d)V−u1V.

dx

dt
=

∂H(t, x, u, �)

∂u
,

0 =
∂H(t, x, u, �)

∂u
,

�
′

(t) = −
∂H(t, x, u, �)

∂x
.

(24)H(t, x∗(t), u∗(t), �(t))∂x = maxu1,u2,u3ǫ[0,1]H(x∗(t), u1, u2, u3, �(t)),
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the transversality condition is defined as �i(t) = 0 for i = 1, 2, 3, 4.

Moreover, the control variables u∗1(t), u
∗
2(t), u

∗
3(t) are obtained as:

Proof The Pontryagin Maximum Principle is directly applied to produce the adjoint system (25), while �(t) = 0 , 
directly results in the transversal condition. Regarding the class of optimal functions u∗1 , u

∗
2 and u∗3 , we used ∂H

∂u  . 
In the section that follows, we numerically solve the optimality system. The control system defines the optimal-
ity system (19) with the adjoint system (25), boundary circumstances, as well as the best control strategies. Our 
control strategies, which are illustrated in Figures 8 and 10, to increase the susceptible and recovered population 
and reduce the infected and vaccinated population were supported by the simulation that was run.   �

Numerical simulation and discussion
This section is dedicated to delineating the legitimacy of the proposed control scheme through the launch of 
numerical evaluation. The strategic environment is enriched by involving a diverse and wide range of parametric 
settings. The foundations of the numerical proceedings are instigated by considering the compartmental initial 
conditions are taken  from34 for the devised model such as S(0) = 100, I1(0) = 20, I2(0) = 15, V(0) = 10 
and R(0) = 5 . Moreover, the objective of consistency is maintained by taking into account the literature-oriented 
values of parameters associated with different compartments given in Table 3. We determine the ideal control 
system (19) to see the impact of medication, ventilation, isolation, and quarantine level. The resolve of the issue 
of optimization is persuaded through the employment of the Runge–Kutta fourth-order technique along with 
the application of the transversality criterion within the time interval of [0, 50]. Furthermore, the values of 
weight constant are assumed to be z∗1 = 0.90030, z∗2 = 0.43454, z∗3 = 0.3550, z∗4 = 0.5560, z∗5 = 0.67676 and 
z∗6 = 0.999 . Graphical representation and table of parameters used in Optimal control analysis are given below:

Figures 8, 9, 10 depict the dynamics of comparative effectiveness of the proposed model, with respect to both 
scenarios that is with control and without control. This description is foreseen for all five compartments with 
respect to time in days. The gain of the optimal control strategy is noticeable for all compartments of the popula-
tion. Figures 8 shows the dynamic behavior of Susceptible class S(t) , Acute infected class I1(t), Chronic infected 
class I2(t) , and Recovered class R(t) and the Vaccinated class V(t) with and without control interventions. 
Further, Fig. 8a represents the behavior of number of susceptible population decrease after using the optimal 
control strategy. Figure 8b Utilizing these control measures will reduce the number of acute infected populations 
after applying the control. Similarly, Fig. 8c the number of population of chronic infected populations decreased 
after applying the control. Figure 8d the recovered population rapidly increases and achieves convergence after 
applying optimal control. Figure 8e the number of the vaccinated population rapidly decreases after applying 
the control. The recovered population increase, reducing the infected and vaccinated population was evidently 
supported by the simulation that was run. Figure 10b,c,d are dedicated to highlighting the robustness of control 
variables with respect to time in days.

Conclusion
This article proposes a novel mathematical model to encapsulate the viral transmission of infectious diseases. The 
optimal control strategy is launched while considering five related epidemiological compartments. The popula-
tion under study is divided into five strata such as; Susceptible class S(t) , Acute Infected class I1(t) , Chronic 
Infected class I2(t) , Recovered class R(t) and Vaccinated class V(t) . The target of generality is maintained by 
employing a wide range of parametric settings involving, disease transmission rate from the susceptible class 
to the acute infected class, the untreated death rate of the susceptible class, the disease-related death rate of the 
acute infected class, a recovery rate of the chronic infected class. In the procession, rigorous persuasion into the 
local stability of the system, global stability of the system along with sensitivity analysis, positivity, and invariant 
region is considered. The implementations of the outcomes of the research are further supported and widened by 
the inclusion of more popular health interventions such as; quarantine, vaccination, medication, and mandatory 
use of masks. It is delineated that in the case of stability of the system, the susceptible class increase in starting 
point after some time population decrease rapidly with respect to time. Moreover, under the norm of stability, 
the interaction of underlying compartments indicates a higher likelihood of a decrease in the number of Acute-
infected and Chronic-infected individuals. The exploration into the sensitivity parameter indicated an increase 
of 4.39 units in threshold quantity remained associated with a 10 percent increase in the sensitivity parameter.

(25)
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For optimal control analysis, we focused on the introduction of parameters represented by u1, u2 , and u3 , 
which are time-dependent control variables. We established an optimal control problem by defining an objective 
function with the goal of finding the optimal values for the afore mentioned control variables to minimize the 
overall cost. Applying Pontryagin’s principle, we derived the essential conditions for the optimal solution. The 
study explored the feasibility of three distinct optimal control approaches. In the first scenario, we determined 
optimal solutions by focusing solely on awareness about medication u1 as a control variable. The second approach 
involved considering the effectiveness of isolation and quarantine u2 as time-dependent controls. Lastly, the third 
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Figure 8.  The graphical results display the dynamics behavior of the compartmental population are Susceptible, 
Acute, and Chronic Infected populations, Recovered and vaccinated with and without controls scenarios.
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approach involved vaccination rates u3 as time-dependent controls. Graphical results clearly demonstrate the 
effectiveness of each strategy in reducing both acute and chronic infections, suggesting their potential imple-
mentation to mitigate the spread of infectious diseases in the population. The graphical results also revealed 
that the case where we considered all three control variables, simultaneously, is more effective in reducing the 
spread of infectious flow. The optimal control strategy advocated the efficacy of the employment of popular 
health interventions such as; quarantine, face masks, and hand washing, to restrict the transmission chain of 
the infectious disease. Additionally, our findings concluded that simulations with time-dependent controls are 
more cost-effective compared to those with time-independent controls.

In the future, it will be interesting to extend the above-developed model to explore the impact of the fractional 
order approach while maintaining the optimal control in place. It is anticipated that the ability of the fractional 
order scheme to use available information will be beneficial to further uncover the transmission of diseases in 
the population. Moreover, rigorous focus will remain on the exploration of the applicability of the proposed 
scheme on data sets involving varying geographical locations, socio-economic stratifications prevalent in the 
society along the degree of access to health facilities. Furthermore, it will be engaging to explore the efficacy of the 
devised model when dealing with multiple infectious flows at the same time. By figuring out how these strategies 
work together or against each other, we hope to create better plans to control these diseases around the world.

Ethical approval
In this study, human data has not been used for modeling.

Data availibility
The datasets generated during the current study are available from the corresponding author (Homan Emadifar) 
on reasonable request.
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Figure 9.  The graphical results display the dynamics behavior of control variable u1.
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Figure 10.  The graphical results display the dynamics behavior of control variables u2, u3.
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