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Leveraging opposition‑based 
learning for solar photovoltaic 
model parameter estimation 
with exponential distribution 
optimization algorithm
Nandhini Kullampalayam Murugaiyan 1*, Kumar Chandrasekaran 2, 
Premkumar Manoharan 3* & Bizuwork Derebew 4*

Given the multi‑model and nonlinear characteristics of photovoltaic (PV) models, parameter 
extraction presents a challenging problem. This challenge is exacerbated by the propensity of 
conventional algorithms to get trapped in local optima due to the complex nature of the problem. 
Accurate parameter estimation, nonetheless, is crucial due to its significant impact on the PV 
system’s performance, influencing both current and energy production. While traditional methods 
have provided reasonable results for PV model variables, they often require extensive computational 
resources, which impacts precision and robustness and results in many fitness evaluations. To address 
this problem, this paper presents an improved algorithm for PV parameter extraction, leveraging the 
opposition‑based exponential distribution optimizer (OBEDO). The OBEDO method, equipped with 
opposition‑based learning, provides an enhanced exploration capability and efficient exploitation of 
the search space, helping to mitigate the risk of entrapment in local optima. The proposed OBEDO 
algorithm is rigorously verified against state‑of‑the‑art algorithms across various PV models, including 
single‑diode, double‑diode, three‑diode, and photovoltaic module models. Practical and statistical 
results reveal that the OBEDO performs better than other algorithms in estimating parameters, 
demonstrating superior convergence speed, reliability, and accuracy. Moreover, the performance of 
the proposed algorithm is assessed using several case studies, further reinforcing its effectiveness. 
Therefore, the OBEDO, with its advantages in terms of computational efficiency and robustness, 
emerges as a promising solution for photovoltaic model parameter identification, making a significant 
contribution to enhancing the performance of PV systems.

Addressing climate change and shaping effective energy policies have become urgent global priorities. In this 
context, the value of photovoltaic (PV) power generation cannot be overstated. It offers a pathway to harness 
electricity from solar radiation, all while bypassing greenhouse gas  emissions1,2. The usage of PV systems has 
witnessed a substantial rise, despite their relative costliness, as part of the solution to these global issues. Recent 
research has concentrated on crafting precise models to maximize the productivity of renewable energy (RE) 
sources. These endeavours aim to provide viable alternatives to traditional fossil fuels, whose usage is tied to 
environmental pollution. Among various renewable sources, solar energy stands out. Its capacity to generate 
electricity through PV power is a green alternative that causes no environmental harm. PV systems, pivotal in 
renewable energy development, transform solar energy into electrical  power3–5. However, they face challenges due 
to environmental influences like dust, weather changes, and temperature variations. These elements can decrease 
the efficiency of solar cells, making the need for accurate PV models crucial. Such models can help optimize the 
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energy conversion process and mitigate these challenges. Solar energy is a significant renewable source, capable 
of generating electricity without excessive resource consumption or environmental pollution. Yet, the practical 
application of this source faces obstacles, including low photoelectric conversion and the need for precise PV 
cell modelling. Furthermore, the veracity of simulation results in various power systems relies heavily on correct 
PV module modelling. Therefore, developing robust mathematical models is essential for predicting solar cell 
parameters and understanding their  behaviour6–8.

In PV equivalent circuits, the single-diode-model (SDM) is formed with one diode and two  resistors9, while 
introducing two diodes results in the double-diode model (DDM)10, and so forth. As diodes increase, so do the 
uncertain variables within the photovoltaic models. For example, a single-diode PV model contains five unknown 
parameters, a DDM has seven, and a Triple-Diode Model (TDM) possesses  nine11,12, and this progression con-
tinues. This illustrates that the complexity of the model grows with the increasing count of diodes. Parameters 
such as shunt-resistor, shunt-resistance current, series resistor, and saturation current, among others, are unac-
counted for in these PV models. They must be computed and recovered from the PV characteristic curves. An 
accurate estimation of such parameters is vital for the optimal operation of solar cell models. Any misestimation 
can introduce significant discrepancies in the system output, leading to errors in the manufacturers’ data. There-
fore, determining these parameters is an essential task that significantly enhances the PV system’s optimization 
and performance. The PV mathematical model equations are inherently implicit, nonlinear, multivariable, and 
multimodal. It is widely accepted among researchers that solving PV models presents substantial challenges. As 
such, multiple methods have been proposed to extract, evaluate, and simulate PV parameters in a precise, reliable, 
and timely  manner6,7,13,14. The literature reveals that various PV models are typically utilized to examine the I–V 
characteristics of PV cells, with the SDM forming the fundamental basis. However, the SDM fails to account for 
recombination losses occurring in the depletion region. For this reason, besides SDM, this study considered the 
DDM and the TDM to model solar cells effectively. The DDM is acknowledged to provide more precise outcomes 
than the single-diode model because it factors in the effects of low current. Meanwhile, the TDM addresses the 
PV cell’s intricate nonlinear behaviour and is perceived as a high precise model than the ideal, SDM, and DDMs. 
Furthermore, it depicts solar cell characteristics in situations involving leakage current. However, the TDM’s 
mathematical resolution presents challenges due to its nonlinear equations. Therefore, the problems associated 
with the TDM are typically addressed by transforming them into optimization  problems15–17.

Accuracy in parameter estimation for solar PV systems is crucial for several reasons: (i) Accurate parameter 
values are essential for optimizing the performance of PV systems. They ensure that the system operates at its 
maximum efficiency, thereby maximizing energy output; (ii) Precise parameters help in predicting the behaviour 
of PV systems under different conditions, which is vital for ensuring their reliability and longevity; (iii) Accurate 
estimation impacts the economic feasibility of PV installations. Overestimation or underestimation of system 
capabilities can lead to financial losses or underutilization of resources, and (iv) As solar technology evolves, 
the need for precise parameter estimation becomes even more critical to leverage advancements in PV materi-
als and designs fully. Over the past several decades, researchers have made significant strides in understanding, 
optimizing, and estimating the parameters of various PV mathematical models. A range of methods has been 
proposed in the literature to handle and analyze the non-linearity of PV models, focusing on accuracy and 
efficiency. These solutions largely depend on the information sourced from the manufacturer’s datasheet, which 
can be divided into two main categories: the I–V characteristic approach and the key point  technique18,19. The 
key point-based technique extracts uncertain variables from the experimental samples offered by manufacturers. 
This approach simplifies the models by minimizing the expressions and incorporating a few experimental data. 
It identifies variables through significant points such as maximum power point (MPP) and data derived from 
the slopes of the experimental curves for the open-circuit voltage and short-circuit current points. However, 
this simplification of equations compromises the method’s efficiency and accuracy. Recent research indicates 
that this method lags behind the I–V characteristic method in extracting parameters. The I–V characterization 
curve-based approach uses numerical optimization methods to determine the PV variables by minimizing the 
differences between experimental and calculated current data. Using this strategy, parameters can be identified 
in a variety of ways. Analytical, numerical, and technological approaches based on intelligent/metaheuristic 
methods have recently been classified as existent solutions in the scientific community for obtaining and deter-
mining PV characteristics from the I–V  curves20–22.

In the analytical technique, a PV solar cell’s precise mathematical model and its parameters are established 
using explicit equations. These equations use data from datasheets or significant points from the experimental 
I–V curve, such as open circuit voltage, short circuit current, and MPP current and voltage, to directly calculate 
the model parameters. Although straightforward to use, this approach is based on some simplifying presump-
tions that compromise the entire model’s reliability and produce wildly exaggerated projections of economic 
 returns14,23. Furthermore, these methods lack flexibility and are particularly sensitive to measurement noise. 
Another approach is numerical parameter identification methods, such as the widely-used Newton  method24. 
These gradient-based algorithms have a straightforward procedure to accurately and quickly find the optimal 
model parameters. Nevertheless, they are highly sensitive to the initial parameter assumptions. If the technique 
starts from an initial solution distant from the optimal point, it may converge to a local optimal. Similar methods, 
like the Lambert W-based analytical  method25,26, have been proposed for accurately determining the PV model 
parameters. This method is more effective in ease of implementation, robustness, efficiency, and accuracy than 
other methods. Yet, its application scope is limited and can easily fall into a local optimum point. Given that 
the PV cell model is generally nonlinear, the parameter estimation of the PV cell model exhibits multivariable 
and nonlinear characteristics. Consequently, numerical and analytical optimization methods may struggle to 
handle such nonlinear optimizations effectively. To address these weaknesses, intelligent algorithms have been 
 introduced27,28. These aim to improve the parameter identification performance by minimizing the overall error 
between all experimental and simulated I–V curve data points.
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Over the years, researchers have found that traditional methods, such as the I–V characteristic curve and 
key point approaches, may not be the most efficient means of deriving PV variables from equivalent PV models. 
In response, a shift towards adopting metaheuristic methods has been observed, as these methods demonstrate 
superior abilities in parameter extraction and  analysis6,29,30. Unlike analytical and numerical methods subject 
to strict constraints and assumptions, metaheuristic methods offer a more flexible and accurate approach. The 
growing interest in meta-heuristic methods has led to the exploration of various algorithms, many of which are 
inspired by natural phenomena. These algorithms have consistently outperformed previous methods in terms of 
accuracy and efficiency. However, these methods are not without their challenges. High computation time is often 
required, and due to their stochastic nature, finding the optimal solution can still be elusive. Several techniques, 
such as genetic algorithm (GA)31, differential evolution (DE)  algorithm32,33, cuckoo search (CS)34,35, artificial 
bee colony (ABC)36, teaching–learning-based optimization (TLBO)37, and particle swarm optimization (PSO)38, 
have been leveraged to minimize discrepancies between experimental and simulated current data in PV models. 
Despite their effectiveness, these techniques could benefit from enhancements in computational time efficiency. 
The GA, one of the most commonly used evolutionary algorithms, has been employed to solve many optimiza-
tion problems, including extracting electrical parameters from various PV cells. Researchers have gone a step 
further by merging GA with other techniques, such as the Newton–Raphson or the interior point technique, to 
intensify the precision of PV  variables39,40. Similarly, the DE and PSO algorithms, another popular evolutionary 
algorithm, have been modified and improved to cater to the PV model parameter extraction needs. However, 
like all stochastic algorithms, their accuracy and reliability can be unpredictable. Introducing hybrid algorithms 
has revolutionized extracting parameters from photovoltaic models in recent years. These innovative solutions 
include combinations of DE and reinforcement  learning41, the gaining-sharing knowledge-based algorithm 
(GSK)42, the comprehensive learning Rao-1  algorithm43, hybrid PSO and grey wolf optimizer (HPSOGWO)44, 
the modified honey badger algorithm (HBA)45, and an adaptive harris hawk optimization (HHO) algorithm that 
employs sine–cosine  transformations46. Each hybrid method is designed to strike a balance between explora-
tion and exploitation in the extraction process. Moreover, an array of unique methods such as the chaotic tuna 
swarm algorithm (CTSA)47, gradient-based optimizer (GBO)48–50, slime mould algorithm (SMA)51, artificial 
hummingbird  optimizer52, butterfly optimization algorithm (BOA)53, improved arithmetic optimization algo-
rithm (IAOA)15, mountain gazelle optimizer (MGO)54, resistance–capacitance  optimizer55, and a war strategy 
optimization (WSO)  algorithm56 inspired by ancient warfare tactics have also been proposed for the extraction 
of unknown parameters of solar PV systems. Table 1 additionally encompasses pertinent information, including 
the specific performance criteria, enhanced method, electrical model, solar cell/panel type, and the data employed 
to estimate parameters. This table offers a thorough evaluation of numerous studies.

Furthermore, various hybrid approaches have been suggested to address the limitations of single algorithms 
and enhance the efficiency of parameter estimation for photovoltaic models. These include the ABC algorithm 
with  DE70, teaching–learning-based ABC (TLBABC)71, collaborative intelligence of different  swarms72, Opposi-
tion-Based Flower Pollination Algorithm and Nelder-Mead simplex (OBFPA-NM)73, hybrid GWO and  PSO44,74, 
Levenberg–Marquardt algorithm combined with simulated annealing algorithm (LMSAA)75, and hybrid firefly 
and pattern search algorithm (HFFPSA)76, hybrid GWO and CS  algorithm77, etc. These approaches combine 
different techniques to achieve more effective results. The RMSE between the experimental and calculated cur-
rent for the PV model is lower in OBFPA-NM compared to TLBABC and LMSAA. While the OBFPA-NM and 
HFFPSA methods yield the same RMSE value for both the SDM and DDM models, the estimated parameters 
obtained from these two approaches are distinct. When comparing the DDM, OBFPA-NM demonstrates supe-
rior performance over TLBABC. It was noted that the RMSE of OBFPA-NM was marginally lower than that of 
HFFPSA while predicting parameters for an SDM of the PV module. The effectiveness of these strategies varies 
depending on the task at hand, and their ability to produce accurate results quickly is heavily influenced by 
selecting the appropriate algorithm parameters. These approaches have recently garnered increased interest due 
to their lack of stringent requirements.

Despite the plethora of meta-heuristic algorithms available to researchers seeking to extract PV model param-
eters, achieving accurate and reliable results remains a complex and challenging task. This persistent challenge 
underscores the need for continual refinement and innovation in developing algorithms and methods for PV 
parameter extraction. This brings us to an essential conundrum: Can we effectively address this issue using 
current algorithms without sacrificing accuracy and stability? The “no-free-lunch (NFL)” theorem provides a 
fitting response to this  query78. This theorem posits that no single algorithm can optimally resolve all optimiza-
tion issues, as the superior performance of an algorithm in solving one specific problem does not guarantee an 
equivalent level of success in tackling other issues. Consequently, the quest for an ideally suitable meta-heuristic 
algorithm remains an ongoing research topic. The NFL theorem has laid the groundwork for numerous studies 
and allowed for the customization of existing algorithms to cater to novel problem classifications.

Historically, precise extraction of PV model parameters has been a complex task. This has motivated our 
development of the opposition-based exponential distribution optimizer (OBEDO). The original exponential 
distribution optimizer (EDO)—an algorithm known for its simplicity, efficiency, and fast convergence—demon-
strated its strength in addressing global optimization  issues79. However, despite its success in global optimization 
problems, the EDO faced limitations when dealing with local optima. To overcome these limitations, this study 
introduced OBEDO, an advanced EDO version incorporating an opposition-based learning approach. These 
strategies ensure a more accurate and precise extraction of parameters from various PV models. One pivotal 
strategy, opposition-based learning (OBL), is a memory repository that records prior  positions80. These records 
are then compared with newly generated positions to inform positioning adjustments. The result is a system 
better equipped to navigate local optima and identify promising new positions. The main contributions of this 
paper can be summarized as follows:
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References PV models Solar cell/module Improved algorithm Performance criteria Results

57 SDM, DDM PV Module
R.T.C. France, Photowatt-
PWP201, STM6–40/36, SM55, 
KC200GT, ST40

Classified perturbation muta-
tion-based PSO (CPMPSO)

Root-mean-square error 
(RMSE)

The effectiveness of CPMPSO 
is estimated using PV module 
models

47 TDM KC200GT PV module, SM55, 
RTC France Si

Chaotic tuna swarm optimizer 
(CTSO)

RMSE, integral absolute error 
(IAE),  R2

The utilization of the CTSO 
algorithm, which incorporates a 
chaotic tent map and the New-
ton–Raphson method, yields 
enhanced exploitation and 
exploration phases, ultimately 
leading to the attainment of a 
global solution within a reduced 
timeframe

58 SDM, DDM, TDM R.T.C France, Photowatt-
PWP201 Rao algorithm RMSE

The Rao method enhances the 
overall search capabilities of the 
original Rao algorithm by the 
use of a novel search strategy 
that relies on three distinct 
search equations

59 DDM Calyxo CX3, JAP6–60–250 
W/3BB, JAM6–60–260

Wind-driven-based fruit fly 
optimization (WDFO)

Normalized RMSE, mean 
absolute percentage error 
(MAPE), R2

Merging the features showed 
improved viability, convergence 
speed, and accuracy compared 
to the original algorithms

60 SDM, DDM, TDM, PV Module Photowatt-PWP201, STM6–
40/36, STP6–120/36

Population diversity-controlled 
DE (PDcDE) RMSE

In the PDcDE algorithm, the 
basic DE algorithm’s optimiza-
tion process was enhanced 
using the diversity feature, 
showing superior efficiency and 
effectiveness for PV systems’ 
parameter estimation

61 SDM, DDM, TDM
Photowatt-PWP201, STM6–
40/36, STP6–120/36, KC200GT, 
SM55, ST40w

Memory-based gorilla troops 
optimizer (MGTO) RMSE

The MGTO algorithm, which 
combines the gorilla memory-
saving and explorative gorilla 
with adaptive mutation mecha-
nism techniques, improves 
effectiveness by evading the 
local optima

33 SDM, DDM, PV module Photowatt-PWP 201, STM6–
40/36, RTC France cell DE RMSE

The DE algorithm, which 
estimated parameters using I–V 
samples structured using the 
Lambert-W function, showed 
greater precision and conver-
gence speed compared to PSO, 
PSO alternatives and GA

62 SDM, DDM, TDM, PV Module SM55, KC200GT, ST40, R.T.C. 
France

Laplacian Nelder-Mead hunger 
games search (LNMHGS) RMSE, IAE, RE

The LNMHGS algorithm 
effectively achieved a balance 
between exploration and 
exploitation in the search 
process of the HGS method by 
incorporating the Laplacian 
approach and Nelder-Mead 
simplex approaches

63 SDM, DDM, TDM
STP6–120/36, STM6–40/36, 
Photowatt-PWP201 PV Mod-
ules, R.T.C. France

Heterogeneous differential 
evolution (HDE) RMSE

The HDE method exhibited 
superior accuracy and stability 
in parameter estimation com-
pared to the DE algorithm

64 SDM, DDM, TDM, PV Module SM55, SW255, KC200GT, 
R.T.C. France

Robust niching chimp optimi-
zation (RN-ChOA) RMSE

The RN-ChOA algorithm, 
which draws inspiration from 
the niche notion, has shown 
superior performance in 
predicting the parameters of the 
PV model compared to other 
alternative algorithms

46 SDM, DDM, TDM, PV Module
SM55, KC200GT, ST40, Pho-
towatt-PWP201 PV modules, 
R.T.C. France

Adaptive harris hawk optimiza-
tion (ADHHO)

Absolute error (AE), RMSE, 
normalized RMSE

The ADHHO algorithm has 
demonstrated effectiveness 
and efficiency in extracting 
unidentified variables within 
the PV model

65 DDM TITAN-12–50 PV Improve AOA MAE, normalized root-mean-
square deviation (NRMSD)

The IAOA enhanced the 
original algorithm’s local search 
ability by using a new search 
operator, demonstrating superi-
ority in terms of RMSD, MAE, 
and RMSE, MAE

66 SDM, DDM, TDM, PV Module
Photowatt-PWP201, KC200GT, 
ST40 PV modules, R.T.C. 
France

Opposition-based learning 
gradient-based optimization 
(OBGBO)

RMSE

The OBGBO showed signifi-
cantly increased discovery and 
exploitation capacity compared 
to other algorithms in param-
eter definition

Continued
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• The introduction of OBEDO, engineered to extract PV model parameters effectively.
• Incorporating the OBL technique is designed to enhance the quality of positions by utilizing a history of 

prior positions.
• The comparison of OBEDO with other recognized algorithms using various PV models.
• Through comprehensive experimental results and statistical analyses, this study demonstrates the superior 

performance of OBEDO.

The rest of this document is organized as follows: Section “Photovoltaic modelling and problem formulation” 
delves into the various photovoltaic models, meticulously explaining their mathematical aspects, and explores 
the crafting of the objective function. Section “Proposed opposition-based exponential distribution optimizer” 
provides a succinct overview of the exponential distribution optimizer, thoroughly elaborating on the structure 
of the suggested OBEDO methodology. Section “Results and discussions” examines the results of various case 
studies, providing a profound analysis of the experiments. The final section wraps up the study, offering future 
research directions.

Photovoltaic modelling and problem formulation
This section details the various photovoltaic modes and their respective mathematical modelling. Furthermore, 
the objective function construction is also deliberated.

Photovoltaic modelling
Photovoltaic devices translate sunlight straight into electricity utilizing the photovoltaic effect. Accurately depict-
ing these mechanisms is crucial to predicting their performance, designing systems, and undertaking thorough 
analysis. The three main models applied in PV system representation are SDM, DDM, and  TDM16,81–83. Typically, 
a cell is represented through a singular current source, denoted as Iph . The photocurrent, Iph , is reliant on the 
intensity of solar radiation.

The single-diode model is the most elementary and prevalently employed model for assessing PV systems. 
This model encompasses one semiconductor junction and the subsequent photovoltaic effect. Despite its sim-
plicity, this model can effectively depict the function of a solar cell across diverse operational conditions. In the 
framework of the SDM, we engage a sole non-ideal diode, integrated into parallel alignment with the current 
source, a scenario visually represented in Fig. 1. As was broached earlier, Rsh symbolizes the parallel resistance, 
Rse stands for the series resistance, and the current traversing through the diode is designated as Id . However, a 
contrasting approach is adopted in the DDM, wherein a pair of imperfect diodes are collaboratively connected 
in a parallel manner to one unique current source, a setup graphically elucidated in Fig. 2. In this configuration, 
Id1 and Id2 denote the currents that flow through the first and second diodes, respectively, with Id2 in particular, 
corresponding to losses experienced within the space charge region. The fundamental mathematical formula 
for the single-diode model is as  follows84,85.

The diode current Id is deduced using the Shockley diode formula, and the leakage current Ish is attributed 
to the shunt resistance, which reflects power losses in the PV cell. By including the expressions for Id and Ish , 
Eq. (1) is expanded as follows.

(1)Ipv = Iph − Id − Ish

(2)Ipv = Iph − Isd

(

exp

(

Vpv + IpvRse

nVt

)

− 1

)

−
Vpv + IpvRse

Rsh

References PV models Solar cell/module Improved algorithm Performance criteria Results

67 SDM, DDM, TDM RTC France PV cell Improved EO RMSE

The use of the balance opti-
mizer algorithm, in conjunction 
with the backpropagation and 
IEO methods, demonstrated 
superior performance compared 
to EO, PSO, GWO and ABC. 
This was achieved by efficiently 
leveraging the global and local 
search capabilities inherent in 
the algorithm

68 SDM, DDM, PV Module
R.T.C. France, SM55, 
Photowatt-PWP201, KC200GT, 
ST40

Performance-guided JAYA 
algorithm (PGJAYA) RMSE

PGJAYA is suggested to find 
the PV cell/module model 
parameters

69 SDM, DDM, PV module Photowatt-PWP201, R.T.C 
France

Hybrid seagull optimization 
algorithm (HSOA) IAE, RMSE

The HSOA algorithm, which 
improved the basic SOA’s opti-
mization capability with three 
modified strategies, has been 
developed

Table 1.  Literature study.
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where Isd represents the diode saturation current, Vpv denotes the PV cell output voltage, Ipv denotes the PV cell 
output current, n denotes the ideality factor, Vt is the thermal voltage, k denotes Boltzmann’s constant, q denotes 
the electron charge, and T denotes the cell temperature.

Examining Eq. (2) reveals five undetermined variables: Iph , n , Isd , Rse , and Rsh . Accurate estimation of these 
parameters from the I–V characteristic of the PV cell is crucial for successful PV modelling. However, the SDM 
does not consider losses in the depletion region. This has led to the proposition of the DDM by researchers who 
have asserted that the DDM yields more precise results. The DDM is a more intricate model accounting for 
recombination losses in both the depletion and quasi-neutral regions of the solar cell, phenomena not represented 
in the SDM. The equivalent circuit of the DDM is shown in Fig. 2. Essentially, it embodies two single-diode 
models functioning in parallel, hence “double-diode”. The equation for the DDM becomes more sophisticated, 
incorporating two diode currents ( Id1 and Id2 ) is as  follows86.

By replacing the expression for Id1 and Id2 using the Shockley equation, Eq. (4) is rewritten as follows.

where Isd1 and Isd2 are the saturated currents of diode 1 and diode 2, respectively, and n1 and n2 are the ideality 
factors of diode 1 and diode 2, respectively.

(3)Vt =
kT

q

(4)Ipv = Iph − Id1 − Id2 − Ish

(5)Ipv = Iph − Isd1

(

exp

(

Vpv + IpvRse

n1Vt

)

− 1

)

− Isd2

(

exp

(

Vpv + IpvRse

n2Vt

)

− 1

)

−
Vpv + IpvRse

Rsh

Figure 1.  SDM of the photovoltaic cell.

Figure 2.  DDM of the photovoltaic cell.
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Examining Eq. (5) reveals seven undetermined variables: Iph , n1 , n2 , Isd1 , Isd2 , Rse , and Rsh . Accurate estima-
tion of these parameters from the I–V characteristic of the PV cell is crucial for successful PV modelling. Each 
diode current in DDM possesses its ideality factor, which enhances the precision of this model and its complexity 
compared to the single-diode model. The TDM incorporates a third diode to signify the recombination losses 
in the space-charge region, consequently achieving an even more precise representation of the actual behaviour 
of the solar cell. The equivalent circuit of the TDM is shown in Fig. 3. However, it also significantly elevates 
the complexity of the model, with the formula involving three diode currents (Id1 , Id2 and Id3 ) is as  follows87,88.

By replacing the expression for Id1 , Id2 and Id3 using the Shockley equation, Eq. (6) is rewritten as follows.

where Isd1 , Isd2 and Isd3 are the saturated currents of diode 1, diode 2, and diode 3, respectively, and n1 , n2 , and 
n3 are the ideality factors of diode 1, diode 2, and diode 3, respectively. Examining Eq. (7) reveals nine unde-
termined variables: Iph , n1 , n2 , n3 , Isd1 , Isd2 , Isd3 , Rse , and Rsh . Accurate estimation of these parameters from the 
I–V characteristic of the PV cell is crucial for successful PV modelling. Each diode current in the TDM also has 
its ideality factor. Despite being the most precise model, its complexity can lead to more challenging parameter 
extraction and increased computational burden.

These models support the comprehension and prediction of PV cells’ behaviour under diverse illumination 
and temperature conditions. The SDM is ideal for applications where simplicity and computational speed are 
key, whereas the DDM and TDM offer greater accuracy and detail and are more suited for in-depth research and 
comprehensive analysis of PV cell operations. Building a PV module around the principles of the SDM involves 
integrating SDM-based PV cells arranged in series and parallel networks as key components. A PV module is 
structured using multiple parallel strings of PV cells ( Nsh ), each containing an equivalent number of series-
aligned PV cells ( Nse ). The I–V characteristics of the module are derived using Eq. (8).

Problem formulation
The PV system, with its nonlinear, intuitive, and transcendental traits, makes the PV cells/modules an appealing 
choice for optimization tasks. An error function that assesses the precision of parameter estimates can feasibly be 
established by synthesizing Eqs. (2, 5, 7, and 8). When employing optimization algorithms for this task, creating 
an error or fitness function is a must; this function must be minimized to secure the best parameter estimation 
values. The selection of an error function is crucial since it has a substantial impact on the general effectiveness 
of the final model. Root mean square error (RMSE), as outlined in Eq. (12), is used as the objective function, 
providing a comprehensive overview of the performance of the estimated model across all characteristics.

The corresponding functions for the SDM, DDM, and TDM, along with the solution vector, denoted as x , for 
each PV model, are presented as follows.
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Figure 3.  TDM of the photovoltaic cell.
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By utilizing experimental data drawn from the I–V characteristic of the PV cell, it is possible to diminish the 
value of the RMSE. As a result, extracting parameters from the solar PV cell becomes a process geared towards 
reducing the RMSE value. This reduction is achieved by carefully adjusting the values of the solution variables. 
In other words, the goal of the extraction process is to find those values of the solution variables that would 
minimize the RMSE value, thus enhancing the accuracy of the PV model.

Ethical approval
The authors have confirmed that no ethical approval is required.

Proposed opposition‑based exponential distribution optimizer
This section briefly introduces the concepts of the EDO algorithm and its mathematical modelling. Later, the 
discussion has been extended to formulating the proposed algorithm.

Exponential distribution optimizer
The exponential distribution optimizer (EDO) is a metaheuristic algorithm rooted in mathematics that addresses 
intricate optimization  problems79. The algorithm is founded on Exponential Distribution, a specific form of the 
continuous probability distribution that models the time between events in a Poisson point process. EDO effec-
tively solves diverse optimization problems, including continuous, linear, nonlinear, and constrained problems. 
The idea of EDO is to employ a population of individuals (solutions) to explore the search space. Each solution 
represents a point in the search space, and the objective function value determines the quality of the solution. 
The algorithm exploits the balance between exploration (global search) and exploitation (local search) to direct 
the search procedure towards the global optima. In the phase of exploitation, the EDO leverages three funda-
mental constituents intrinsic to the exponential probability distribution (EPD). These constituents encompass 
the memoryless attribute, the directive solution, and the exponential dispersion, all essential to retain the con-
temporaneity of the innovative solution. Conversely, during the phase of exploration, a model optimized based 
on two solutions, both derived from the ED present within the initial population, is selected. Concurrently, the 
arithmetic average solution is utilized to effectuate an update to the promising solution.

The main inspiration of EDO, the ED, is a continuous probability distribution that describes the time between 
events in a Poisson point process, i.e., a process in which events occur continuously and independently at a con-
stant average rate. The probability density function (PDF) of an exponential distribution is given by:

where � = 1
Mean . The ED has the property of being memoryless. In the context of the EDO algorithm, this implies 

that the quality of a solution does not depend on how the solution was obtained in previous iterations. In adher-
ence to the memoryless property, there is no retention or consideration of the prior history of the solutions. 
This is due to the independence of past failures, rendering them empty of any impact on subsequent outcomes. 
Updated solutions are duplicated into the memoryless matrix to emulate the memoryless attribute intrinsic to 
the ED, irrespective of their fitness levels. This is premised on the understanding that historical data doesn’t 
influence future developments. Consequently, the memoryless matrix becomes a repository for two categories of 
solutions: successful ones and those that fall short. Initially, the memoryless matrix is assigned a value identical 
to the original population, designated as Xw . Like all metaheuristic algorithms, the initialization phase is done 
random population solution, i.e., the populations are randomly aligned, and the solutions are generated ran-
domly using the random populations. Equation (14) can be employed to stochastically generate each exponential 
random parameter that is part of the candidate ED within the domain of the problem.

where lb and ub denote the lower and upper bounds of the control vectors, rand denotes the uniform random 
number varies between [0,1], Np signifies the population size, and dim denotes the problem dimension.

The exploitation stage leverages numerous features of the ED model, including the memoryless attribute, 
mean, standard deviation, and exponential rate. Furthermore, a directive solution is utilized to steer the explora-
tion phase towards the global optima. The vicinity of a proficient solution often holds the potential for identifying 
the global optima. This is why several procedures delve into the search bounds near effective solutions by drawing 
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in the lesser-performing ones. Hence, the quest for the global optima is centred on the guiding solution Xg . The 
Xg is characterized as the average of the top three solutions from an organized population, designed as follows:

where t  represents the current iterations, the guiding solution is chosen over the best solution because it incre-
mentally leads the solutions towards the optimum one. Even if the best solution is ensnared in local optimum, all 
other outcomes persistently gravitate towards this best solution. The area surrounding an effective solution often 
harbours the potential for uncovering the global optimum. Consequently, numerous algorithms take advantage 
of the search space near high-performing solutions by drawing in the less successful ones. The exploitation stage 
of the EDO practices several features of the ED model, such as the memoryless feature, mean, and standard 
variance, to update the solution as follows.

where MLti denotes the ith solution of the memoryless matrix, ϕ signifies the uniform random number between 
[0, 1], b and a denote adaptive variables and f  denotes the random number in the range of [− 1, 1]. The expression 
for exponential variance is provided as follows.

The exponential mean µ is determined as the mean value between the Xt
g and the i th memoryless parameter, 

which could either be a winning or a losing solution.
The algorithm’s exploration stage pinpoints areas within the search bound that are considered likely to contain 

the globally optimal results. The optimization framework for the EDO’s exploration stage is constructed around 
two successful solutions from the initial agents in adherence to the ED. Following this, the solution is updated 
using Eqs. (23–27).

where Mt denotes the mean solutions obtained in the actual population, c denotes the tunable parameter signify-
ing the ratio of information shared among Y2 and Y1 to the current solution, T denotes the maximum number 
of iterations, and Xt

wrand1
 and Xt

wrand2
 denote the winners concerning the randomly selected ED from the popula-

tion. An approach based on a greedy method is utilized for the solution update obtained during the explora-
tion and exploitation stages within the initial population. Any updated solution is integrated into the original 
population only if it meets the criteria of being considered good. The pseudocode of the EDO algorithm exists 
in Algorithm 1.
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Initialize the parameters, such as , , bounds, etc.

Initialize the random population and generate the random population solutions using Eq. 14.

Construct the memory matrix.

While ( < ) do

Define the matrix of size 

Compute using Eq. 15

Define all the adaptive parameters , , , ,

if ( < 0.5)

Update the position using Eq. 16 (Exploitation phase)

else
Update the position using Eq. 23 (Exploration phase)

End if
Copy the matrix to the memoryless matrix.

Update the solution comparing the current fitness and updated fitness.

End while
Return: Best position and the respective solution.

Algorithm 1.  Pseudocode of the EDO algorithm.

Opposition‑based exponential distribution optimizer
The mutation operations in the EDO algorithm are based on the ED parameters and two control parameters 
( a and b ) derived from a uniformly distributed random variable f. This ensures diversity in the population and 
facilitates exploration and exploitation of the search space. Opposition-based learning (OBL) is an additional 
strategy that can be incorporated into EDO to enhance  performance80,89. The foundational concept of OBL is 
based on De Morgan’s laws in Boolean logic, which state that the complement of a conjunction is the disjunction 
of the complements, and the complement of a disjunction is the conjunction of the complements. It is used to 
calculate the “opposite” of a solution.

In optimization algorithms, a point and its opposite define an axis that bisects the solution space. The point 
lies on one side of the space, and its opposite is equidistant from the centroid but on the opposite side of the space. 
This geometric interpretation offers the key insight of OBL: for each point considered by the algorithm, there 
exists an unexplored point that is as far from the centroid as the original point but in the opposite direction. If a 
solution is a point in the search space, its opposite is another point in the space such that the line connecting the 
solution and its opposite passes through the centroid of the search space. The primary advantage of considering 
both a solution and its opposite is that it can double the useful information obtained from each fitness evaluation. 
Furthermore, because the opposite points are spread throughout the solution space, OBL can widen the search 
scope, enhancing exploration capabilities and accelerating convergence to the global optimum. Therefore, the 
proposed algorithm can explore the search space more effectively by evaluating both a solution and its opposite. 
The OBL is a strategy used to enhance the performance of optimization algorithms by exploring the search space 
more efficiently. The central concept of OBL is the simultaneous consideration of an estimate (a solution) and its 
opposition during the search process. In mathematical terms, for a problem defined in the dim-dimensional real 
space, a point Xw in the search space is represented as a vector of dim real numbers. Given a real-valued solution 
“ Xw ” in the interval [lb, ub] , the opposite solution “ Xw,opp ” is calculated as follows.

where lb and ub represent the lower and upper bounds of the search space, respectively. The fitness of both Xw and 
Xw,opp are evaluated, and the point with the better fitness is selected, i.e., iff (Xw,opp) < f (Xw), thenXw = Xw,opp.

The main idea of this strategy is to consider the current estimate and its opposite to obtain a better approxi-
mation for the global optimal solution. In other words, for each candidate solution, the algorithm generates its 
opposite solution and evaluates both. The algorithm tries to keep the one with better fitness for the next genera-
tion. This can be especially useful in the initial stages of the algorithm’s run, where it can significantly increase 
the convergence speed. The reason is that, with OBL, the algorithm can simultaneously consider two “opposite” 
points in the solution space. This is akin to exploring two different directions simultaneously, potentially leading 
to a broader and more efficient search. This OBL strategy is incorporated into EDO during the initialization and 
mutation phases. As discussed, during initialization, each randomly generated solution Xw is accompanied by 
its opposite Xw,opp , and the one with better fitness is selected for the initial population. An offspring solution is 
created, and its opposite is generated during mutation. Again, the one with the better fitness is selected to replace 
its parent. This way, in each iteration, the algorithm explores the vicinity of the solutions and their opposite points 
in the search space. This strategy significantly enhances the exploratory capability of the algorithm, making it 
more robust and potentially faster in finding the global optimal solution. By applying this strategy, the OBEDO 
can benefit from an enhanced exploration capability, potentially improving its effectiveness and efficiency in 

(28)Xw = [Xw1,Xw2, . . . ,Xwdim]

(29)Xw,opp = lb+ ub− Xw
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solving complex optimization problems. The pseudocode of the proposed OBEDO algorithm is presented in 
Algorithm 2. The flowchart of the OBEDO is shown in Fig. 4.

Initialize the parameters, such as , , bounds, etc.

Initialize the random population and generate the random population solutions using Eq. 14.

Generate the opposite population solutions using Eq. 29.

 , <  ( )

 =  ,

Else
 =  ,

End if
Construct the memory matrix.

While ( < ) do

Define the matrix of size ∈

Compute using Eq. 15

Define all the adaptive parameters , , , ,

if ( < 0.5)

Update the position using Eq. 16 (Exploitation 

phase)

else
Update the position using Eq. 23 (Exploration 

phase)

End if
Copy the matrix to the memoryless matrix.

Update the solution comparing the current fitness and 

updated fitness.

if < || _ <

if < _

=

=

else
= , _

= _

End if
if < BestFitness

BestFitness =

BestPosition =

End if
End if 

End while
Return: BestPosition and the BestFitness.

Algorithm 2.  Pseudocode of the proposed OBEDO algorithm.

The OBEDO algorithm, as discussed, likely integrates two key concepts: OBL and EDO algorithm. OBL 
is a concept used in optimization algorithms to speed up the convergence rate. It works on the principle that 
considering a candidate solution and its opposite can provide a better approximation of the global optimum. In 
OBL, for every estimated solution, the opposite solution is also considered. This means if a solution is at a point 
x in the search space, its opposite −x is also evaluated. This approach increases the chances of finding better 
solutions in fewer iterations as it explores the search space more effectively. When integrated into the OBEDO 
framework, OBL could help in quickly identifying more promising regions of the search space for parameter 
estimation, thereby improving the efficiency and accuracy of the optimization process. OBL enhances the global 
search capability, ensuring diverse and comprehensive exploration, while the exponential distribution method 
fine-tunes the search, allowing for efficient exploitation of promising areas. This synergy could make OBEDO 
particularly effective in navigating complex, high-dimensional search spaces typical in solar PV model parameter 
estimation, where traditional methods might struggle due to local optima or slow convergence. The effectiveness 
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of OBEDO in outperforming other methods could stem from its ability to balance exploration and exploitation 
in the optimization process. This balance is crucial in parameter estimation problems, where finding the global 
optimum in a complex search space is essential for accurate and reliable results.

Complexity of the proposed OBEDO algorithm
The algorithm creates an initial population of solutions Xwi . The complexity of the initialization phase should 
be O(Np × dim) , where Np is the number of individuals, and dim is the dimension of the solution space. The 
algorithm performs a series of computations for each individual in the population ( Np ), and this is done for 
each iteration. Thus, the complexity within the loop could be considered as O(Np × dim) . This includes fitness 
computation, memory updates, and solution modifications. Assuming the complexity of the fitness function is 
O(dim) , this would still give a complexity of O(Np × dim) for the whole iteration. The sorting operations would 
add a complexity of O(Np × log(Np)) per iteration. However, since Np × log(Np) is smaller than Np × dim for 
large enough Np and dim , ignore it in the final complexity assessment. Therefore, the time complexity of the 
OBEDO can be approximated as O(Np × dim× T) , which is the same as the original EDO algorithm.

Results and discussions
In this section of the paper, we present the experimental results obtained to assess the performance of the pro-
posed OBEDO algorithm. The OBEDO determines the parameters of four benchmarked PV cell/module models: 
RTC France silicon cell, PVM752 GaAs PV cell, Photowatt PWM201 module, commercial Sharp ND-R250A5 
PV module, and commercial SM55 PV module. To evaluate the effectiveness of the OBEDO, it is applied to three 
PV models, namely the SDM, DDM, and TDM. For each model, the OBEDO and other seven algorithms, such 
as opposition-based GBO (OBGBO), opposition-based marine predator algorithm (OBMPA), MGTO, ADHHO, 
IAOA, HDE, and original EDO, are employed to obtain the optimal parameters that best fit the experimental 
data. The application of the proposed OBEDO and other algorithms to estimate PV parameters is pictorially 
represented in Fig. 5.

For the RTC France silicon cell with a diameter of 57 mm, experimental data is collected under specific 
conditions, with a solar irradiance of 1000 W/m2 and a temperature of 33 °C. A total of 26 sets of current and 
voltage measurements are gathered to determine the cell variables by optimizing the RMSE, a common metric 
for evaluating the accuracy of models. The goal is to find the best-fitting parameters that minimize the RMSE 
and, thus, enhance the accuracy of the PV cell model. For the PVM752 GaAs PV cell, the experimental data is 
gathered under 1000W/m2 irradiation and 25 °C temperature. Similarly, for the Photowatt PWM201 module, 

Figure 4.  Flowchart of the proposed OBEDO algorithm.
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experimental data is gathered under specific conditions with a solar insolation of 1000 W/m2 and a temperature 
of 45 °C. For the commercial Sharp ND-R250A5 PV module, the experimental data is gathered under 1040W/
m2 irradiation and 59 °C temperature. In addition, the data for the commercial SM55 PV module under differ-
ent operating conditions are also collected. To ensure realistic parameter estimates, lb and ub limits for the cells 
and the modules parameters are provided in Table 2. These limits constrain the optimization process during the 
execution of all algorithms and ensure that the resulting parameters fall within physically meaningful ranges.

The simulation tests were conducted on a laptop running Windows 11 with specific hardware specifications. 
The laptop has an Intel(R) Core (TM) i5-10300H CPU operating at a clock frequency of 2.44 GHz and 8 GB of 
RAM. For the simulation tests, this study considered a population size of 40, and the maximum number of itera-
tions was set to 1000 for all the PV models under consideration. Additionally, other control parameters for all the 
algorithms utilized in the experiments are documented in Table 3, providing transparency and reproducibility 
of the study. To ensure a fair comparison among all the selected algorithms, each method was executed 30 times 
independently. This repetition helps account for any potential variability in the results and allows us to draw 
robust conclusions regarding the algorithms’ performance. This study employed MATLAB R2020b software to 
conduct the simulation tests. By running the experiments on the specified laptop and using the common platform 
of MATLAB R2020b, this study ensures consistency and comparability of the results across all algorithms and 

Figure 5.  Application of the OBEDO and other algorithms for parameter estimation.

Table 2.  Limits of all the optimizing parameters of all PV cases.

Parameters

Scenario 
1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

lb ub lb ub lb ub lb ub lb ub

Iph(A) 0 1 0 0.5 0 2 0 10 0 2 times of short-circuit current

n 1 2 1 2 1 50 1 120 1 5

Isd(µA) 0 1 0 1 0 50 0 10 0 100

Rsh(Ω) 0 100 0 1000 0 2000 0 5500 0 5000

Rse(Ω) 0 0.5 0 0.8 0 2 0 1 0 2

Isd1 , Isd2 , and Isd3 (µA) 0 1 0 1 0 50 – – – –

n1, n2 , and n3 1 5 1 5 1 50 – – – –
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PV models. This systematic approach allows us to make well-informed evaluations of the algorithms’ efficiency 
and effectiveness in optimizing the PV model parameters.

In this study, the performance comparison among all the selected algorithms is carried out using various 
statistical measures and performance metrics to assess their effectiveness in optimizing the PV model param-
eters. The statistical measures considered include Minimum (Min), Maximum (Max), Mean, and Standard 
Deviation (STD). These measures help us understand the range and distribution of the results obtained by each 
algorithm. On the other hand, performance metrics provide specific quantitative evaluations of the algorithms’ 
accuracy in predicting the PV model parameters. The metrics used in this comparison are Relative Error (RE), 
Integral Absolute Error (IAE), and Root Mean Square Error (RMSE). The runtime (RT) of each algorithm is 
also analyzed, which represents the average running time of all 30 independent runs for each case study. This 
information is crucial for understanding the computational efficiency of the algorithms and their feasibility for 
practical applications. The metrics RE and IAE are computed as follows: (i) IAE represents the integral absolute 
error for a particular trial, which is calculated as the absolute difference between the estimated current Ies and 
the measured current Iex value for that trial, and (ii) RE denotes the relative error, which quantifies the percent-
age difference between the estimated current and the measured current value. It is computed as the ratio of the 
difference between the measured and estimated current to the measured current value. The IAE is designed 

Table 3.  Parameters of all the algorithms.

Algorithms Parameters Ranges

OBEDO and EDO α 0.5

OBGBO ε
pr

0.01
0.5

OBMPA FADs
p

0.5
0.5

MGTO
p
β
w

0.03
3
0.8

ADHHO
h
Pmax
Pmin
U

6
5
2
[2,5]

HDE p
H

0.1
5

IAOA
µ
α
MOPMax MOPMin

0.499
5
1
0

Table 4.  Parameters estimated for Scenario 1 (SDM). Significant values are in [bold].

Algorithms Iph(A) Isd(A) Rse(Ω) Rsh(Ω) n RMSE

OBEDO 0.7608 3.23E−07 0.0364 53.7185 1.4812 9.8602E−04

EDO 0.7593 4.04E−07 0.0358 99.9891 1.5036 1.4649E−03

ADHHO 0.7607 3.95E−07 0.0356 59.8812 1.5017 1.0585E−03

OBMPA 0.7607 3.38E−07 0.0362 55.4146 1.4859 9.9045E−04

MGTO 0.7608 3.23E−07 0.0364 53.7185 1.4812 9.8602E−04

IAOA 0.7597 4.01E−07 0.0356 82.1571 1.5030 1.2758E−03

HDE 0.7608 3.31E−07 0.0363 54.2152 1.4837 9.8731E−04

OBGBO 0.7608 3.23E−07 0.0364 53.7185 1.4812 9.8602E−04

Table 5.  Parameters estimated for Scenario 1 (DDM). Significant values are in [bold].

Algorithms Iph(A) Isd1(A) Rse(Ω) Rsh(Ω) n1 Isd2(A) n2 RMSE

OBEDO 0.7608 2.31E−07 0.0367 55.3995 1.4529 7.08E−07 2.0000 9.8250E−04

EDO 0.7630 8.76E−08 0.0344 38.5036 1.4050 8.51E−07 1.7015 2.3699E−03

ADHHO 0.7608 1.20E−13 0.0366 52.3503 1.5000 3.07E−07 1.4760 9.9082E−04

OBMPA 0.7602 1.95E−07 0.0349 79.9286 1.4771 3.63E−07 1.6015 1.3081E−03

MGTO 0.7608 2.31E−07 0.0367 55.3762 1.4530 7.04E−07 2.0000 9.8250E−04

IAOA 0.7611 3.26E−07 0.0341 61.8652 1.6646 3.09E−07 1.4993 1.5329E−03

HDE 0.7608 3.22E−07 0.0363 54.0502 1.4812 4.06E−08 2.0000 9.8650E−04

OBGBO 0.7608 3.21E−07 0.0364 53.7417 1.4806 1.08E−08 1.8916 9.8593E−04
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to penalize errors equally, regardless of the direction, while the RE provides insight into the magnitude of the 
absolute error with respect to the measured data. When an exact measurement is unavailable, using the meas-
ured value to calculate relative inaccuracy is common. Finally, a Friedman’s Ranking Test (FRT) is performed 
to validate the statistical significance of the results. This test allows for comparing multiple algorithms across 
different metrics and identifies whether any algorithm significantly outperforms the others. By employing these 

Table 6.  Parameters estimated for Scenario 1 (TDM). Significant values are in [bold].

Algorithms Iph(A) Isd1(A) Rse(Ω) Rsh(Ω) n1 Isd2(A) n2 Isd3(A) n3 RMSE

OBEDO 0.7608 5.88E−07 0.0367 55.7780 1.9995 2.34E−07 1.4537 9.79E−07 2.7316 9.8082E−04

EDO 0.7619 2.79E−07 0.0362 44.1202 1.4698 1.69E−07 1.9986 5.03E−07 2.1237 1.2949E−03

ADHHO 0.7607 3.67E−07 0.0353 64.6790 1.8994 3.48E−07 1.4934 4.04E−12 3.4918 1.1473E−03

OBMPA 0.7608 2.81E−07 0.0365 54.4616 1.4695 0.00E+00 1.9747 3.07E−07 2.0000 9.8381E−04

MGTO 0.7608 9.96E−07 0.0368 56.2894 1.9998 2.02E−07 1.4419 2.09E−12 4.9960 9.8353E−04

IAOA 0.7626 5.17E−07 0.0376 37.2626 1.7823 1.30E−07 1.4081 6.24E−09 3.1122 1.5865E−03

HDE 0.7607 5.80E−10 0.0363 55.0944 1.7439 3.32E−07 1.4839 1.00E−06 4.1292 9.8732E−04

OBGBO 0.7608 2.23E−07 0.0368 55.4366 1.4501 6.97E−07 1.9772 1.00E−06 4.9548 9.8244E−04

Figure 6.  Characteristics curves obtained by algorithms for Scenario 1 (SDM); (a) I–V curves, (b) P–V curves.

Figure 7.  Characteristics curves obtained by algorithms for Scenario 1 (DDM); (a) I–V curves, (b) P–V curves.
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statistical measures, performance metrics, runtime analysis, and Friedman’s Ranking Test, the study compre-
hensively evaluates the selected algorithms’ performance and provides valuable insights into their capabilities 
in accurately estimating the PV model parameters. Such detailed comparisons are essential for researchers and 
practitioners to decide on the most suitable algorithm for specific PV modelling applications.

Figure 8.  Characteristics curves obtained by algorithms for Scenario 1 (TDM); (a) I–V curves, (b) P–V curves.

Table 7.  RE and IAE values attained by OBEDO for Scenario 1.

Vex Iex

SDM DDM TDM SDM DDM TDM SDM DDM TDM

Ies(A) RE IAE(A)

− 0.2057 0.7640 0.7641 0.7640 0.7640 − 1.15E−04 1.58E−05 2.72E−05 8.77E−05 1.21E−05 2.08E−05

− 0.1291 0.7620 0.7627 0.7626 0.7626 − 8.70E−04 − 7.96E−04 − 7.97E−04 6.63E−04 6.06E−04 6.07E−04

− 0.0588 0.7605 0.7614 0.7613 0.7613 − 1.12E−03 − 1.10E−03 − 1.11E−03 8.55E−04 8.38E−04 8.47E−04

0.0057 0.7605 0.7602 0.7602 0.7602 4.55E−04 4.31E−04 4.10E−04 3.46E−04 3.28E−04 3.12E−04

0.0646 0.7600 0.7591 0.7591 0.7591 1.24E−03 1.18E−03 1.15E−03 9.45E−04 8.95E−04 8.74E−04

0.1185 0.7590 0.7580 0.7581 0.7581 1.26E−03 1.16E−03 1.13E−03 9.58E−04 8.83E−04 8.57E−04

0.1678 0.7570 0.7571 0.7572 0.7572 − 1.21E−04 − 2.43E−04 − 2.78E−04 9.17E−05 1.84E−04 2.11E−04

0.2132 0.7570 0.7561 0.7562 0.7563 1.13E−03 1.01E−03 9.72E−04 8.59E−04 7.61E−04 7.36E−04

0.2545 0.7555 0.7551 0.7552 0.7552 5.47E−04 4.32E−04 4.06E−04 4.13E−04 3.27E−04 3.06E−04

0.2924 0.7540 0.7537 0.7537 0.7537 4.46E−04 3.71E−04 3.55E−04 3.36E−04 2.80E−04 2.68E−04

0.3269 0.7505 0.7514 0.7514 0.7514 − 1.19E−03 − 1.20E−03 − 1.20E−03 8.91E−04 9.00E−04 9.01E−04

0.3585 0.7465 0.7474 0.7473 0.7473 − 1.14E−03 − 1.08E−03 − 1.07E−03 8.54E−04 8.06E−04 7.95E−04

0.3873 0.7385 0.7401 0.7400 0.7400 − 2.19E−03 − 2.05E−03 − 2.03E−03 1.62E−03 1.52E−03 1.50E−03

0.4137 0.7280 0.7274 0.7273 0.7272 8.49E−04 1.02E−03 1.06E−03 6.18E−04 7.45E−04 7.74E−04

0.4373 0.7065 0.7070 0.7069 0.7068 − 6.69E−04 − 5.05E−04 − 4.60E−04 4.73E−04 3.57E−04 3.25E−04

0.4590 0.6755 0.6753 0.6752 0.6752 3.25E−04 4.25E−04 4.67E−04 2.20E−04 2.87E−04 3.16E−04

0.4784 0.6320 0.6308 0.6308 0.6307 1.96E−03 1.96E−03 2.00E−03 1.24E−03 1.24E−03 1.26E−03

0.4960 0.5730 0.5719 0.5720 0.5720 1.87E−03 1.76E−03 1.78E−03 1.07E−03 1.01E−03 1.02E−03

0.5119 0.4990 0.4996 0.4997 0.4997 − 1.22E−03 − 1.40E−03 − 1.40E−03 6.07E−04 6.99E−04 6.99E−04

0.5265 0.4130 0.4136 0.4137 0.4137 − 1.57E−03 − 1.76E−03 − 1.79E−03 6.49E−04 7.28E−04 7.38E−04

0.5398 0.3165 0.3175 0.3175 0.3176 − 3.19E−03 − 3.30E−03 − 3.35E−03 1.01E−03 1.04E−03 1.06E−03

0.5521 0.2120 0.2122 0.2121 0.2121 − 7.31E−04 − 5.98E−04 − 6.80E−04 1.55E−04 1.27E−04 1.44E−04

0.5633 0.1035 0.1023 0.1022 0.1022 1.21E−02 1.28E−02 1.27E−02 1.25E−03 1.33E−03 1.31E−03

0.5736 − 0.0100 − 0.0087 − 0.0088 − 0.0088 1.28E−01 1.21E−01 1.22E−01 1.28E−03 1.21E−03 1.22E−03

0.5833 − 0.1230 − 0.1255 − 0.1255 − 0.1255 − 2.04E−02 − 2.07E−02 − 2.07E−02 2.51E−03 2.54E−03 2.55E−03

0.5900 − 0.2100 − 0.2085 − 0.2084 − 0.2084 7.27E−03 7.71E−03 7.64E−03 1.53E−03 1.62E−03 1.60E−03

Mean values 4.74E−03 4.50E−03 4.51E−03 8.28E−04 8.19E−04 8.18E−04
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Figure 9.  Error curves obtained by algorithms for Scenario 1 (SDM); (a) IAE, (b) RE.

Figure 10.  Error curves obtained by algorithms for Scenario 1 (DDM); (a) IAE, (b) RE.

Figure 11.  Error curves obtained by algorithms for Scenario 1 (TDM); (a) IAE, (b) RE.
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Scenario 1—RTC France Si PV cell
This sub-section details the results obtained by the proposed algorithm and other algorithms for scenario 1, i.e., 
SDM, DDM, and TDM of the RTC France Si PV cell. The bounds for all the PV models are provided in Table 2. 
As deliberated earlier, all algorithms are executed 30 times for a fair comparison.

Tables 4, 5, and 6 display a comprehensive overview of the five, seven, and nine parameters estimated through 
the SDM, DDM, and TDM employment pertaining to the RTC of France Si solar cell. It is imperative to empha-
size that these parameters were determined within the precise confines, as elucidated in Table 2. A graphical 
representation of the I–V (Current–Voltage) and P–V (Power–Voltage) characteristic curves pertinent to the 
SDM, DDM, and TDM of the RTC France Si solar cell obtained by all algorithms have been expounded in 
Figs. 6, 7, and 8. These elucidate the outcomes engendered by the proposed OBEDO that was instituted as part 
of this study. It is crucial to underline that the quantitative values encapsulating the IAE and the RE have been 
meticulously documented in Table 7. To visually portray the paramount significance of the RE and IAE values 
ascertained through the instrumentality of the OBEDO and other algorithms, this study has deviously created 
error graphs as showcased in Figs. 9, 10, and 11. A cursory examination of Figs. 6, 7, 8, 9, 10, and 11 unfolds a 
noticeably harmonious alignment between the projected estimated and empirically derived experimental curves. 
This alignment strengthens the inference that the curve fitting has yielded a commendable equivalence. To offer 
a comprehensive assessment, meticulous cataloguing of statistical indicators including, but not limited to, Min, 
Mean, Max, RT, and STD values has been meticulously undertaken. These values have been scrupulously logged 
within Table 8 to facilitate in-depth data comprehension. Furthermore, it is noteworthy that salient achievements, 
exemplified by the most remarkable outcomes gleaned from the diverse tables, have been judiciously highlighted 
through the distinctive formatting of boldfaces.

The IAE value resulting from using the OBEDO in the context of the SDM, DDM, and TDM for scenario 1 is 
notably below the threshold of 3.01E−03. This indicates a remarkably precise alignment between the predicted 
and observed values. Similarly, the RE value, which gauges the degree of dissimilarity between the predicted and 
actual values, demonstrates significant conformity as it remains under the stringent limit of 1.51E−01. A broader 
assessment of the performance metrics sheds light on the collective behaviour for scenario 1 under the purview 
of the OBEDO algorithm. The average RE and IAE values of SDM, DDM, and TDM are 4.74E−03, 4.50E−03, 
4.51E−03, 8.28E−04, 8.19E−04, and 8.18E−04respectively, further reinforcing the efficacy of the optimization 
algorithm in achieving a robust convergence between the simulated and empirical outcomes. The comprehensive 
data showcased in Table 5 and Figs. 9, 10, and 11 corroborates the capability of the OBEDO to precisely extract 
the intricate characteristics of the PV cell within the specific framework. This affirmation of accuracy under-
scores the algorithm’s competence in capturing the nuanced behaviour and performance attributes of the PV 
cell, thereby contributing to a deeper and more comprehensive understanding of its indefinite characteristics.

Table 8.  Performance comparison for Scenario 1. Significant values are in [bold].

Model Algorithms Min Max Mean Median STD RT

SDM

OBEDO 9.8602E−04 9.8602E−04 9.8602E−04 9.8602E−04 4.7451E−17 8.55

EDO 1.4649E−03 7.9048E−03 3.0831E−03 2.1984E−03 2.2341E−03 8.26

ADHHO 1.0585E−03 2.4392E−03 1.6272E−03 1.6022E−03 4.8327E−04 8.60

OBMPA 9.9045E−04 1.5908E−03 1.3958E−03 1.4585E−03 2.1103E−04 8.93

MGTO 9.8602E−04 9.8602E−04 9.8602E−04 9.8602E−04 2.2061E−14 8.79

IAOA 1.2758E−03 4.0880E−02 7.8761E−03 4.1836E−03 1.1954E−02 9.37

HDE 9.8731E−04 1.1025E−03 1.0436E−03 1.0448E−03 4.4832E−05 8.64

OBGBO 9.8602E−04 9.8874E−04 9.8631E−04 9.8602E−04 8.5478E−07 78.29

DDM

OBEDO 9.8250E−04 1.4090E−03 1.0282E−03 9.8505E−04 1.3384E−04 7.77

EDO 2.3699E−03 3.9190E−02 1.6836E−02 5.6876E−03 1.6494E−02 7.02

ADHHO 9.9082E−04 2.5436E−03 1.9030E−03 1.9059E−03 4.7352E−04 7.97

OBMPA 1.3081E−03 3.3392E−02 4.9581E−03 1.5680E−03 1.0007E−02 7.96

MGTO 9.8250E−04 1.1343E−03 1.0040E−03 9.8551E−04 4.7675E−05 8.33

IAOA 1.5329E−03 3.2453E−02 6.5294E−03 2.5323E−03 9.3430E−03 7.88

HDE 9.8650E−04 1.8749E−03 1.1717E−03 1.0634E−03 2.7112E−04 7.92

OBGBO 9.8593E−04 1.4188E−03 1.0429E−03 9.8602E−04 1.3590E−04 73.52

TDM

OBEDO 9.8082E−04 1.1471E−03 9.9957E−04 9.8368E−04 5.1873E−05 7.87

EDO 1.2949E−03 3.8163E−02 1.0482E−02 4.0250E−03 1.4783E−02 7.63

ADHHO 1.1473E−03 3.2969E−03 2.3185E−03 2.6095E−03 8.6274E−04 7.95

OBMPA 9.8381E−04 3.1874E−02 4.4511E−03 1.5720E−03 9.6392E−03 7.95

MGTO 9.8353E−04 1.3903E−03 1.0264E−03 9.8565E−04 1.2790E−04 8.41

IAOA 1.5865E−03 3.6817E−02 1.0027E−02 4.0693E−03 1.3771E−02 7.94

HDE 9.8732E−04 1.8554E−03 1.3337E−03 1.2150E−03 2.9969E−04 7.92

OBGBO 9.8244E−04 1.3404E−03 1.0356E−03 9.8556E−04 1.1566E−04 73.91
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Figure 13.  Violin plots (Scenario 1); (a) SDM, (b) DDM, (c) TDM.

Figure 12.  Convergence curves (Scenario 1); (a) SDM, (b) DDM, (c) TDM.
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Table 8 summarizes the performance of various algorithms across three models: SDM, DDM, and TDM. The 
metrics assessed include Min, Max, Mean, Median, STD, and RT for each algorithm. Across all three models, 
the OBEDO algorithm consistently achieves low RMSE values, indicative of accurate predictions. Notably, it 
maintains a narrow RMSE range, resulting in stable and reliable outcomes. The EDO algorithm displays more 
variability in RMSE, particularly in the DDM and TDM models, where it reaches higher maximum RMSE values. 
This suggests that EDO performs well on average but may produce less precise predictions occasionally. ADHHO 
demonstrates generally consistent performance, maintaining moderate RMSE values and standard deviations. 
Its RMSE range remains relatively stable across the different models. OBMPA consistently produces moderate 
RMSE values with low standard deviations, indicating dependable performance. Its RMSE range is also relatively 
stable across models. MGTO consistently achieves low RMSE values with minimal variability, suggesting accu-
rate and reliable predictions. Notably, its runtime is consistent across models. IAOA displays wider variability 
in RMSE, particularly in the SDM and DDM models, where it reaches higher maximum values. While its mean 
RMSE is reasonable, the variability suggests some potential for less accurate predictions. HDE generally main-
tains low and consistent RMSE values, with minor fluctuations. Its RMSE range remains stable across models, 
indicating dependable performance. OBGBO stands out with extremely low RMSE values, particularly in the 
SDM model. However, it comes with higher runtimes, especially in the TDM model. The OBEDO, OBGBO, and 
MGTO algorithms consistently exhibit accurate and reliable performance across the three models. OBMPA, EDO, 
ADHHO, IAOA, and HDE also show reasonable performance but with some variability. OBGBO demonstrates 
good accuracy, though at the cost of longer runtimes.

Table 10.  Parameters estimated for Scenario 2 (DDM). Significant values are in [bold].

Algorithms Iph(A) Isd1(A) Rse(Ω) Rsh(Ω) n1 Isd2(A) n2 RMSE

OBEDO 0.10009 1.89E−14 0.6786 618.21 1.3561 2.43E−11 1.8068 2.0777E−04

EDO 0.10000 4.77E−11 0.5922 933.01 1.8062 0.00E+00 1.0823 4.0637E−04

ADHHO 0.10011 0.00E+00 0.6579 580.01 1.5289 4.13E−12 1.6217 2.2965E−04

OBMPA 0.09999 4.85E−11 0.5934 999.51 1.8076 0.00E+00 1.0061 4.0415E−04

MGTO 0.09996 3.50E−11 0.6015 984.06 1.7806 0.00E+00 1.0000 3.6952E−04

IAOA 0.09996 0.00E+00 0.6328 833.80 1.4533 1.19E−11 1.6965 2.7060E−04

HDE 0.10002 6.65E−12 0.6471 689.52 1.6546 0.00E+00 1.8345 2.3856E−04

OBGBO 0.10007 0.00E+00 0.6605 607.97 1.9995 3.78E−12 1.6157 2.2780E−04

Table 11.  Parameters estimated for Scenario 2 (TDM). Significant values are in [bold].

Algorithms Iph(A) Isd1(A) Rse(Ω) Rsh(Ω) n1 Isd2(A) n2 Isd3(A) n3 RMSE

OBEDO 0.09998 1.81E−12 0.6632 874.65 1.5696 6.65E−18 1.2262 2.99E−07 4.1442 1.9516E−04

EDO 0.10045 0.00E+00 0.5170 555.19 1.3771 0.00E+00 1.1643 3.79E−10 2.0000 7.8463E−04

ADHHO 0.10014 2.50E−16 0.5225 1000.00 1.4996 0.00E+00 1.5000 3.81E−10 2.0000 6.9917E−04

OBMPA 0.10015 0.00E+00 0.4940 999.40 1.0055 0.00E+00 1.0151 7.14E−10 2.0667 8.0321E−04

MGTO 0.09990 0.00E+00 0.7314 998.41 1.0000 0.00E+00 1.0596 1.86E−10 2.0000 1.5093E−04

IAOA 0.10028 0.00E+00 0.5212 743.48 1.1178 3.80E−10 1.9997 0.00E+00 4.4637 7.3145E−04

HDE 0.10000 0.00E+00 0.5804 1000.00 1.9303 7.19E−11 1.8415 3.32E−11 4.5533 4.5492E−04

OBGBO 0.10002 2.42E−13 0.6828 745.81 1.4562 0.00E+00 1.0011 8.28E−09 2.7386 1.7128E−04

Table 9.  Parameters estimated for Scenario 2 (SDM). Significant values are in [bold].

Algorithms Iph(A) Isd(A) Rse(Ω) Rsh(Ω) n RMSE

OBEDO 0.10016 1.85E−12 0.6777 519.07 1.5691 2.4818E−04

EDO 0.10039 3.75E−10 0.5173 623.65 1.9985 7.5916E−04

ADHHO 0.10034 5.91E−13 0.6982 394.73 1.5000 3.2683E−04

OBMPA 0.11376 0.00E+00 0.0000 14.59 1.0000 2.5400E−02

MGTO 0.10005 4.73E−12 0.6553 637.38 1.6309 2.2951E−04

IAOA 0.11377 0.00E+00 0.0000 14.59 1.1265 2.5400E−02

HDE 0.09996 4.59E−11 0.5954 998.48 1.8029 3.9734E−04

OBGBO 0.09986 8.34E−12 0.6428 925.40 1.6706 2.5694E−04
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The progression trajectories, characterizing the convergence behaviour, intricately unravel the dynamics of 
the SDM, DDM, and TDM for Scenario 1. These complex patterns of convergence are portrayed in the compre-
hensive Fig. 12. As the gaze fixes upon this graphical representation, the remarkably accelerated convergence 
of the OBEDO becomes noticeably apparent. This swift trajectory toward convergence, markedly outpacing its 
algorithmic counterparts, is a testament to the superior efficiency of the OBEDO. The unfolding narrative takes 
an artistic turn as we venture into Fig. 13, which, rather than opting for the conventional boxplot approach, 
ingeniously employs the visually captivating violin plot technique. Within this illustration, the distinct strategies 
outlined for the SDM, DDM, and TDM emerge as leading roles, each contributing its unique melodic note to 
the symphony of data visualization. In the symphony of violin plots, a striking revelation comes to the fore—
OBEDO’s reliability emerges as a true virtuoso. A harmonious refrain of low STD values resonates across all the 
photovoltaic models in Scenario 1.

This explicit stability display strengthens the OBEDO’s position as an unmatched performer, standing high 
amidst its algorithmic companions. Interestingly, the plot’s narrative takes a dramatic twist as a few algorithms 
stumble upon the snares of local minima, their quest for optimal outcomes thwarted by the intricate labyrinth 
of possibilities. Yet, amidst this unfolding drama emerges the OBEDO as the triumphant protagonist. It directs 
the complex optimization landscape, ascending to the peak of achievement with incomparable accuracy.

Scenario 2—PVM752 GaAs PV Cell
This sub-section details the results obtained by the proposed algorithm and other algorithms for scenario 2, i.e., 
SDM, DDM, and TDM of the PVM752 GaAs PV cell. The bounds for all the PV models are provided in Table 2. 

Figure 14.  Characteristics curves obtained by algorithms for Scenario 2 (SDM); (a) I–V curves, (b) P–V curves.

Figure 15.  Characteristics curves obtained by algorithms for Scenario 2 (DDM); (a) I–V curves, (b) P–V 
curves.
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Tables 9, 10, and 11 display a comprehensive overview of the five, seven, and nine parameters estimated through 
the SDM, DDM, and TDM employment pertaining to the PVM752 GaAs PV cell. A graphical representation 
of the I–V and P–V characteristic curves pertinent to the SDM, DDM, and TDM of the PVM752 GaAs PV cell 
obtained by all algorithms has been expounded in Figs. 14, 15, and 16. The quantitative values summarizing the 
IAE and the RE must be meticulously documented in Table 12. To visually portray the paramount significance of 
the RE and IAE values ascertained through the instrumentality of the OBEDO and other algorithms, this study 
has deviously created error graphs as showcased in Figs. 17, 18, and 19. A cursory examination of Figs. 14, 15, 
16, 17, 18, and 19 unfolds a noticeably perfect alignment between the estimated and experimental curves. This 
alignment strengthens the inference that the curve fitting has yielded a worthy equivalence. To offer a compre-
hensive assessment, meticulous cataloguing of statistical indicators has been meticulously undertaken. These 
values have been carefully logged within Table 13 to facilitate in-depth data comprehension.

The IAE value resulting from using the OBEDO in the context of the SDM, DDM, and TDM for scenario 2 is 
notably below the threshold of 9.01E−04. This indicates a remarkably precise alignment between the predicted 
and observed values. Similarly, the RE value, which gauges the degree of dissimilarity between the predicted and 
actual values, demonstrates significant conformity as it remains under the stringent limit of 1.51E−02. The aver-
age RE and IAE values of SDM, DDM, and TDM are − 7.46E−03, − 5.84E−03, − 6.67E−03, 2.02E−04, 1.63E−04, 
and 1.36E−04, respectively, further reinforcing the efficacy of the optimization algorithm in achieving a robust 
convergence between the simulated and empirical outcomes. The comprehensive data showcased in Table 12 and 
Figs. 17, 18, and 19 corroborates the capability of the OBEDO to precisely extract the intricate characteristics of 
the PV cell within the specific framework. This affirmation of accuracy underscores the algorithm’s competence 
in capturing the nuanced behaviour and performance attributes of the PV cell, thereby contributing to a deeper 
and more comprehensive understanding of its indefinite characteristics.

Table 13 summarizes the performance of various algorithms across three models: SDM, DDM, and TDM. 
Across all the PV models, the algorithms exhibit notable variations in their capabilities. The OBEDO algorithm 
consistently demonstrates commendable accuracy, as reflected by its frequently low IAE values, ensuring pre-
cise predictions. Contrasting this, the EDO algorithm presents a broader spectrum of RMSE values, potentially 
indicating instances where predictions may be less precise. The ADHHO algorithm maintains consistent and 
moderate RMSE values, reflecting stable performance across the PV models. Similarly, the OBMPA algorithm 
displays uniform RMSE values, suggesting reliable outcomes across different scenarios. The MGTO algorithm 
consistently produces low RMSE values with minimal variability, indicating its potential for reliable predic-
tions. Meanwhile, the IAOA algorithm exhibits more variability in RMSE, especially in the SDM and DDM 
models. Remarkably, the HDE algorithm consistently maintains low and consistent IAE values across all PV 
models. The OBGBO algorithm stands out for its exceptional accuracy, albeit with longer runtimes. In summary, 
the algorithms’ performance reveals a diverse landscape of accuracy, convergence, and efficiency. While some 
algorithms shine in specific models, the OBEDO, MGTO, and HDE algorithms consistently exhibit robust and 
dependable performance across various photovoltaic models. The findings highlight the crucial interplay between 
accuracy and efficiency, underscoring the necessity for a comprehensive evaluation of optimization algorithms 
in photovoltaic modelling. The IAOA and OBMPA failed to trace the I–V and curves for the SDM because both 
get trapped by the local optima.

The convergence dynamics of the SDM, DDM, and TDM for Scenario 2 are meticulously unveiled through 
intricate progression trajectories, portrayed vividly in Fig. 20. Upon inspecting this visual depiction, the rapid 
and impressive convergence of OBEDO becomes clearly evident. This accelerated trajectory surpasses its algo-
rithmic counterparts, underscoring OBEDO’s exceptional efficiency. The narrative takes an artistic turn with 
Fig. 21, which employs the visually captivating violin plot.

Figure 16.  Characteristics curves obtained by algorithms for Scenario 2 (TDM); (a) I–V curves, (b) P–V 
curves.
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The strategies defined for SDM, DDM, and TDM play leading roles, each contributing a distinct note to 
the symphony of data visualization. Within the realm of the symphony of violin plots, a remarkable revelation 
unfolds—OBEDO emerges as a virtuoso of reliability. The attentive observer discerns the delicate undercurrents 
of STD values. The low STD values resonate across all photovoltaic models in Scenario 2. This steadfast stability 
further solidifies OBEDO’s stature as an unmatched performer, towering among its algorithmic peers.

Table 12.  RE and IAE values attained by OBEDO for Scenario 2.

Vex Iex

SDM DDM TDM SDM DDM TDM SDM DDM TDM

Ies(A) RE IAE(A)

− 0.1659 0.1001 0.1000 0.1002 0.1001 1.26E−03 − 1.45E−03 7.37E−05 1.26E−04 1.45E−04 7.38E−06

− 0.1281 0.1000 0.0999 0.1002 0.1000 6.67E−04 − 1.84E−03 − 4.94E−04 6.67E−05 1.84E−04 4.94E−05

− 0.0888 0.0999 0.0999 0.1001 0.1000 9.15E−05 − 2.21E−03 − 1.05E−03 9.14E−06 2.20E−04 1.05E−04

− 0.0490 0.0999 0.0998 0.1001 0.1000 5.22E−04 − 1.56E−03 − 5.89E−04 5.22E−05 1.56E−04 5.89E−05

− 0.0102 0.0999 0.0998 0.1000 0.0999 9.42E−04 − 9.34E−04 − 1.44E−04 9.41E−05 9.34E−05 1.44E−05

0.0275 0.0998 0.0998 0.0999 0.0999 3.48E−04 − 1.33E−03 − 7.13E−04 3.47E−05 1.32E−04 7.11E−05

0.0695 0.0999 0.0997 0.0999 0.0998 1.80E−03 3.56E−04 7.74E−04 1.80E−04 3.56E−05 7.73E−05

0.1061 0.0998 0.0997 0.0998 0.0998 1.20E−03 − 5.35E−05 1.96E−04 1.20E−04 5.34E−06 1.95E−05

0.1460 0.0998 0.0996 0.0997 0.0997 1.63E−03 5.93E−04 6.60E−04 1.63E−04 5.92E−05 6.58E−05

0.1828 0.0997 0.0996 0.0997 0.0997 1.03E−03 1.87E−04 8.76E−05 1.03E−04 1.86E−05 8.73E−06

0.2230 0.0997 0.0996 0.0996 0.0996 1.46E−03 8.39E−04 5.63E−04 1.46E−04 8.37E−05 5.61E−05

0.2600 0.0996 0.0995 0.0996 0.0996 8.62E−04 4.36E−04 2.26E−06 8.59E−05 4.34E−05 2.25E−07

0.3001 0.0997 0.0995 0.0995 0.0996 2.30E−03 2.09E−03 1.50E−03 2.29E−04 2.08E−04 1.49E−04

0.3406 0.0996 0.0994 0.0994 0.0995 1.74E−03 1.75E−03 1.00E−03 1.73E−04 1.74E−04 9.97E−05

0.3789 0.0995 0.0994 0.0994 0.0995 1.15E−03 1.37E−03 4.96E−04 1.15E−04 1.36E−04 4.93E−05

0.4168 0.0994 0.0993 0.0993 0.0994 5.61E−04 9.82E−04 1.12E−05 5.58E−05 9.76E−05 1.11E−06

0.4583 0.0994 0.0993 0.0992 0.0993 1.02E−03 1.67E−03 6.27E−04 1.02E−04 1.66E−04 6.24E−05

0.4949 0.0993 0.0993 0.0992 0.0993 4.35E−04 1.29E−03 2.23E−04 4.32E−05 1.28E−04 2.22E−05

0.5370 0.0993 0.0992 0.0991 0.0992 9.57E−04 2.04E−03 1.03E−03 9.50E−05 2.03E−04 1.02E−04

0.5753 0.0992 0.0991 0.0990 0.0991 5.11E−04 1.81E−03 9.27E−04 5.07E−05 1.80E−04 9.20E−05

0.6123 0.0990 0.0991 0.0989 0.0990 − 7.70E−04 7.41E−04 6.97E−05 7.63E−05 7.34E−05 6.90E−06

0.6546 0.0988 0.0989 0.0988 0.0988 − 1.36E−03 3.68E−04 6.88E−05 1.34E−04 3.64E−05 6.80E−06

0.6918 0.0983 0.0987 0.0985 0.0985 − 3.92E−03 − 2.06E−03 − 1.93E−03 3.85E−04 2.03E−04 1.90E−04

0.7318 0.0977 0.0981 0.0979 0.0978 − 4.00E−03 − 2.22E−03 − 1.53E−03 3.91E−04 2.17E−04 1.49E−04

0.7702 0.0963 0.0968 0.0967 0.0965 − 4.92E−03 − 3.65E−03 − 2.38E−03 4.74E−04 3.52E−04 2.29E−04

0.8053 0.0937 0.0942 0.0941 0.0940 − 4.86E−03 − 4.68E−03 − 2.90E−03 4.55E−04 4.38E−04 2.72E−04

0.8329 0.0900 0.0903 0.0904 0.0902 − 3.44E−03 − 4.55E−03 − 2.46E−03 3.10E−04 4.09E−04 2.22E−04

0.8550 0.0855 0.0854 0.0856 0.0854 7.02E−04 − 1.46E−03 7.18E−04 6.00E−05 1.24E−04 6.14E−05

0.8738 0.0799 0.0797 0.0799 0.0798 2.36E−03 − 4.57E−04 1.62E−03 1.88E−04 3.65E−05 1.30E−04

0.8887 0.0743 0.0739 0.0741 0.0740 4.97E−03 2.05E−03 3.85E−03 3.69E−04 1.52E−04 2.86E−04

0.9016 0.0683 0.0681 0.0683 0.0682 3.28E−03 5.66E−04 2.02E−03 2.24E−04 3.87E−05 1.38E−04

0.9141 0.0618 0.0615 0.0616 0.0615 5.11E−03 3.16E−03 4.05E−03 3.16E−04 1.96E−04 2.50E−04

0.9248 0.0555 0.0552 0.0553 0.0553 5.09E−03 4.17E−03 4.45E−03 2.82E−04 2.32E−04 2.47E−04

0.9344 0.0493 0.0491 0.0491 0.0491 3.71E−03 4.03E−03 3.66E−03 1.83E−04 1.98E−04 1.80E−04

0.9445 0.0422 0.0423 0.0422 0.0422 − 1.62E−03 1.83E−04 − 8.86E−04 6.83E−05 7.71E−06 3.74E−05

0.9533 0.0357 0.0358 0.0357 0.0358 − 3.76E−03 − 1.85E−04 − 2.00E−03 1.34E−04 6.59E−06 7.15E−05

0.9618 0.0291 0.0293 0.0291 0.0292 − 5.58E−03 8.80E−05 − 2.51E−03 1.62E−04 2.56E−06 7.30E−05

0.9702 0.0222 0.0225 0.0224 0.0224 − 1.48E−02 − 7.09E−03 − 1.02E−02 3.28E−04 1.57E−04 2.27E−04

0.9778 0.0157 0.0162 0.0160 0.0161 − 3.15E−02 − 2.20E−02 − 2.52E−02 4.95E−04 3.46E−04 3.96E−04

0.9852 0.0092 0.0098 0.0096 0.0097 − 6.00E−02 − 4.85E−02 − 5.06E−02 5.52E−04 4.46E−04 4.66E−04

0.9926 0.0026 0.0030 0.0029 0.0029 − 1.35E−01 − 1.16E−01 − 1.09E−01 3.51E−04 3.02E−04 2.83E−04

0.9999 − 0.0040 − 0.0041 − 0.0041 − 0.0042 − 3.21E−02 − 2.67E−02 − 4.29E−02 1.29E−04 1.07E−04 1.71E−04

1.0046 − 0.0085 − 0.0086 − 0.0084 − 0.0086 − 6.70E−03 7.47E−03 − 6.44E−03 5.69E−05 6.35E−05 5.47E−05

1.0089 − 0.0124 − 0.0131 − 0.0130 − 0.0131 − 5.95E−02 − 4.62E−02 − 5.82E−02 7.38E−04 5.73E−04 7.21E−04

Mean values − 7.46E−03 − 5.84E−03 − 6.67E−03 2.02E−04 1.63E−04 1.36E−04
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Scenario 3—Photowatt PWP‑201 PV module
This sub-section details the results obtained by the proposed algorithm and other algorithms for scenario 3, i.e., 
SDM, DDM, and TDM of the Photowatt PWP-201 PV module. The bounds for all the PV models are provided 
in Table 2. Tables 14, 15, and 16 display a comprehensive overview of the five, seven, and nine parameters esti-
mated through the SDM, DDM, and TDM employment pertaining to the Photowatt PWP-201 PV module. A 
graphical representation of the I−V and P–V characteristic curves pertinent to the SDM, DDM, and TDM of 
the Photowatt PWP-201 PV module obtained by all algorithms has been expounded in Figs. 22, 23, and 24. The 
quantitative values summarizing the IAE and the RE must be meticulously documented in Table 17. To visually 
portray the paramount significance of the RE and IAE values ascertained through the instrumentality of the 
OBEDO and other algorithms, this study has deviously created error graphs as showcased in Figs. 25, 26, and 
27. A cursory examination of Figs. 22, 23, 24, 25, 26, and 27 unfolds a noticeably perfect alignment between the 
estimated and experimental curves. This alignment strengthens the inference that the curve fitting has yielded 
a worthy equivalence. To offer a comprehensive assessment, meticulous cataloguing of statistical indicators has 
been meticulously undertaken. These values have been carefully logged within Table 18 to facilitate in-depth 
data comprehension.

The IAE value resulting from using the OBEDO in the context of the SDM, DDM, and TDM for scenario 2 is 
notably below the threshold of 5.12E−04. This indicates a remarkably precise alignment between the predicted 
and observed values. Similarly, the RE value, which gauges the degree of dissimilarity between the predicted and 
actual values, demonstrates significant conformity as it remains under the stringent limit of 2.41E−02. The aver-
age RE and IAE values of SDM, DDM, and TDM are − 3.253E−04, 3.253E−04, 3.253E−04, 1.957E−03, 1.957E−03, 
and 1.957E−03, respectively, further reinforcing the efficacy of the optimization algorithm in achieving a robust 

Figure 17.  Error curves obtained by algorithms for Scenario 2 (SDM); (a) IAE, (b) RE.

Figure 18.  Error curves obtained by algorithms for Scenario 2 (DDM); (a) IAE, (b) RE.
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convergence between the simulated and empirical outcomes. The comprehensive data is showcased in Table 17 
and Figs. 25, 26, and 27 corroborates the capability of the OBEDO to precisely extract the intricate characteristics 
of the PV module within the specific framework. This affirmation of accuracy underscores the algorithm’s com-
petence in capturing the nuanced behaviour and performance attributes of the PV module, thereby contributing 
to a deeper and more comprehensive understanding of its indefinite characteristics.

Table 18 provides a comprehensive overview of algorithmic performance across three photovoltaic models: 
SDM, DDM, and TDM. Key metrics are presented for each algorithm within these models. Across the PV 
models, a diverse array of algorithmic behaviour is evident. OBEDO consistently demonstrates remarkable 
accuracy with low RMSE values, indicating precise predictions. EDO shows broader variability in RMSE values, 

Figure 19.  Error curves obtained by algorithms for Scenario 2 (TDM); (a) IAE, (b) RE.

Table 13.  Performance Comparison for Scenario 2. Significant values are in [bold].

Model Algorithms Min Max Mean Median STD RT

SDM

OBEDO 2.4818E−04 2.2921E−02 2.5343E−03 2.6537E−04 7.1631E−03 7.12

EDO 7.5916E−04 2.5401E−02 1.9005E−02 2.5400E−02 1.0602E−02 6.79

ADHHO 3.2683E−04 2.5400E−02 9.7083E−03 5.8528E−04 1.2161E−02 7.44

OBMPA 2.5400E−02 2.5400E−02 2.5400E−02 2.5400E−02 2.0031E−18 7.44

MGTO 2.2951E−04 2.4865E−02 5.6162E−03 5.7538E−04 8.4651E−03 7.96

IAOA 2.5400E−02 2.5402E−02 2.5401E−02 2.5401E−02 9.8394E−07 7.18

HDE 3.9734E−04 2.5400E−02 1.5414E−02 2.5400E−02 1.2891E−02 8.98

OBGBO 2.5694E−04 2.5400E−02 7.8244E−03 3.0311E−04 1.2128E−02 67.83

DDM

OBEDO 2.0777E−04 2.5400E−02 2.7714E−03 2.4537E−04 7.9509E−03 6.79

EDO 4.0637E−04 2.5400E−02 1.7291E−02 2.5400E−02 1.0696E−02 6.65

ADHHO 2.2965E−04 2.5400E−02 4.8199E−03 5.1218E−04 8.5350E−03 11.61

OBMPA 4.0415E−04 2.5400E−02 2.2900E−02 2.5400E−02 7.9042E−03 6.90

MGTO 3.6952E−04 2.5400E−02 1.4631E−02 1.2183E−02 9.8463E−03 7.07

IAOA 2.7060E−04 2.5405E−02 1.3110E−02 1.3450E−02 1.2960E−02 6.99

HDE 2.3856E−04 2.5400E−02 2.2883E−02 2.5400E−02 7.9566E−03 6.85

OBGBO 2.2780E−04 2.5400E−02 3.2032E−03 2.7817E−04 7.9050E−03 61.42

TDM

OBEDO 1.9516E−04 1.3192E−03 7.2246E−04 7.0912E−04 4.4160E−04 6.64

EDO 7.8463E−04 2.5400E−02 9.0979E−03 2.4189E−03 1.1263E−02 6.31

ADHHO 6.9917E−04 2.1651E−03 1.7327E−03 2.0094E−03 5.6225E−04 6.70

OBMPA 8.0321E−04 2.2026E−03 1.5454E−03 1.5933E−03 3.4303E−04 6.77

MGTO 1.5093E−04 6.9936E−04 5.3367E−04 6.9936E−04 2.3021E−04 6.89

IAOA 7.3145E−04 2.5691E−03 1.6820E−03 2.1165E−03 7.8815E−04 6.88

HDE 4.5492E−04 1.5908E−03 1.3879E−03 1.4810E−03 3.3089E−04 7.82

OBGBO 1.7128E−04 2.2026E−03 7.4740E−04 6.9947E−04 5.6100E−04 63.99
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suggesting varying predictive precision. ADHHO and OBMPA both exhibit stable RMSE values, implying reliable 
performance. MGTO’s consistently low RMSE values suggest accurate predictions, while IAOA displays vari-
ability, particularly in SDM and DDM. HDE consistently maintains low RMSE values across models, reflecting 
dependable performance. Notably, OBGBO presents low RMSE values, albeit with higher runtimes. Within the 
DDM model, OBEDO stands out with its low RMSE values and efficient runtime. In TDM, OBEDO showcases 
impressive accuracy, while EDO displays variability. ADHHO and OBMPA offer stable and reliable performance. 
MGTO and IAOA present varying precision, while HDE demonstrates consistent accuracy. OBGBO maintains 
its performance pattern with higher runtimes. Overall, OBEDO, MGTO, and HDE consistently exhibit robust 
performance across various PV models, with OBEDO excelling in accuracy and efficiency. The findings empha-
size the intricate interplay between accuracy and runtime, underscoring the significance of a comprehensive 
evaluation of algorithmic efficacy in PV modelling.

The convergence dynamics of the SDM, DDM, and TDM for Scenario 3 are meticulously unveiled through 
intricate progression trajectories, portrayed vividly in Fig. 28. Upon inspecting this visual depiction, the rapid 
and impressive convergence of OBEDO becomes clearly evident. This accelerated trajectory surpasses its algo-
rithmic counterparts, underscoring OBEDO’s exceptional efficiency. The narrative takes an artistic turn with 
Fig. 29, which employs the visually captivating violin plot.

The strategies defined for SDM, DDM, and TDM play leading roles, each contributing a distinct note to 
the symphony of data visualization. Within the realm of the symphony of violin plots, a remarkable revelation 
unfolds—OBEDO emerges as a virtuoso of reliability. The attentive observer discerns the delicate undercurrents 
of STD values. The low STD values resonate across all photovoltaic models in Scenario 3. This steadfast stability 
further solidifies OBEDO’s stature as an unmatched performer, towering among its algorithmic peers.

Scenario 4: commercial sharp ND− R250A5 polycrystalline PV module
The I–V characteristic of this panel has been measured at a temperature of 59 °C and an irradiation of 1040 W/m2. 
The results obtained for SDM of the commercial Sharp ND-R250A5 polycrystalline PV module are discussed in 
this sub-section. This PV panel consists of 60 polycrystalline silicon PV cells that are connected in series. Table 19 
presents the optimized parameters of the commercial Sharp ND-R250A5 polycrystalline PV module by all 
selected algorithms. Table 20 presents the recorded data points, estimated data points using the OBEDO, and the 
corresponding errors. The average values for IAE and RE are stated as 9.41E−03 and − 3.93e−04. Table 2 displays 
the boundary values, and Table 19 displays the estimated optimal parameters of the PV module calculated by the 
OBEDO. The statistical measures for the SDM of this PV panel are presented in Table 21. The optimal RMSE is 
1.12E−02, while the IAE is 9.41e−03. The results of five parameters derived by OBEDO were given in Table 19 
and were compared with the other statE−of-thE−art algorithms. When comparing the outputs of the SDM, it is 
evident that the SDM obtained by OBEDO has lower RMSE values compared to the other algorithms. The error 
characteristics of this case are visualized in Fig. 30. Figure 30a illustrates the IAE with respect to the measured 

Figure 20.  Convergence curves (Scenario 2); (a) SDM, (b) DDM, (c) TDM.
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voltage, and Fig. 30b illustrates the RE with respect to the measured voltage. The measured and estimated I–V 
characteristics for the SDM of this PV panel are depicted in Fig. 31a. The P–V characteristics of this PV panel 
are shown in Fig. 31b, both measured and computed. The convergence of the objective function and violin plot 
analysis for OBEDO and seven other optimisation strategies is shown in Fig. 32. The convergence speed of the 
OBEDO surpasses that of the other algorithms, as demonstrated by Fig. 32a. The reliability of all the algorithms 
is visualized in Fig. 32b.

Scenario 5—commercial SM55 PV module
This sub-section details the results obtained by the proposed algorithm and other algorithms for scenario 5, i.e., 
the SDM of the SM55 PV module. The bounds for this scenario are provided in Table 2. To extract the parameters 
of scenario 5, a comprehensive analysis is conducted using experimental I–V samples. These samples are gathered 
under specific conditions, encompassing constant irradiance (G) of 1000 W/m2 and varying temperatures (T) 

Figure 21.  Violin plots (Scenario 2); (a) SDM, (b) DDM, (c) TDM.

Table 14.  Parameters estimated for Scenario 3 (SDM).

Algorithms Iph(A) Isd(A) Rse(Ω) Rsh(Ω) n RMSE

OBEDO 1.0305 3.48E−06 1.2013 981.98 48.6428 2.4251E−03

EDO 1.0291 4.85E−06 1.1652 1450.93 49.9469 2.5976E−03

ADHHO 1.0319 3.27E−06 1.2058 834.29 48.4106 2.4492E−03

OBMPA 1.0293 3.92E−06 1.1907 1242.43 49.0939 2.4567E−03

MGTO 1.0305 3.48E−06 1.2013 981.98 48.6428 2.4251E−03

IAOA 1.0287 4.91E−06 1.1642 1492.62 49.9974 2.6154E−03

HDE 1.0305 3.48E−06 1.2013 981.98 48.6428 2.4251E−03

OBGBO 1.0305 3.48E−06 1.2013 981.99 48.6428 2.4251E−03
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of 25 °C, 50 °C, and 75 °C, as well as a constant temperature of 25 °C and diverse irradiation levels including 
1000 W/m2, 800 W/m2, 600 W/m2, 400 W/m2, and 200 W/m2. The evaluation process encompasses various 
statistical measures and other pertinent performance indicators. Equation (30) is pivotal in this context, as it 
calculates the specific photovoltaic modules short-circuit current  Isc across various operational scenarios.

In the context of this study, the variables T and G hold significance as they denote the prevailing temperature 
and irradiation levels. The parameter α signifies the temperature coefficient, while  TSTC represents the temperature 
at STC, and  GSTC corresponds to the irradiance at STC. Additionally,  I(sc(STC)) represents the short-circuit current 

(30)Isc(G,T) = Isc(STC) ×
G

GSTC
+ α × (T − TSTC)

Table 16.  Parameters estimated for Scenario 3 (TDM).

Algorithms Iph(A) Isd1(A) Rse(Ω) Rsh(Ω) n1 Isd2(A) n2 Isd3(A) n3 RMSE

OBEDO 1.0305 1.43E−13 1.2013 982.49 46.764 2.21E−15 49.728 3.48E−06 48.642 2.4251E−03

EDO 1.0321 4.88E−06 1.1586 964.59 49.987 0.00E+00 13.143 0.00E+00 5.306 2.8079E−03

ADHHO 1.0302 4.87E−06 1.1624 1235.76 49.972 7.97E−10 45.552 0.00E+00 1.614 2.6396E−03

OBMPA 1.0300 3.75E−06 1.1935 1084.28 48.928 0.00E+00 35.330 0.00E+00 1.000 2.4342E−03

MGTO 1.0305 3.48E−06 1.2013 981.98 48.643 0.00E+00 49.768 0.00E+00 1.000 2.4251E−03

IAOA 1.0294 0.00E+00 1.1806 1361.22 45.239 1.03E−07 44.828 4.49E−06 50.000 2.5408E−03

HDE 1.0296 3.87E−06 1.1901 1153.42 49.058 8.86E−09 50.000 0.00E+00 36.367 2.4454E−03

OBGBO 1.0305 0.00E+00 1.2013 981.98 49.999 0.00E+00 46.419 3.48E−06 48.643 2.4251E−03

Figure 22.  Characteristics curves obtained by algorithms for Scenario 3 (SDM); (a) I–V curves, (b) P–V curves.

Table 15.  Parameters estimated for Scenario 3 (DDM).

Algorithms Iph(A) Isd1(A) Rse(Ω) Rsh(Ω) n1 Isd2(A) n2 RMSE

OBEDO 1.0305 3.48E−06 1.2013 981.98 48.6428 2.57E−26 6.4861 2.4251E−03

EDO 1.0272 0.00E+00 1.1914 1839.12 9.1993 4.05E−06 49.2168 2.5866E−03

ADHHO 1.0314 0.00E+00 1.1889 916.71 23.4768 3.79E−06 48.9785 2.4770E−03

OBMPA 1.0305 2.44E−06 1.2012 983.01 48.4677 1.06E−06 49.1394 2.4256E−03

MGTO 1.0305 3.48E−06 1.2013 981.98 48.6428 0.00E+00 47.5131 2.4251E−03

IAOA 1.0294 3.62E−07 1.1628 1256.00 49.0419 4.44E−06 49.9928 2.6305E−03

HDE 1.0305 3.48E−06 1.2013 982.00 48.6428 0.00E+00 40.6739 2.4251E−03

OBGBO 1.0305 3.48E−06 1.2013 981.98 48.6428 0.00E+00 1.0000 2.4251E−03
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at STC. Through this meticulous examination, insights are gained into the behaviour and adaptability of the PV 
module model, facilitating a nuanced understanding of its performance under varying temperature and irradi-
ance conditions. This analysis contributes to a comprehensive comprehension of the model’s capabilities, aiding 
in optimizing and deploying photovoltaic systems across a spectrum of real-world scenarios.

Within this study, Tables 22 and 23 play a pivotal role in offering a comprehensive insight into the param-
eters estimated and optimized using the OBEDO, alongside several alternative methodologies employed to 
investigate the PV module model. Delving into the specifics, Table 22 meticulously catalogues the estimated 
variables associated with the SM55 photovoltaic module. The entries in this table pertain to scenarios where the 
irradiance remains constant at 1000 W/m2 while the temperature fluctuates across three distinct levels: 25 °C, 
50 °C, and 75 °C. Meanwhile, Table 23 presents a similar compilation of estimated parameters for the SM55 PV 
module under differing conditions. In this instance, the temperature is maintained at a constant 25 °C while the 
irradiance levels are varied, spanning the range of 1000–200 W/m2.

The outcomes in Tables 22 and 23 witness the superior predictive prowess of the proposed OBEDO algorithm. 
These assertions are substantiated by observing significant RMSE values. This quantifiable measure of accuracy 
underscores the algorithm’s efficacy in determining and predicting the parameters intrinsic to a PV system with 
enhanced precision. Augmenting the tabular data, Figs. 33 and 34 provide a graphical representation of the I–V 
and P–V curves, depicting the behaviour of the SM55 PV module as extracted through the OBEDO and other 
algorithms. These curves offer a tangible means to observe the alignment and coherence between the curves 
generated from the algorithm’s predicted data and the actual empirical data. This visual correlation elucidates 

Figure 23.  Characteristics curves obtained by algorithms for Scenario 3 (DDM); (a) I–V curves, (b) P–V 
curves.

Figure 24.  Characteristics curves obtained by algorithms for Scenario 3 (TDM); (a) I–V curves, (b) P–V 
curves.
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how much the algorithmic predictions harmonize with real-world observations, enhancing our understanding 
of the model’s performance and predictive capabilities.

In order to conduct a more comprehensive evaluation of the performance of the newly introduced OBEDO, 
a detailed analysis of its statistical measures was carried out. This analysis specifically focused on Scenario 5 
and involved the computation of various key metrics, including the Min, Max, Mean, Median and STD values. 
These statistical results were subsequently organized and presented in a tabular format, with Tables 24 and 25 
dedicated to showcasing these values. The investigation was undertaken across various environmental factors, 
encompassing different temperature settings and varying irradiation conditions. The purpose of this exploration 
was to measure the algorithm’s robustness and effectiveness under a variety of scenarios. Notably, the outcomes 

Table 17.  RE and IAE values attained by OBEDO for Scenario 3.

Vex Iex

SDM DDM TDM SDM DDM TDM SDM DDM TDM

Ies(A) RE IAE(A)

0.1248 1.0315 1.0291 1.0291 1.0291 2.308E−03 2.308E−03 2.308E−03 2.381E−03 2.381E−03 2.381E−03

1.8093 1.0300 1.0274 1.0274 1.0274 2.543E−03 2.543E−03 2.543E−03 2.619E−03 2.619E−03 2.619E−03

3.3511 1.0260 1.0257 1.0257 1.0257 2.517E−04 2.517E−04 2.517E−04 2.582E−04 2.582E−04 2.582E−04

4.7622 1.0220 1.0241 1.0241 1.0241 − 2.062E−03 − 2.062E−03 − 2.062E−03 2.107E−03 2.107E−03 2.107E−03

6.0538 1.0180 1.0223 1.0223 1.0223 − 4.216E−03 − 4.216E−03 − 4.216E−03 4.292E−03 4.292E−03 4.292E−03

7.2364 1.0155 1.0199 1.0199 1.0199 − 4.363E−03 − 4.363E−03 − 4.363E−03 4.431E−03 4.431E−03 4.431E−03

8.3189 1.0140 1.0164 1.0164 1.0164 − 2.330E−03 − 2.330E−03 − 2.330E−03 2.363E−03 2.363E−03 2.363E−03

9.3097 1.0100 1.0105 1.0105 1.0105 − 4.912E−04 − 4.912E−04 − 4.912E−04 4.962E−04 4.962E−04 4.962E−04

10.2163 1.0035 1.0006 1.0006 1.0006 2.861E−03 2.861E−03 2.861E−03 2.871E−03 2.871E−03 2.871E−03

11.0449 0.9880 0.9845 0.9845 0.9845 3.494E−03 3.494E−03 3.494E−03 3.452E−03 3.452E−03 3.452E−03

11.8018 0.9630 0.9595 0.9595 0.9595 3.612E−03 3.612E−03 3.612E−03 3.478E−03 3.478E−03 3.478E−03

12.4929 0.9255 0.9228 0.9228 0.9228 2.875E−03 2.875E−03 2.875E−03 2.661E−03 2.661E−03 2.661E−03

13.1231 0.8725 0.8726 0.8726 0.8726 − 1.142E−04 − 1.142E−04 − 1.142E−04 9.966E−05 9.966E−05 9.966E−05

13.6983 0.8075 0.8073 0.8073 0.8073 2.795E−04 2.795E−04 2.796E−04 2.257E−04 2.257E−04 2.257E−04

14.2221 0.7265 0.7283 0.7283 0.7283 − 2.528E−03 − 2.528E−03 − 2.528E−03 1.836E−03 1.836E−03 1.836E−03

14.6995 0.6345 0.6371 0.6371 0.6371 − 4.158E−03 − 4.158E−03 − 4.158E−03 2.638E−03 2.638E−03 2.638E−03

15.1346 0.5345 0.5362 0.5362 0.5362 − 3.205E−03 − 3.205E−03 − 3.205E−03 1.713E−03 1.713E−03 1.713E−03

15.5311 0.4275 0.4295 0.4295 0.4295 − 4.705E−03 − 4.705E−03 − 4.705E−03 2.011E−03 2.011E−03 2.011E−03

15.8929 0.3185 0.3188 0.3188 0.3188 − 8.618E−04 − 8.618E−04 − 8.618E−04 2.745E−04 2.745E−04 2.745E−04

16.2229 0.2085 0.2074 0.2074 0.2074 5.326E−03 5.326E−03 5.326E−03 1.110E−03 1.110E−03 1.110E−03

16.5241 0.1010 0.0962 0.0962 0.0962 4.785E−02 4.785E−02 4.785E−02 4.833E−03 4.833E−03 4.833E−03

16.7987 − 0.0080 − 0.0083 − 0.0083 − 0.0083 − 4.067E−02 − 4.067E−02 − 4.067E−02 3.254E−04 3.254E−04 3.254E−04

17.0499 − 0.1110 − 0.1109 − 0.1109 − 0.1109 5.722E−04 5.722E−04 5.722E−04 6.352E−05 6.352E−05 6.352E−05

17.2793 − 0.2090 − 0.2092 − 0.2092 − 0.2092 − 1.183E−03 − 1.183E−03 − 1.183E−03 2.473E−04 2.473E−04 2.473E−04

17.4885 − 0.3030 − 0.3009 − 0.3009 − 0.3009 7.051E−03 7.051E−03 7.051E−03 2.136E−03 2.136E−03 2.136E−03

Mean values 3.253E−04 3.253E−04 3.253E−04 1.957E−03 1.957E−03 1.957E−03

Figure 25.  Error curves obtained by algorithms for Scenario 3 (SDM); (a) IAE, (b) RE.
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yielded by the OBEDO exhibited remarkable performance in terms of the computed statistical measures, specifi-
cally the Min, Max, Mean, and STD values. This notable achievement can be attributed to incorporating a unique 
enhancement technique, namely integrating OBL within the algorithmic framework. By infusing the algorithm 
with the principles of OBL, the inherent capacity of the OBEDO to explore and exploit the solution space was 
significantly augmented. This enhancement played a crucial role in the algorithm’s ability to search for optimal 
PV module parameters under varying conditions efficiently.

The synergistic effect of the OBL strategy, alongside other optimization techniques embedded within the 
OBEDO, contributed to the algorithm’s exceptional performance across different environmental contexts. In 
summary, the meticulous evaluation of the proposed OBEDO’s performance in Scenario 5, through the assess-
ment of statistical measures across distinct temperatures and irradiation conditions, underscored its effective-
ness in achieving outstanding results. This success can be attributed to the successful integration of OBL, which 
bolstered both exploration and exploitation capabilities, ultimately identifying optimal PV module parameters 
across various conditions.

However, it is worth noting that the RT values acquired through utilizing the proposed algorithm across all 
operational conditions exhibit a marginal increase compared to those attained by the fundamental EDO. This 
observed difference in RT values can be attributed to amalgamating two distinct optimization strategies within 
the proposed algorithmic framework. Despite the slightly elevated RT values, the overall performance of the 
proposed algorithm surpasses that of the basic EDO by a notable margin, showcasing an improvement of over 
75%. This significant enhancement can be attributed to the synergistic effect generated by the fusion of these 
diverse optimization strategies. The results obtained from the evaluation demonstrate a remarkable alignment 
between the I–V and P–V characteristics deduced from the estimated parameters and the experimental data, even 

Figure 26.  Error curves obtained by algorithms for Scenario 3 (DDM); (a) IAE, (b) RE.

Figure 27.  Error curves obtained by algorithms for Scenario 3 (TDM); (a) IAE, (b) RE.
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Table 18.  Performance Comparison for Scenario 3. Significant values are in [bold].

Model Algorithms Min Max Mean Median STD RT

SDM

OBEDO 2.4251E−03 2.4251E−03 2.4251E−03 2.4251E−03 5.7466E−17 8.60

EDO 2.5976E−03 2.7425E−01 7.4780E−02 1.4859E−02 1.0842E−01 8.42

ADHHO 2.4492E−03 2.7425E−01 4.1301E−02 6.1914E−03 8.6647E−02 8.73

OBMPA 2.4567E−03 2.6620E−03 2.5238E−03 2.5092E−03 7.1505E−05 8.59

MGTO 2.4251E−03 2.7425E−01 2.9608E−02 2.4251E−03 8.5959E−02 8.75

IAOA 2.6154E−03 6.8327E−03 3.6133E−03 3.1613E−03 1.3100E−03 8.94

HDE 2.4251E−03 2.4315E−03 2.4257E−03 2.4251E−03 2.0398E−06 8.72

OBGBO 2.4251E−03 2.4253E−03 2.4251E−03 2.4251E−03 7.2685E−08 78.86

DDM

OBEDO 2.4251E−03 2.4252E−03 2.4251E−03 2.4251E−03 4.6067E−08 8.09

EDO 2.5866E−03 2.7425E−01 1.0649E−01 7.2955E−02 1.1961E−01 7.98

ADHHO 2.4770E−03 2.7425E−01 3.6645E−02 3.4096E−03 8.4686E−02 8.18

OBMPA 2.4256E−03 1.0282E−02 3.2765E−03 2.4984E−03 2.4620E−03 8.20

MGTO 2.4251E−03 2.7425E−01 8.4172E−02 2.4281E−03 1.3117E−01 8.42

IAOA 2.6305E−03 1.0384E−02 4.9402E−03 3.5194E−03 2.6403E−03 8.18

HDE 2.4251E−03 2.5321E−03 2.4554E−03 2.4283E−03 4.3904E−05 8.19

OBGBO 2.4251E−03 2.5443E−03 2.4484E−03 2.4252E−03 4.8421E−05 75.52

TDM

OBEDO 2.4251E−03 2.4271E−03 2.4253E−03 2.4251E−03 6.3319E−07 8.09

EDO 2.8079E−03 2.7427E−01 1.5276E−01 1.7360E−01 1.3053E−01 7.91

ADHHO 2.6396E−03 1.4802E−01 2.4883E−02 1.1029E−02 4.4208E−02 8.25

OBMPA 2.4342E−03 5.0936E−03 2.7775E−03 2.5012E−03 8.1712E−04 8.13

MGTO 2.4251E−03 2.7425E−01 1.1134E−01 3.3245E−03 1.4022E−01 8.60

IAOA 2.5408E−03 8.7220E−03 3.9698E−03 3.5730E−03 1.8878E−03 8.21

HDE 2.4454E−03 2.5653E−03 2.5183E−03 2.5245E−03 3.5846E−05 8.26

OBGBO 2.4251E−03 1.1247E−01 1.3448E−02 2.4388E−03 3.4794E−02 75.26

Figure 28.  Convergence curves (Scenario 3); (a) SDM, (b) DDM, (c) TDM.
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under varying temperature and irradiance conditions. This alignment underscores the precision of the proposed 
algorithm in capturing the intricate nuances of the photovoltaic system’s behaviour. Furthermore, the outcomes 
of the experimentation reveal an additional advantage of the OBEDO, namely its ability to attain a lower RMSE 
value. This improvement in accuracy highlights the algorithm’s efficacy in modelling and predicting the behaviour 
of the photovoltaic module, thereby facilitating more reliable parameter estimations. The comprehensive discus-
sions and analyses led to the clear conclusion that the efficiency of the OBEDO remains robust and dependable 
when confronted with dynamic shifts in environmental conditions. The amalgamation of optimization strategies, 
while contributing to a slight increase in RT values, offers substantial gains in performance, as evident from the 

Figure 29.  Violin plots (Scenario 3); (a) SDM, (b) DDM, (c) TDM.

Table 19.  Parameters estimated for Scenario 4. Significant values are in [bold].

Algorithms Iph(A) Isd(A) Rse(Ω) Rsh(Ω) n RMSE

OBEDO 9.1461 1.09E−06 0.5895 5500.00 72.8007 1.12E−02

EDO 9.1727 2.32E−06 0.5725 4564.75 76.3866 2.01E−02

ADHHO 9.1481 1.14E−06 0.5886 5499.78 73.0083 1.13E−02

OBMPA 9.1603 1.48E−06 0.5836 5499.97 74.2254 1.34E−02

MGTO 9.1461 1.09E−06 0.5895 5500.00 72.8007 1.12E−02

IAOA 9.1579 1.73E−06 0.5779 2712.83 74.9546 1.63E−02

HDE 9.1585 1.67E−06 0.5796 5500.00 74.7775 1.47E−02

OBGBO 9.1462 1.09E−06 0.5895 5500.00 72.8006 1.12E−02
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Table 20.  RE and IAE values attained by OBEDO for Scenario 4.

Vex Iex Ies(A) RE IAE(A)

0.00 9.15 9.1451 5.31E−04 4.86E−03

7.71 9.14 9.1432 − 3.47E−04 3.17E−03

10.98 9.12 9.1404 − 2.23E−03 2.04E−02

14.55 9.11 9.1271 − 1.87E−03 1.71E−02

16.36 9.10 9.1054 − 5.98E−04 5.44E−03

18.00 9.07 9.0618 9.00E−04 8.16E−03

19.15 9.02 9.0046 1.70E−03 1.54E−02

20.04 8.95 8.9356 1.61E−03 1.44E−02

20.87 8.86 8.8423 1.99E−03 1.77E−02

21.67 8.73 8.7181 1.36E−03 1.19E−02

22.36 8.58 8.5763 4.27E−04 3.66E−03

23.02 8.40 8.4043 − 5.07E−04 4.26E−03

23.62 8.20 8.2124 − 1.51E−03 1.24E−02

24.15 8.00 8.0092 − 1.15E−03 9.22E−03

24.61 7.80 7.8072 − 9.29E−04 7.24E−03

25.02 7.60 7.6065 − 8.56E−04 6.51E−03

25.39 7.40 7.4091 − 1.24E−03 9.14E−03

25.75 7.20 7.1958 5.89E−04 4.24E−03

26.38 6.80 6.7906 1.38E−03 9.37E−03

26.94 6.40 6.3950 7.87E−04 5.04E−03

27.46 6.00 5.9937 1.05E−03 6.30E−03

27.94 5.60 5.6024 − 4.24E−04 2.38E−03

28.40 5.20 5.2004 − 7.89E−05 4.10E−04

28.84 4.80 4.7947 1.10E−03 5.30E−03

29.25 4.40 4.4157 − 3.58E−03 1.57E−02

29.66 4.00 4.0037 − 9.34E−04 3.74E−03

30.05 3.60 3.6092 − 2.54E−03 9.16E−03

30.44 3.20 3.1843 4.91E−03 1.57E−02

30.81 2.80 2.7880 4.28E−03 1.20E−02

31.17 2.40 2.3978 8.96E−04 2.15E−03

31.52 2.00 2.0180 − 8.99E−03 1.80E−02

31.88 1.60 1.5805 1.22E−02 1.95E−02

32.22 1.20 1.1928 5.98E−03 7.17E−03

32.55 0.80 0.8253 − 3.16E−02 2.53E−02

32.89 0.40 0.3989 2.87E−03 1.15E−03

33.22 0.00 − 0.0054 6.55E−04 5.43E−03

Average values − 3.93e−04 9.41E−03

Table 21.  Performance comparison for Scenario 4. Significant values are in [bold].

Algorithms Min Max Mean Median STD RT

OBEDO 1.1245E−02 1.1245E−02 1.1245E−02 1.1245E−02 2.3551E−10 7.275

EDO 2.0110E−02 5.5021E−02 3.1794E−02 2.5610E−02 1.4637E−02 7.125

ADHHO 1.1291E−02 4.4144E−02 3.2799E−02 3.6944E−02 1.2950E−02 7.875

OBMPA 1.3433E−02 2.7885E−02 2.0930E−02 2.2408E−02 5.5314E−03 7.319

MGTO 1.1245E−02 1.1441E−02 1.1317E−02 1.1254E−02 9.5422E−05 7.409

IAOA 1.6290E−02 5.1827E−02 3.7945E−02 4.3235E−02 1.5270E−02 7.306

HDE 1.4721E−02 1.8955E−02 1.6927E−02 1.7218E−02 1.7462E−03 7.734

OBGBO 1.1245E−02 1.1468E−02 1.1298E−02 1.1266E−02 9.5245E−05 63.741
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Figure 30.  Error characteristics of Sharp ND-R250A5 PV module; (a) IAE, (b) RE.

Figure 31.  Characteristics of Sharp ND-R250A5 PV module; (a) I–V characteristics, (b) P–V characteristics.

Figure 32.  Statistical metrics of Sharp ND-R250A5 PV module; (a) convergence curves, (b) violin plots.
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substantial enhancement over the basic EDO. The alignment between simulated I–V and P–V characteristics and 
experimental data, coupled with the lower RMSE value achieved, attests to the algorithm’s capability to handle 
the details of dynamic environmental variations.

Statistical performance
Milton Friedman, a renowned figure in statistics, is credited with conceiving a significant non-parametric statisti-
cal test known as the Friedman ranking test (FRT). This test holds a distinct purpose in the realm of statistical 
analysis—it serves as a valuable tool for detecting variations in treatments across multiple experimental runs, akin 
to the parameterized repeated measures ANOVA commonly employed in research. A comprehensive application 
of the FRT was conducted to establish the superiority of the OBEDO in terms of overall performance. In this 
endeavour, the objective was to substantiate that the OBEDO exhibits superior efficacy in generating aggregate 
results compared to a range of other algorithms. Among the algorithms subjected to analysis were not only the 
OBEDO and EDO but also an assortment of others, namely the ADHHO, OBMPA, MGTO, IAOA, HDE, and 
OBGBO. The process involved meticulously examining the FRT outcomes, which were carefully obtained by 
considering each algorithm’s RMSE standard deviation values. These values, extracted and compiled in Table 26, 
provided a foundation for an extensive comparative analysis of the various algorithms under investigation. The 
resultant observations from this comparison laid bare a noteworthy revelation – the OBEDO emerged as a stand-
out performer. By assessing the mean FRT values across four distinct case studies and comparing them against 
the benchmark set by preceding algorithms, the authors concluded that the recommended OBEDO showcases 
an exceptional ability to manage diverse scenarios with the lowest mean FRT values. In light of the compel-
ling evidence amassed through this comprehensive analysis, it becomes evident that the OBEDO outshines its 
counterparts. The OBEDO’s consistent superiority across multiple case studies firmly establishes its prowess as 
a premier algorithmic solution, further reinforcing its position as a robust and proficient tool for addressing 
various optimization challenges.

Table 26 presents a comparative analysis using the FRT across various scenarios and optimization models. 
The FRT aims to determine the relative performance of different optimization algorithms. The models evaluated 

Table 22 .  Parameters estimated by the algorithms (Scenario 4) under various temperature conditions. 
Significant values are in [bold].

Temperature Algorithm Iph(A) Isd(A) Rse(Ω) Rsh(Ω) n RMSE

60 °C

OBEDO 3.4946 6.91E−06 0.3187 484.88 1.4051 3.7804E−03

EDO 3.4785 5.75E−06 0.3335 4811.41 1.3853 8.6436E−03

ADHHO 3.4903 3.82E−05 0.2248 5000.00 1.6138 1.2592E−02

OBMPA 3.4829 1.03E−05 0.3064 4980.33 1.4486 6.0617E−03

MGTO 3.4946 6.91E−06 0.3187 484.88 1.4051 3.7804E−03

IAOA 3.4933 3.22E−05 0.2400 1863.55 1.5905 1.1925E−02

HDE 3.4905 1.15E−05 0.2954 875.64 1.4609 4.9433E−03

OBGBO 3.4946 6.91E−06 0.3187 484.88 1.4051 3.7804E−03

40 °C

OBEDO 3.4691 1.15E−06 0.3131 533.07 1.4178 3.7888E−03

EDO 3.4674 9.19E−06 0.2120 1577.15 1.6465 1.4522E−02

ADHHO 3.4649 1.08E−05 0.2048 5000.00 1.6668 1.5092E−02

OBMPA 3.4596 3.88E−06 0.2602 4987.71 1.5429 8.2396E−03

MGTO 3.4686 1.20E−06 0.3113 548.28 1.4221 3.7986E−03

IAOA 3.4752 1.09E−05 0.1825 604.29 1.6684 1.9305E−02

HDE 3.4593 3.39E−06 0.2696 5000.00 1.5282 7.5246E−03

OBGBO 3.4664 1.23E−06 0.3110 629.96 1.4244 3.9181E−03

25 °C

OBEDO 3.4501 1.71E−07 0.3291 483.90 1.3958 1.1462E−03

EDO 3.4496 1.18E−05 0.1258 3571.99 1.8625 2.5065E−02

ADHHO 3.4459 6.94E−06 0.1566 5000.00 1.7871 2.0923E−02

OBMPA 3.4404 1.80E−06 0.2347 5000.00 1.6210 1.2037E−02

MGTO 3.4435 5.91E−07 0.2834 1320.00 1.5055 5.8714E−03

IAOA 3.4644 4.28E−06 0.1941 431.22 1.7257 2.4107E−02

HDE 3.4400 1.81E−06 0.2285 5000.00 1.6218 1.2356E−02

OBGBO 3.4457 2.26E−07 0.3207 658.48 1.4191 2.2319E−03
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in this study include OBEDO, EDO, ADHHO, OBMPA, MGTO, IAOA, HDE, and OBGBO. In Scenario 1, 
involving different data models (SDM, DDM, TDM), the FRT values indicate the algorithms’ performance. The 
OBEDO algorithm achieved the lowest FRT value, followed by MGTO and OBGBO. Similar trends are observed 
in Scenario 2, which considers another set of data models, with OBEDO outperforming other models. Scenario 
3 explores algorithms’ performance across diverse conditions. Once again, OBEDO takes the lead in achieving 
the lowest FRT value, followed by ADHHO and IAOA. Scenario 4 explores algorithms’ performance across 
diverse conditions. Once again, OBEDO takes the lead in achieving the lowest FRT value, followed by OBGBO 
and MGTO. In the fifth scenario, different temperature and irradiance conditions are analyzed. OBEDO consist-
ently demonstrates the most favourable performance across varying environmental conditions. The mean FRT 
provides the average FRT values for each model, and the rank presents their ranking based on performance. 
Notably, OBEDO maintains the top rank with the lowest mean FRT value, emphasizing its consistent superiority. 
In summary, the FRT analysis across multiple scenarios and models underscores the exceptional performance 
of the OBEDO algorithm, which consistently achieves the lowest FRT values and the highest ranking. This sug-
gests that OBEDO outperforms the other optimization models across diverse conditions and demonstrates its 
robustness and efficacy in optimization tasks.

Table 23 .  Parameters estimated by the algorithms (Scenario 4) under irradiation conditions. Significant 
values are in [bold].

Temperature Algorithm Iph(A) Isd(A) Rse(Ω) Rsh(Ω) n RMSE

1000 W/m2

OBEDO 3.4501 1.71E−07 0.3291 483.90 1.3958 1.1462E−03

EDO 3.4478 1.61E−05 0.0789 2976.81 1.9075 2.8393E−02

ADHHO 3.4492 1.46E−05 0.1056 5000.00 1.8940 2.6396E−02

OBMPA 3.4420 2.61E−06 0.2154 4999.82 1.6637 1.4319E−02

MGTO 3.4384 5.10E−07 0.2864 1732.88 1.4915 5.4408E−03

IAOA 3.4457 5.71E−06 0.1567 1577.93 1.7608 2.0753E−02

HDE 3.4409 1.96E−06 0.2315 4998.04 1.6310 1.2598E−02

OBGBO 3.4483 1.89E−07 0.3263 537.09 1.4040 1.3549E−03

800 W/m2

OBEDO 2.7604 1.44E−07 0.3376 459.88 1.3811 6.6858E−04

EDO 2.7494 4.68E−06 0.0781 4851.15 1.7330 1.0357E−02

ADHHO 2.7504 5.62E−06 0.0693 5000.00 1.7575 1.0853E−02

OBMPA 2.7491 3.41E−06 0.1169 4958.55 1.6946 9.2702E−03

MGTO 2.7531 4.82E−07 0.2663 757.15 1.4862 2.6706E−03

IAOA 2.7570 1.37E−05 0.0103 2888.19 1.8858 1.5824E−02

HDE 2.7518 1.52E−06 0.1859 1351.23 1.6023 6.8257E−03

OBGBO 2.0709 1.56E−07 0.3305 450.07 1.3875 8.2395E−04

600 W/m2

OBEDO 2.0676 2.99E−07 0.2873 571.22 1.4449 1.8937E−03

EDO 2.0613 4.80E−06 0.0635 3611.34 1.7502 9.4736E−03

ADHHO 2.0655 1.03E−06 0.1882 785.35 1.5666 4.9593E−03

OBMPA 2.0578 1.69E−06 0.1621 4650.37 1.6209 7.1003E−03

MGTO 2.7584 1.69E−07 0.3306 521.22 1.3945 1.1001E−03

IAOA 2.0654 8.33E−06 0.0636 3891.52 1.8302 1.5062E−02

HDE 2.0654 1.30E−06 0.1645 851.54 1.5908 5.6085E−03

OBGBO 2.0699 1.66E−07 0.3271 472.82 1.3931 9.1622E−04

400 W/m2

OBEDO 1.3828 1.00E−07 0.3966 427.07 1.3520 7.0761E−04

EDO 1.3710 4.28E−06 0.0286 4968.53 1.7486 8.4576E−03

ADHHO 1.3776 1.71E−06 0.0000 687.21 1.6270 3.7836E−03

OBMPA 1.3789 1.25E−06 0.0001 574.57 1.5892 3.3034E−03

MGTO 1.3828 1.02E−07 0.3945 428.48 1.3533 7.0860E−04

IAOA 1.3738 2.28E−06 0.0013 1140.29 1.6624 4.9593E−03

HDE 1.3797 6.08E−07 0.1437 535.90 1.5138 2.3359E−03

OBGBO 1.3811 1.51E−07 0.3447 462.22 1.3856 1.0206E−03

200 W/m2

OBEDO 0.6920 1.31E−07 0.3124 438.04 1.3709 5.2054E−04

EDO 0.6808 2.13E−06 0.0262 2031.57 1.6735 5.9319E−03

ADHHO 0.6904 4.83E−07 0.0000 495.17 1.4954 1.1563E−03

OBMPA 0.6907 3.54E−07 0.0000 471.10 1.4622 8.0751E−04

MGTO 0.6920 1.31E−07 0.3124 438.05 1.3709 5.2054E−04

IAOA 0.6894 2.11E−06 0.0000 637.22 1.6768 4.9016E−03

HDE 0.6912 2.62E−07 0.0944 456.08 1.4334 6.7018E−04

OBGBO 0.6920 1.32E−07 0.3107 438.11 1.3714 5.2055E−04
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Conclusions and future extension
The proposed OBEDO has demonstrated its prowess in efficiently, accurately, and rapidly extracting undefined 
parameters from diverse PV system models, as evidenced by the proposed study. The comprehensive analysis 
undertaken further substantiates the efficacy and potential of this framework in extrapolating parameters for 
commercial PV models. The evaluation sought to ascertain if the proposed methodology could successfully 
deduce the parameters of such intricate models, and the obtained results provide compelling evidence of the 
OBEDO’s capability to precisely and effectively determine optimal parameters. Furthermore, it is noteworthy 
that the TDM exhibits the lowest model features in terms of RMSE, IAE, and RE, underscoring its accuracy. 
Additionally, the convergence speed of the OBEDO outperforms its counterparts across all test cases, indicating 
its superior efficiency. These attributes collectively position the proposed OBEDO as a cutting-edge, competitive, 
and advanced approach for parameter identification in PV models. The OBEDO attains stability and diversity, 
achieved through meticulous parameter tuning, which positions it favourably compared to its basic version. 
Nonetheless, as per the NFL theorem, it is crucial to recognize that while the OBEDO exhibits enhanced search 
results for parameter identification problems, its success might vary in problems with distinct characteristics. As 
a result, ongoing research and development are necessary to tailor meta-heuristic search approaches to specific 
problem domains.

In forthcoming research, the proposed algorithm can be evaluated within contemporary techniques for 
PV parameter identification and subsequently extended to real-world scenarios for various PV cells/modules. 
Moreover, the versatile applicability of the OBEDO can be harnessed to address challenging problems spanning 
water pollution prediction, disease diagnosis, binary optimization, feature selection/extraction, image processing 
tasks, scheduling optimization, wireless sensor networks, and medical image categorization. This underscores 
the algorithm’s potential as a multifaceted solution with far-reaching implications across diverse domains.

Figure 33.  Characteristics of the SM55 PV module under different temperature conditions obtained by all 
algorithms; (a) I–V curves, (b) P–V curves.
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Figure 34.  Characteristics of the SM55 PV module under different irradiance conditions obtained by all 
algorithms; (a) I–V curves, (b) P–V curves.
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Table 24 .  Statistical analysis of Scenario 4 at different temperatures. Significant values are in [bold].

Temperature Algorithm Min Max Mean Median STD RT

25 °C

OBEDO 1.1462E−03 1.8005E−03 1.2771E−03 1.1462E−03 2.9262E−04 8.85

EDO 2.5065E−02 3.7995E−02 3.2204E−02 3.1091E−02 5.0967E−03 8.69

ADHHO 2.0923E−02 3.6679E−02 3.1508E−02 3.3408E−02 6.2750E−03 8.98

OBMPA 1.2037E−02 3.5555E−02 2.3128E−02 1.9586E−02 1.1714E−02 9.13

MGTO 5.8714E−03 7.6867E−03 7.0764E−03 7.2310E−03 7.4682E−04 8.98

IAOA 2.4107E−02 3.9259E−02 3.2205E−02 3.3638E−02 5.5939E−03 8.88

HDE 1.2356E−02 1.5187E−02 1.3720E−02 1.3832E−02 1.0441E−03 9.36

OBGBO 2.2319E−03 6.4832E−03 5.4702E−03 6.3865E−03 1.8339E−03 79.80

40 °C

OBEDO 3.7888E−03 3.7929E−03 3.7896E−03 3.7888E−03 1.8064E−06 8.00

EDO 1.4522E−02 5.0768E−02 3.4681E−02 3.6563E−02 1.4167E−02 7.92

ADHHO 1.5092E−02 2.9463E−02 2.2617E−02 2.2168E−02 6.1953E−03 8.30

OBMPA 8.2396E−03 1.6600E−02 1.2395E−02 1.2379E−02 3.6711E−03 8.21

MGTO 3.7986E−03 7.2755E−03 5.3643E−03 4.9493E−03 1.4198E−03 8.14

IAOA 1.9305E−02 3.8263E−02 3.0184E−02 3.3354E−02 8.4063E−03 8.17

HDE 7.5246E−03 1.1804E−02 9.8422E−03 9.5700E−03 1.7323E−03 8.41

OBGBO 3.9181E−03 6.3215E−03 4.7535E−03 4.3643E−03 1.0245E−03 76.47

60 °C

OBEDO 3.7804E−03 3.7804E−03 3.7804E−03 3.7804E−03 2.1119E−09 8.02

EDO 8.6436E−03 4.4082E−02 2.2492E−02 1.9587E−02 1.3062E−02 7.92

ADHHO 1.2592E−02 1.6298E−02 1.4632E−02 1.4330E−02 1.5458E−03 8.32

OBMPA 6.0617E−03 9.3656E−03 7.3994E−03 7.4895E−03 1.3805E−03 8.30

MGTO 3.7804E−03 4.6768E−03 3.9599E−03 3.7804E−03 4.0073E−04 8.40

IAOA 1.1925E−02 6.9245E−02 4.0929E−02 4.9126E−02 2.5394E−02 8.27

HDE 4.9433E−03 6.4997E−03 5.9688E−03 6.0547E−03 6.2993E−04 8.37

OBGBO 3.7804E−03 3.8283E−03 3.7974E−03 3.7866E−03 2.1416E−05 76.31
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Table 25 .  Statistical analysis of Scenario 4 at different irradiances. Significant values are in [bold].

Irradiance Algorithm Min Max Mean Median STD RT

1000 W/m2

OBEDO 1.1462E−03 1.8801E−03 1.2990E−03 1.1465E−03 3.2506E−04 8.32

EDO 2.8393E−02 4.0383E−02 3.4843E−02 3.4925E−02 5.2988E−03 7.87

ADHHO 2.6396E−02 3.6016E−02 3.1989E−02 3.4647E−02 4.7752E−03 8.32

OBMPA 1.4319E−02 3.5555E−02 2.5853E−02 2.5350E−02 9.6933E−03 8.34

MGTO 5.4408E−03 7.4378E−03 6.4914E−03 6.6208E−03 7.4834E−04 8.35

IAOA 2.0753E−02 4.3751E−02 3.2781E−02 3.4879E−02 9.2212E−03 8.43

HDE 1.2598E−02 1.6981E−02 1.5053E−02 1.5731E−02 1.7620E−03 8.54

OBGBO 1.3549E−03 6.4825E−03 3.9939E−03 3.5462E−03 2.3104E−03 76.43

800 W/m2

OBEDO 6.6858E−04 6.7014E−04 6.6890E−04 6.6860E−04 6.9355E−07 8.19

EDO 1.0357E−02 1.6213E−02 1.2227E−02 1.0605E−02 2.5825E−03 7.67

ADHHO 1.0853E−02 1.5562E−02 1.2889E−02 1.2635E−02 1.9349E−03 8.28

OBMPA 9.2702E−03 1.2831E−02 1.2119E−02 1.2831E−02 1.5924E−03 8.30

MGTO 2.6706E−03 6.5733E−03 5.4675E−03 6.4783E−03 1.6925E−03 8.45

IAOA 1.5824E−02 3.2148E−02 2.6286E−02 2.8032E−02 6.1850E−03 8.21

HDE 6.8257E−03 7.9927E−03 7.4311E−03 7.6286E−03 5.5411E−04 8.58

OBGBO 1.1001E−03 6.1838E−03 3.3585E−03 2.8579E−03 1.8971E−03 76.63

600 W/m2

OBEDO 8.2395E−04 8.2901E−04 8.2527E−04 8.2395E−04 2.1953E−06 8.12

EDO 9.4736E−03 2.0551E−02 1.3030E−02 1.0812E−02 4.4525E−03 7.72

ADHHO 4.9593E−03 9.9034E−03 8.4160E−03 8.9680E−03 1.9708E−03 8.32

OBMPA 7.1003E−03 9.9642E−03 8.9004E−03 8.9159E−03 1.1778E−03 8.18

MGTO 1.8937E−03 6.5632E−03 3.5364E−03 3.3995E−03 1.8240E−03 8.42

IAOA 1.5062E−02 3.0464E−02 2.3971E−02 2.3236E−02 6.1079E−03 8.17

HDE 5.6085E−03 9.9377E−03 7.6870E−03 7.2188E−03 2.1501E−03 8.49

OBGBO 9.1622E−04 2.6642E−03 1.2932E−03 9.2806E−04 7.6779E−04 76.09

400 W/m2

OBEDO 7.0761E−04 7.2169E−04 7.1144E−04 7.0772E−04 6.1134E−06 8.16

EDO 8.4576E−03 1.3343E−02 1.1252E−02 1.1374E−02 2.0143E−03 7.98

ADHHO 3.7836E−03 6.7379E−03 4.8276E−03 4.5287E−03 1.1994E−03 8.17

OBMPA 3.3034E−03 6.1513E−03 4.0450E−03 3.4791E−03 1.2095E−03 8.26

MGTO 7.0860E−04 1.2310E−03 9.1996E−04 8.4686E−04 2.1193E−04 8.46

IAOA 4.9593E−03 2.0606E−02 1.4812E−02 1.5614E−02 6.1086E−03 8.24

HDE 2.3359E−03 3.2976E−03 3.0121E−03 3.0699E−03 3.9553E−04 8.19

OBGBO 1.0206E−03 2.0961E−03 1.5361E−03 1.4958E−03 3.8367E−04 75.65

200 W/m2

OBEDO 5.2054E−04 5.2108E−04 5.2065E−04 5.2054E−04 2.4090E−07 7.98

EDO 5.9319E−03 8.7368E−03 7.4880E−03 7.6239E−03 1.1204E−03 7.43

ADHHO 1.1563E−03 4.2376E−03 2.4974E−03 1.8621E−03 1.4811E−03 8.22

OBMPA 8.0751E−04 2.6493E−03 1.2709E−03 9.6697E−04 7.7821E−04 8.18

MGTO 5.2054E−04 5.2272E−04 5.2126E−04 5.2055E−04 1.0148E−06 8.18

IAOA 4.9016E−03 1.0825E−02 8.5011E−03 8.3110E−03 2.3066E−03 7.99

HDE 6.7018E−04 7.8064E−04 7.4434E−04 7.5528E−04 4.3716E−05 8.13

OBGBO 5.2055E−04 6.8215E−04 5.6703E−04 5.3965E−04 6.6348E−05 74.87
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