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Histogram‑based features track 
Alzheimer’s progression in brain 
MRI
Nikaash Pasnoori 1, Thania Flores‑Garcia 2 & Buket D. Barkana 3*

Alzheimer’s disease is a form of general dementia marked by amyloid plaques, neurofibrillary tangles, 
and neuron degeneration. The disease has no cure, and early detection is critical in improving patient 
outcomes. Magnetic resonance imaging (MRI) is important in measuring neurodegeneration during 
the disease. Computer‑aided image processing tools have been used to aid medical professionals 
in ascertaining a diagnosis of Alzheimer’s in its early stages. As characteristics of non and very‑mild 
dementia stages overlap, tracking the progression is challenging. Our work developed an adaptive 
multi‑thresholding algorithm based on the morphology of the smoothed histogram to define features 
identifying neurodegeneration and track its progression as non, very mild, mild, and moderate. Gray 
and white matter volume, statistical moments, multi‑thresholds, shrinkage, gray‑to‑white matter 
ratio, and three distance and angle values are mathematically derived. Decision tree, discriminant 
analysis, Naïve Bayes, SVM, KNN, ensemble, and neural network classifiers are designed to evaluate 
the proposed methodology with the performance metrics accuracy, recall, specificity, precision, F1 
score, Matthew’s correlation coefficient, and Kappa values. Experimental results showed that the 
proposed features successfully label the neurodegeneration stages.

Alzheimer’s disease (AD) is a specific form of dementia noted for the widespread deterioration of neural tis-
sue it causes. This degenerative disease primarily affects elderly individuals, with a high co-morbidity among 
patients over  601. As the patient ages, the risk of developing the disease increases exponentially. For example, 
between the ages of 60 and 85, there is a 15-fold increase in disease prevalence, as seen in Fig. 1. Once the onset 
of the disease begins, treatment only focuses on ameliorating symptoms. No current cure is  available2. As such, 
acceptable patient outcomes depend on early detection of the disease. Dementia is a broad term that describes a 
decline in cognitive skills and memory over a long period. This decline is so pronounced that it affects day-to-day 
living. While there are many forms of dementia, AD is the most common— it is identified as the primary cause 
in 70% of  cases3. As of 2020, 50 million cases of Alzheimer’s have been identified. The burden on the healthcare 
system is significant—over $1 trillion is spent globally mitigating the  disease4. This cost is due to the substantial 
post-diagnosis care required for Alzheimer’s patients. Regarding global prevalence, AD is the most common in 
the United States. This can be linked to increased surveillance and advanced detection methods in this  country5.

Several clinical signs mark the pathophysiology of AD, including neuronal degeneration. Neural degeneration 
is another pathological hallmark of AD. As the disease progresses, the white and grey matter of the brain dete-
riorates as neurons  die6. This clinical sign is especially important as it can be detected via Magnetic Resonance 
Imaging (MRI) by clinical professionals.

One of the key signs of the disease is the changing of tissue volumes in the brain over time. As AD progresses, 
neural tissue atrophy becomes more and more  notable7. This progression can be seen in Fig. 2. A clinician can 
observe these changes in a patient over time and make a positive or negative diagnosis of Alzheimer’s based on 
the  atrophy8. To perform this procedure, MRI scans are the preferred method of diagnosis due to their non-
invasive nature.

Building off previous algorithmic models for AD detection, we hand-crafted features based on an adaptive 
multi-thresholding algorithm to track AD progression, which ranges from no AD to moderate advancement.
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Methodology
The model has the following steps: contrast enhancement, adaptive thresholding algorithm, white and gray mat-
ter segmentation, feature modeling and extraction, and machine learning models for tracking AD progression. 
Figure 3 depicts the mentioned stages.

Contrast enhancement and mask preparation
The contrast between the white and gray matter in brain MRI images is often low, so segmentation of the tis-
sues becomes difficult. Increasing contrast between the two matters is needed to analyze dementia stages accu-
rately. We used linear stretching to prevent any gray-and-white matter ratio change. Linear stretching maps the 
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Figure 1.  This graph shows the increasing incidence of Alzheimer’s with  age1.

Figure 2.  From left to right, a brain with no Alzheimer’s, a brain with very mild symptoms, a brain with mild 
symptoms, and a brain with moderate symptoms. The yellow arrows in the moderate symptom image show the 
enlarged folds in the brain tissue and ventricles.

Figure 3.  The outline of the proposed AD progression tracking model.
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minimum intensity value to 0 and the maximum intensity value to the highest intensity value, which is 255 in 
our image dataset. It linearly scales the values in between.

Consider an image I(m, n) of size M × N pixels. IC(m, n) is the contrast-enhanced image obtained using linear 
stretching. Imin and Imax are the minimum and maximum intensity values in the image and k is the number of 
bits, which is 8 in the employed dataset.

Figure 4 shows the results for non-dementia and moderate dementia cases. This step also standardizes the 
variety of image intensities.

Adaptive multi‑thresholding algorithm
Measuring the grey-to-white matter ratio (GWR) requires segmenting the grey and white matter. We developed 
an adaptive multi-thresholding algorithm to calculate two threshold values from the histogram of contrast-
enhanced images. Figure 5a depicts the histogram of one of the non-dementia cases. A lowpass filter with a 

(1)IC(m, n) =
I(m, n)− Imin

Imax − Imin
× (2k − 1)

Figure 4.  Contrast enhancement and masking showing two moderate dementia cases.
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Figure 5.  (a) Histogram of a non-dementia case, (b) Red line shows the smoothed histogram by the low pass 
filter.
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0.005 rad/s normalized frequency was applied to the histogram to smooth the envelope of the histogram; see 
Fig. 5b. The lowpass filter uses a minimum-order filter with a stopband attenuation of 60 dB and compensates for 
the delay introduced by the filter. Two scalar threshold values are determined by using the smoothed envelope. 
Note that the lowpass filter does not affect the high-intensity information in the MRI images.

Two thresholding values were calculated using the smoothed histogram. Figure 6a and b depict the adaptive 
multi-thresholding algorithm and measured features using it.

α1 and α2 are defined —three distance parameters d1 , d2 , d3 are defined.
PIc (l) is the histogram of the IC(m, n) and calculated as below.

where l = 0, 1, 2, . . . , L− 1 and delta function δd[k] =
{

1 if k = 0

0 if k �= 0
 . The sum of all the entries in a histogram 

equals the total number of pixels in the image, 
∑L−1

l=0 Plc(l) = MN .9. The smoothed histogram Ps was obtained 
using Eq. (2), HL is the low pass filter as ∗ represents the convolution operation.

Threshold points 
(

x1, y1
)

,
(

x2, y2
)

 are the local minimum values of Ps . The coordinates 
(

x1, y1
)

 and 
(

x2, y2
)

 are 
the second and the last local minimum on the x-axis. Thresholds are defined as

(

x3, y3
)

 is the absolute maximum of Ps . This point is used to calculate the slopes and distances between the 
threshold points. We defined the following parameters in Eqs. (5) through (13) to investigate the possibility of 
their use in the analysis of different dementia stages.

The grey and white matter segmentation is performed by using the threshold values. In the equations below, 
Igm(m, n) and Iwm(m, n) represent the grey and white matters, respectively. Volume, mean, and standard devia-
tion of the grey and white matter are calculated and employed as potential features. GWR is the grey-to-white 

(2)PIc (l) =

M−1
∑

m=0

N−1
∑

n=0

δd[Ic(m, n)− l]

(3)Ps = HL ∗ PIc

(4)Th1 = x1 and Th2 = x2

(5)α1 =
y3 − y1
x3 − x1

(6)α2 =
y3 − y2

x3 − x2

(7)d1 =

√

(x3 − x1)
2 +

(

y3 − y1
)2

(8)d2 =

√

(x3 − x2)
2 +

(

y3 − y2
)2

(9)d3 =

√

(x2 − x1)
2 +

(

y2 − y1
)2
.

Figure 6.  (a) Two thresholding values Th1 and Th2 are shown on the smoothed histogram Ps(l) . Th1 is defined 
as the first maxima and Th2 is the last minima of the function. (b) Two slopes.
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matter ratio calculated by Eqs. (10) and (11). Figure 7 shows the segmented white and gray matter obtained by 
using the Th1 and Th2 values.

Database
Alzheimer’s disease MRI images were obtained from Kaggle, an open-source  website10. For 4-class classification 
studies, the dataset contains MRI images of four stages of the disease as non-demented (3200 images), very mild 
demented (2240 images), mild demented (897 images), and moderate demented (64 images). The set is imbal-
anced. The image resolution is 128 × 128. Binary classification studies merge very mild, mild, and moderate 
classes. In that case, the set has 3200 images for both classes. Some of these images can be seen in Fig. 8. The set 
is known as the Kaggle set and is widely used in AD research for evaluating models.

Experimental results and analysis
The reduction in pixel intensity can be explained by tissue atrophy in the brain as Alzheimer’s progresses. 
As grey matter atrophies, it is replaced by void space, which appears as black pixels in an  MRI11. Alzheimer’s 
deterioration occurs within grey matter first, as it is the external tissue of the brain. Therefore, the grey matter 
tissue volume will decrease before the white matter does. The calculated features are analyzed in terms of their 
efficiency in labeling the dementia stages. Figures 9 through 11 show the 2D and 3D plots of four dementia 
stages for measured features.

It is observed that Th1 and d1 features are effective in distinguishing moderate and mild dementia. However, 
non-dementia and very mild dementia overlap significantly (shown in Fig. 9). Shrinkage, GWR, and especially 
α1, andd2 features help distinguish non and very-mild dementia (shown in Figs. 10 and 11). We ranked the 
features using the minimum redundancy maximum relevance (MRMR) algorithm and calculated the most 
significant five features as Th1 , the mean intensity value of the white matter, d1 , shrinkage, and the volume 
of the white matter. The chi-square test univariate feature ranking algorithm supported the MRMR results. 

(10)Igm(m, n) = I(m, n) > Th1ANDI(m, n) < Th2

(11)Iwm(m, n) = I(m, n) > Th2

(12)GWR =

∑M−1
m=0

∑N−1
n=0 Igm(m, n)

∑M−1
m=0

∑N−1
n=0 Iwm(m, n)

(13)srinkage =

∑M−1
m=0

∑N−1
n=0 Igm(m, n)+

∑M−1
m=0

∑N−1
n=0 Iwm(m, n)

∑M−1
m=0

∑N−1
n=0 Imask(m, n)

Figure 7.  Segmented grey and white matters using the Th1 and Th2 values. Both cases represent moderate 
dementia.
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Figure 12 depicts the feature ranking using the MRMR algorithm. The drop in the importance score represents 
the confidence in the selection algorithm. There is a significant drop between the first, second, third, and fourth 
predictors, as seen in Fig. 12. The features after the fourth have a slight decrease in importance score referring 
to non-significant features.

The statistical distribution of the most compelling features is given in Fig. 13. As can be seen, non and very-
mild dementia have overlapping characteristics and more outliers compared to mild and moderate dementia. 
We observed that white matter characteristics are more effective in distinguishing different stages.

Labeling dementia stages
We evaluated the performance of the defined features of AD in MRI images using decision trees, Discriminant 
Analysis, Naïve Bayes, Support vector machines (SVMs), KNN, Ensemble, and Neural Network (NN) classifiers. 
Appendix A presents the specifications of the designed classifiers, as Tables 1 and 2 show the performances. ten-
fold cross validation is employed with 60% of the dataset used for training, 20% for validation, and the remain-
ing used for testing in each class. Model complexity is reduced by cross-validation to avoid overfitting. Table 1 
uses all the features in labeling the AD stages, while Table 2 uses the most significant five features identified by 
the feature reduction algorithm in Sect. "Experimental results and analysis". Performance metrics are accuracy, 
recall, specificity, precision, F1 score, Matthews correlation coefficient, and Kappa values.

Figure 8.  MRI images of dementia cases (a,b) Non-dementia, (c,d) Very mild dementia, (e,f) Mild dementia, 
and (g,h) Moderate dementia.
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Figure 9.  Non-dementia, very mild, mild, and moderate dementia classes. a) d1 versus Th1 ; b) d1 versus grey-to-
white matter ratio (GWR).



7

Vol.:(0123456789)

Scientific Reports |          (2024) 14:257  | https://doi.org/10.1038/s41598-023-50631-1

www.nature.com/scientificreports/

Figure 10.  (a) Th1 , α1, and d1 plot, (b) Th1 , Th2 , and d3  plot of non-dementia, very mild, mild, and moderate 
dementia classes.

Figure 11.  (a) Th1 , d1 , and d2 . (b) Th1 , shrinkage, and GWR plot of non-dementia, very mild, mild, and 
moderate dementia classes.
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Figure 12.  Feature ranking using minimum redundancy maximum relevance (MRMR) algorithm.
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Employing all features achieved higher performance than the five significant features. Discriminant analysis, 
SVM, Ensemble, and Neural network classifiers performed almost perfect classification. Tables 3 and 4 show the 
confusion matrices for narrow neural networks employing 17 (entire set) and 5 (the most significant) features. 
Classes are 0-non, 1-very mild, 2-mild, and 3-moderate dementia. Although the MRMR algorithm did not report 
the remaining features as effective, they perfected the classifier performances, as seen in Table 1. Figures 10 and 
11 show mild and moderate dementia and minimize the overlap between non and very-mild dementia.

Although the five features achieved high performance compared to the works in the literature, they failed 
to separate the non and very-mild dementia classes, which have overlapping features, observed in Fig. 13, a 
statistical presentation of the classes.
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Figure 13.  Statistical presentation of the most significant features in four dementia stages, coded as 0-non, 
1-very mild, 2-mild, and 3-moderate dementia.

Table 1.  Overall performances using all features, a total of 17, are employed.

Classifier Kernel Accuracy Recall Specificity Precision F1 Score
Matthews correlation 
coefficient Kappa

Decision tree Fine 0.97 0.98 0.99 0.98 0.98 0.97 0.92

Discriminant analysis Quadratic 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Naïve Bayes Kernel 0.87 0.92 0.94 0.92 0.92 0.86 0.65

SVM Quadratic 1.00 1.00 1.00 1.00 1.00 1.00 1.00

KNN Fine 0.99 0.99 1.00 1.00 0.99 0.99 0.98

Ensemble Subspace discriminant 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Neural network Narrow 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 2.  Overall performance of the most significant five features: Th1 , the mean intensity value of the white 
matter, d1 , shrinkage, and the volume of the white matter.

Classifier Kernel Accuracy Recall Specificity Precision F1 Score
Matthews correlation 
coefficient Kappa

Decision Tree Fine 0.94 0.96 0.97 0.96 0.96 0.93 0.83

Discriminant analysis Quadratic 0.91 0.94 0.96 0.94 0.94 0.90 0.75

Naïve Bayes Kernel 0.86 0.90 0.94 0.91 0.91 0.84 0.62

SVM Quadratic 0.95 0.97 0.98 0.97 0.97 0.95 0.87

KNN Fine 0.93 0.96 0.97 0.95 0.95 0.92 0.81

Ensemble Subspace discriminant 0.84 0.90 0.93 0.91 0.90 0.83 0.58

Neural network Narrow 0.96 0.97 0.98 0.98 0.98 0.96 0.89
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Table 5 presents the runtime and total cost metrics of the classifiers based on the11th Gen Intel(R) Core(TM) 
i7-11390H @ 3.40 GHz 2.92 GHz, 16.0 GB (15.7 GB usable), 64-bit operating system, × 64-based processor 
computer specifications. For the NNN classifier, the iteration limit was set to 1000.

Feature extraction done automatically using convolutional neural networks (CNNs) or other deep neural 
networks (DNNs) has been trending in recent years. We compare the performance of the hand-crafted features 
extracted in this work with the other works in the literature in Table 6.

Liang and Gu proposed a weakly supervised learning (WSL)-based deep learning (DL) framework called 
ADGNET. It consisted of a backbone network, a task network, and image reconstruction. The work reported 
high performance, outperforming the state-of-the-art ResNeXt WSL and SimCLR  models12. Murugan et al. 
designed a deep learning model DEMNET and evaluated it using the Kaggle dataset. DEMNET consists of a 
CNN to extract features using the normalized data. Their work achieved an overall accuracy of 95.23%, 95% of 
recall, and 96% of precision for 4-class  classification13.

Kaplan et al. proposed a feed-forward local phase quantization network (LPQNet) consisting of multilevel 
feature generation, feature selection, and classification phases. The LPQNet was designed to have high accu-
racy and low computational complexity. The model was tested on a private AD dataset and the Kaggle dataset, 
achieving 99.62% accuracy on the Kaggle dataset using four  classes14. In another study, Kaplan et al. used vision 
transformers and generated 16 exemplars. Several histogram-based feature extraction methods were used. Their 
work achieved 100% accuracy for binary classification using cubic support vector machine (CSVM) and fine 
KNN  classifiers17. The shortfall of their work is that the details highlighting the healthy and AD slices were 
manually selected in MRI/CT images.

A 4-class AD detection model using CNN with activation Leaky ReLU was designed in Ref.16. The data was 
oversampled using SMOTE technique. They reported an overall accuracy of 96.35% on the Kaggle dataset. 
Sharma et al. used a transfer learning-based modified inception model, including normalization in the pre-
processing stage for 4-class AD detection. Vertical and horizontal flipping, rotation, and brightness techniques 
were used in the augmentation step to balance the class sizes in the Kaggle dataset. Their work obtained 94.93%, 
94.94%, 98.3%, and 94.92% precision, recall, specificity, and accuracy, respectively. Without any details, the 
authors stated that the work could not guarantee  reproducibility15.

Table 3.  Confusion matrix of Narrow Neural Network (NNN) from Table 1, employing 17 features.

Predicted class

0 1 2 3

True class

0 3199 1 0 0

1 0 2239 1 0

2 0 1 895 0

3 0 0 0 64

Table 4.  Narrow Neural Network (NNN) from Table 2, employs 5 of the most significant features.

True class

Predicted class

0 1 2 3

0 3108 92 0 0

1 147 2092 1 0

2 1 2 892 1

3 0 0 0 64

Table 5.  Runtime and total cost metrics of the classifiers.

Classifier Kernel
Runtime all features 
(s)

Runtime five features 
(s) Runtime average (s) Total cost all features

Total cost five 
features Average cost

Decision tree Fine 2.66 0.97 1.82 193 367 280

Discriminant analysis Quadratic 1.14 1 1.07 2 599 300.5

Naïve Bayes Kernel 32.91 11.20 22.06 859 926 892.5

SVM Quadratic 6.56 185.88 96.22 0 305 152.5

KNN Fine 2.31 1.75 2.03 39 458 248.5

Ensemble Subspace discrimi-
nant 3.30 2.59 2.95 5 1003 504

Neural network Narrow 2.26 2.70 2.78 133 392 262.5
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In another work, one machine-learning model took longitudinal brain scans and patient classifiers such as 
age to make informed decisions about the presence of AD. This model was able to predict cases of the disease 
with a 97.58% accuracy  rating11. In  work18, convolutional neural networks were used to detect AD patients from 
stable controls with an accuracy of 88%. Research has shown the grey-and-white matter ratio (GWR) decreases 
as the disease  progresses19. The work  in20 studied the changes in brain volume, focusing on the occipital lobe 
and hippocampal region. In a recent study, Agarwal et al. labeled cognitively normal, AD, and mild cognitive 
impairment using CNN-based DL  models21 and achieved promising results. CCN-based feature extraction is 
done automatically by feeding the images to the model raw or after the preprocessing stage. The origin of the 
obtained features is not completely known. Considering that the brain has a very complicated structure and 
the etiology of AD is unknown, there is a need to develop mathematical descriptors to define the structure and 
changes in the brain. The advantage of our work is the hand-crafted feature modeling. The state-of-the-art works 
in the literature use CNN or similar deep-learning techniques to extract features to detect the AD stages. The 
performance of those models highly depends on the size of the dataset. Another  work22 used hybrid clustering 
and a game theory-based approach to monitor the progress of AD using MRI images. Their work consisted of 
stages-registration, skull stripping, histogram normalization, feature selection, segmentation, and classifica-
tion. Calculated features were based on the co-occurrence matrix. Evaluation of the work was limited to three 
performance metrics—accuracy, sensitivity, and specificity—and three previous studies. They reported accura-
cies between 83.45 and 88.83% with balanced sensitivity and specificity on the OASIS dataset. In our work, we 
mathematically modeled a set of features based on the histogram of the contrast enhanced MRI images that can 
be used to track Alzheimer’s disease progression. In addition to employing supervised classifiers, unsupervised 
or rule-based classifiers can be designed using the proposed features.

Conclusion
This work developed a model for tracking Alzheimer’s disease progression. An adaptive multi-thresholding 
algorithm was proposed, and a set of novel features were mathematically defined. The system was evaluated 
on the Kaggle dataset consisting of non-demented, very mild, mild, and moderate dementia MRI images. The 
algorithm was based on the geometric shape of the envelope of the smoothed histogram. The grey and white 
matter were segmented using the obtained threshold values. The features included the grey-to-white matter ratio, 
shrinkage, slope values, white and grey matter volume, statistical moments, and distance parameters. The MRMR 
feature ranking algorithm, used for feature ranking and selection, showed high confidence for the five features 
containing Th1 , the mean intensity and volume of the white matter, d1 , and shrinkage.

The proposed model was evaluated by various classification algorithms—decision tree, discriminant analysis, 
Naïve Bayes, SVM, KNN, ensemble, and neural network classifiers. Performance metrics were accuracy, recall, 
specificity, precision, F1 score, Matthews correlation coefficient, and Kappa values. Discriminant analysis, SVM, 
ensemble, and neural network classifiers achieved perfect accuracy using all features.

Data availability
The work used an open-source dataset. Link https:// www. kaggle. com/ touri st55/ alzhe imers- datas 
et-4- class- of- images.

Received: 27 September 2023; Accepted: 22 December 2023

Table 6.  Comparison of works in the literature using the Kaggle dataset for 4-class classification—overall 
performance metrics given in %.

Work Year Accuracy Recall Specificity Precision F1 score Matthews correlation coefficient Kappa

ADGNET
2020 99.61 99.69 99.53 99.53 99.61 – 99.22

Liang et al.12

SimCLR
2020 93 93 94.70 93 93 – 87.70

Liang et al.12

ResNetXt WSL
2020 93.53 94 93.18 91.26 92.61 – 86.87

Liang et al.12

DEMNET
2021 95.23 95 - 96 95.27 – 93

(SMOTE)13

DEMNET (without SMOTE)
2021 85 88 - 80 83 – 75

Murugan et al.13

Kaplan et al.14 2021 99.62 99.66 99.74 99.65 – –

Sharma et al.15 2022 94.92 94.94 98.30 94.93 – – –

Avsar and  Polat16 2023 96.35 96 – 96 96 – –

This work—NNN, (17 features) 2023 100 100 100 100 100 100 100

This work—NNN, (5 features) 2023 96 97 98 98 98 96 89

https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images
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