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Research on vehicle detection 
based on improved YOLOX_S
Zhihai Liu 1,4, Wenyu Han 1,4, Hao Xu 1, Kesong Gong 1, Qingliang Zeng 2 & Xieguang Zhao 3*

Aiming at the problem of easy misdetection and omission of small targets of long-distance vehicles 
in detecting vehicles in traffic scenes, an improved YOLOX_S detection model is proposed. Firstly, the 
redundant part of the original YOLOX_S network structure is clipped using the model compression 
strategy, which improves the model inference speed while maintaining the detection accuracy; 
secondly, the Resunit_CA structure is constructed by incorporating the coordinate attention module 
in the residual structure, which reduces the loss of feature information and improves the attention to 
the small target features; thirdly, in order to obtain richer small target features, the PAFPN structure 
tail to add an adaptive feature fusion module, which improves the model detection accuracy; finally, 
the loss function is optimized in the decoupled head structure, and the Focal Loss loss function is used 
to alleviate the problem of uneven distribution of positive and negative samples. The experimental 
results show that compared with the original YOLOX_S model, the improved model proposed in this 
paper achieves an average detection accuracy of 77.19% on this experimental dataset. However, the 
detection speed decreases to 29.73 fps, which is still a large room for improvement in detection in 
real-time. According to the visualization experimental results, it can be seen that the improved model 
effectively alleviates the problems of small-target missed detection and multi-target occlusion.

In recent years, as Chinese traffic networks have expanded and public demand for travel has increased, car own-
ership has risen steadily, leading to road safety and traffic control issues, frequent traffic accidents, and severe 
traffic jams. This situation can lead to secondary injuries if not handled promptly. These issues will affect traffic 
flow and the vehicle’s stability and comfort. It is also a significant threat to road safety. Vehicles are one of the 
critical elements in any traffic scenario to maintain the balance and safety of the system, and vehicle detection is 
the first step and critical component of a traffic event detection system; hence, achieving more accurate vehicle 
target detection is of significant research value. With the significant development of intelligent traffic systems and 
machine vision and the increase in the degree of video surveillance coverage, the research on intelligent traffic 
monitoring and intelligent traffic accident detection continues to increase, with breakthroughs in multi-target 
and small-target detection techniques for urban road and highway traffic scenes. Intelligent detection of vehicle 
targets using graphics processing and video analytics can provide the basis for subsequent vehicle tracking and 
traffic event detection. It can also avoid problems such as time-consuming surveillance and statistical errors due 
to manual or traditional sensor detection. Due to the influence of different weather, light intensity, the complex 
background of the traffic scene, and the size of the moving target changing at any time, the vehicle detection 
effect will be disturbed to a certain extent in the actual traffic monitoring scene. Therefore, this paper uses deep 
learning-based algorithms to improve vehicle detection accuracy to investigate vehicle detection techniques in 
traffic scenarios.

The research direction of vehicle detection algorithms is divided into traditional detection algorithms and 
deep learning-based detection algorithms. Traditional vehicle detection algorithms pay more attention to feature 
extraction and need to rely on manual feature extraction to construct the detection model, whose main steps are 
divided into candidate region selection, feature extraction, and candidate box classification. This algorithm usu-
ally uses various ways to extract local features of the vehicle for identification and detection, such as HOG, SIFT, 
and DPM. For example, to improve the accuracy of vehicle detection, Wang Zhangu and others1 extracted local 
and global features of vehicles in infrared images using HOG features and LBP feature fusion, which improved 
the detection accuracy and speed compared to the traditional sensor detection methods; Kenan Mu and others2 
proposed a vehicle detection method combining the SIFT algorithm and computer vision, which compared the 
images of the two frames before and after to automatically mark the location of the target features according to the 
geometric relationship, which improved the accuracy of the detection algorithm, but the method is only suitable 

OPEN

1College of Transportation, Shandong University of Science and Technology, Qingdao  266590, China. 2College 
of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao  266590, 
China. 3College of Intelligent Equipment, Shandong University of Science and Technology, Taian  271001, 
China. 4These authors contributed equally: Zhihai Liu and Wenyu Han. *email: 972122573@qq.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-50306-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:23081  | https://doi.org/10.1038/s41598-023-50306-x

www.nature.com/scientificreports/

for traffic scenes without pedestrians or non-motorized vehicles; Dongbing Zhang3 proposed an improved DPM 
method. The method first extracted the channel information of the color space transformed image and trained 
the DPM of each channel, then used the adaptive fusion method to obtain the color fusion DPM, and finally 
searched the region beyond the threshold through the sliding window and designated this part of the region as 
the vehicle target. Experiments verified the effectiveness of the method, and the false detection rate was reduced. 
These algorithms need to rely on manual use under specific scenario conditions, cumbersome detection steps, 
which are not conducive to the implementation of large-scale rapid detection, and unstable models, resulting in 
insufficient overall learning of vehicles.

Compared with traditional detection methods, deep learning-based vehicle detection techniques use Con-
volutional Neural Network (CNN) to learn the overall information, with better model generalization and higher 
robustness. The CNN can reduce the amount of manual testing and lower labor costs. In forward propagation, 
the convolutional layer and the pooled layer process the image multiple times to obtain the feature vector. The 
feature vector is classified and recognized after passing into the fully connected layer, and the prediction result is 
compared with the recognition result. If the two do not match, backpropagation is performed: the error between 
the output and the prediction is fed back one layer at a time in the opposite direction, the error for each layer 
is calculated, and the weights are updated. The structure of the convolutional neural network CNN is shown in 
Fig. 1.

Deep learning-based target detection methods not reliant on manual feature extraction can be classified into 
two categories at this stage. One category is the two-stage target detection methods represented by R-CNN4, 
Fast R-CNN5, Faster R-CNN6, and Mask RCNN7. In these methods, the first class of convolutional neural nets 
regresses and locates the candidate frames after generating the target candidate frames. Then, the second class 
of convolutional neural nets completes the classification of the candidate frames using classifications. Therefore, 
the two-stage detection algorithm has a high detection accuracy, but the detection speed needs to be higher, 
which cannot meet the requirements of fast detection in real scenes. The other category is the one-stage target 
detection methods represented by RetinaNet8, SSD9, and YOLO10 series algorithms. These methods do not need 
to generate pre-selected boxes and can directly use convolutional neural networks for end-to-end processing, 
generating multiple bounding boxes in the image, predicting the class probability of each box, and performing the 
classification and regression tasks simultaneously. Regarding detection speed, one-stage target detection methods 
outperform two-stage target detection methods, but the detection accuracy is lower. Current research on detec-
tion technology focuses mainly on single-stage detection algorithms and continuously optimizes and improves 
detection algorithms for the problem of detection accuracy. Zhang Luyang et al.11 addressed the problem of low 
efficiency of vehicle detection in real traffic scenes by introducing octal convolution into the RetinaNet network 
to optimize the learning effect of detailed features. They introduced the WFPN structure to improve further 
the feature fusion to trade off the propagation and fusion between features of different scales. The experimental 
results showed that the improved model can be better applied to the needs of real scene detection. Chen Zhichao 
et al.12 used the MobileNetv2 structure as the backbone network to reduce the number of model parameters. The 
channel attention module was introduced to improve the detection accuracy, and the bottom-up feature fusion 
network was constructed using the inverse convolution module. The experimental results show that the detection 
accuracy and detection speed are greatly improved. The YOLO-based target detection algorithm detects fast and 
can realize end-to-end detection. The model has good robustness and generalization ability, which is applied to 
the research of vehicle detection. For example, Tianyu Tang13 applied YOLOv2, which is an improved version 
of YOLO to UAV vehicle detection, and further improved the detection accuracy on a real-time basis; Lecheng 
Ouyang et al.14 trained the vehicle detection model based on the YOLOv3 algorithm, and the experimental results 
showed that compared with the traditional target detection algorithms, the method had advantages in detection 
accuracy and speed; Lin et al.15 used the YOLOv4 model as a detector to realize directional vehicle detection in 
aerial images, and the experimental results showed that the method improved the detection speed by 25% while 
maintaining high detection accuracy. These empirical studies collectively proved the successful application of 
YOLO series algorithms in vehicle detection and provided references for the development of vehicle detection 
technology. With the continuous deepening of the research on YOLO series algorithms, algorithms such as 
YOLOv5, YOLOX, and YOLOv7 have appeared, and researchers have achieved a large number of results in the 
field of vehicle detection research based on the YOLO model with improved network structure. For example, Ge 
et al.16 based on the YOLOv3-tiny model, replaced the feature extraction network with lightly weighted networks 

Figure 1.   Convolutional Neural Network structure.
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such as DarkNet-19 and ResNet-18 and used the K-means algorithm to achieve anchor frame clustering, and 
the experimental results showed that the average accuracy was improved by 14.09% and the detection speed was 
improved by 13 fps; Zhang Yong et al.17 used the MobileNetv3 structure to lighten and improve YOLOv4, which 
achieved the association of features at different levels through a multi-scale feature fusion method and introduced 
a coordinated attention mechanism to improve the attention to the target. The detection accuracy was improved 
to 85.79%, reducing the missed detection rate; Dong Xudong et al.18 proposed a lightweight YOLOv5 model by 
introducing the C3Ghost and Ghost modules in its neck network, introducing the CBAM attention mechanism 
in the backbone network, and replacing the loss function with the CIOU, and after experimental verification, 
the improved model improved the detection accuracy by 3.2% and reduced the model parameters by 19.37% 
compared with the original model; Zhang Yuan et al.19 proposed an improved YOLOv7-RAR algorithm, which 
utilized the Res3Unit structure to reconfigure the original YOLOv7 backbone network, added the ACmix atten-
tion module after the SPPCSPC layer, and used the RFLA module to improve the sensory field. Experiments 
showed that compared with the original algorithm, the detection accuracy of this algorithm was improved by 
2.4%, and it could be better applied to vehicle detection.

After the YOLOX algorithm was proposed in 2021, the researchers used it to target recognition and detec-
tion tasks in various fields. They made a significant breakthrough in the detection performance by optimizing 
its network structure. For example, Wang Xin et al.20 improved the YOLOX model for the problem that it is not 
easy to detect small targets with complex backgrounds in UAV aerial photography by incorporating the Ultra-
Lightweight Quantum Spatial Attention Module (ULSAM) as well as optimizing the loss function in the PAN 
structure. The experimental results showed that the detection accuracy was improved by 8%. Wang Jingjing 
et al.21 used an autonomous cooperative mechanism to cut out redundant structures based on the original 
YOLOX model, strengthened the target features through a lightweight self-attention mechanism, and intro-
duced a segmented focus loss function to weigh the sample weights. The experimental results showed that the 
enhanced model improved the detection accuracy over the original model; Hong Wang and others22 proposed a 
multilevel fine-grained YOLOX detection algorithm by introducing a ResCoT module in the PAFPN structure to 
expand the receptive field region and adding a normalized attention mechanism to the CSPLayer structure and 
finally using comparative experiments to determine the optimal parameter values of the loss function, and the 
improved algorithm improved the detection accuracy by 2.90%; Yi Kefu et al.23 experimented with the detection 
algorithms using a training strategy of data domain migration for the problem of small and multi-target detection 
occlusion under low-light conditions at night. They added a coordinate attention module to the effective feature 
layer of the YOLOX backbone network, introduced a feature fusion module to the FPN structure, and combined 
the CIOU with a loss of confidence function. The average accuracy was improved by 5.9%; He Qiyi et al.24 pro-
posed a lightweight ShuffYOLOX model by using ShuffDet instead of CSPDark53 network and introducing an 
ECA attention module in the PAFPN network, which improves the detection accuracy while lightweighting the 
model; Zhu Chao et al.25 introduced the ECA attention module in the feature extraction network and combined 
the training strategies of cross-domain migration and intra-domain migration, which resulted in an improved 
model with a detection accuracy of 95.65%; Liu Changhong et al.26 incorporated lightweight operators into the 
feature extraction structure to adaptively extract channel features, and then introduced the CBAM attention 
module in the PAFPN network and designed the decoupled head architecture to reduce gradient vanishing 
to accelerate model convergence, which finally resulted in a 1.47% improvement in model detection accuracy.
These studies have demonstrated that it is possible to improve the feature extraction network by optimizing the 
network structure of YOLOX, which leads to improved target detection accuracy while ensuring that it meets 
the requirements of practical applications.

In this context, this paper optimized and improved the network structure of the original YOLOX model to 
improve the problems of low detection accuracy of small targets and omission of multi-target occlusion when 
detecting vehicles by using traffic monitoring. The main research work is as follows:

(1)	 The complex structure of the YOLOX network with more redundant information between pixels leads to 
slow model inference and affects the detection speed. Therefore, the unimportant channels in the network 
structure are clipped by adding a sparse factor to the BN layer;

(2)	 Incorporating the Coordinate Attention module into the YOLOX backbone network helps the network to 
locate target features more quickly and accurately in a large amount of feature information and enhances 
the feature extraction capability;

(3)	 The implementation of deep and shallow feature fusion at different scales in YOLOX’s neck network will 
result in under-utilization of feature information, so the adaptive feature fusion module is added after the 
PAFPN network to adjust the proportion of positive and negative samples using weights to improve the 
feature extraction capability;

(4)	 Since the imbalance of positive and negative samples leads to the low detection accuracy of YOLOX, the 
Focal loss function is used instead of the SiLU loss function in the decoupled head structure to improve 
the convergence speed, alleviate the problem of low detection accuracy of difficult-to-classify samples, and 
enhance the ability to learn small target features.

YOLOX
The network structure of the YOLOX algorithm mainly consists of four parts: the input, the backbone feature 
extraction network, which outputs adequate feature information; the neck structure, which uses a feature pyramid 
for multi-scale fusion to improve feature extraction; and the prediction layer with a decoupling head (YOLO-
Head), and the specific details of the network structure are shown in Fig. 2. The YOLOX algorithm model is 
designed to improve on the YOLOv3, YOLOv4, and YOLOv5 models by adding the MixUp data enhancement 
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method to the Mosaic data enhancement on the input side to enrich the data set; SiLU activation functions 
replace the inference modules in the backbone and neck structures; Adding Decoupled Head, Anchor Free 
mechanism and refined allocation strategy SimOTA at the output layer directly associates the actual frame with 
the predicted frame, which reduces the amount of model computation and therefore its detection speed is faster.

The significant improvement of the YOLOX model over the previous models of the YOLO algorithms is that 
the coupled detection head is changed to a decoupled head structure in the Prediction layer (head part). The 
structure is shown schematically in Fig. 3. In the Coupled Head, the neck part of the output feature prediction 
process is in the same convolutional layer, and the use of a fully connected layer or convolutional layer on the 
input feature map to directly generate the information of the target category and localization, resulting in a 

Figure 2.   Schematic diagram of YOLOX network structure.

Figure 3.   Schematic diagram of the Decoupled Head structure.
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conflict between the classification and regression tasks, and the coupling process will produce a large number of 
parameters prone to overfitting. In the Decoupled Head, a convolution normalization and activation function is 
first used to perform a dimensionality reduction operation on the output feature maps of the Neck part, keep-
ing the number of channels the same. Then, the classification and regression tasks are split into two branches 
simultaneously: The first branch is the obtaining of the classification prediction result cls (categories) after two 
convolution normalization and activation functions; The second branch produces the regression prediction result 
obj (localization) for the detection frame and the judgment result reg (IOU) for the presence or absence of a target 
at the feature point, again after two convolutional normalizations and activation functions. Finally, the predic-
tion results of three different scales are spliced to get the predicted feature information under that dimension.

According to the scaling principle, the YOLOX algorithm designs five kinds of standard networks, such as 
YOLOX_S/M/L/X, and two kinds of lightweight networks, such as YOLOX-Nano and YOLOX-Tiny. In this paper, 
we adopt the YOLOX_S model, which has fewer number of model parameters, and the structure of its network is 
shown in Fig. 4. In the figure, the blue solid box indicates the specific architecture of each module in the network 
structure, “Add” means the overlay operation, and “Concat” means the dimensional splicing operation.

Figure 4.   Schematic diagram of the YOLOX_S network structure.

Figure 5.   Focus slicing operation.
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The input side is improved based on Mosaic data enhancement, which merges four simultaneously read 
images by randomly scaling, cropping, and flipping and detects small targets. MixUp data enhancement combines 
two images using a specific parameter to enhance the ability to extract detailed features and detect small tarfvgets.

The backbone network (feature extraction network) mainly comprises the CSPDarknet structure of YOLOv5 
and the Focus structure. The Focus module splits the input high-resolution image into four low-resolution images 
by slicing, shown in Fig. 5. It performs channel splicing, which converts the image information into the chan-
nel information and prevents the loss of small target feature information caused by downsampling. After CBL 
convolution operation of the residual network and SPP structure for different feature layers using maximum 
pooling operation for feature extraction.

The Neck structure (multi-scale feature fusion network) follows the path fusion pyramid network structure 
PAFPN of YOLOv4, and the central role is to enhance feature extraction using the CSP structure. The FPN 
network performs the up-sampling operation on the deep features of the effective feature layer input from 
the backbone network, merges and passes them with the shallow features, and then uses the path aggregation 
network PAN to perform the down-sampling operation on the shallow features and then merges them with the 
deep features to obtain the feature information at three scales.

The Prediction layer uses three decoupling heads to predict the three feature layers with different scales in 
three branches, and the decoupling heads are divided into two parts to achieve classification and regression, 
respectively. Integrating the three branches information in the final prediction can effectively accelerate the 
convergence speed of the model and improve the detection accuracy. Then, the anchorless mechanism is used 
to compare the target and actual frames to determine the gap between them. Finally, the positive samples are 
dynamically allocated by the SimOTA method.

The above designs significantly increase the upper limit of model detection performance. While retaining the 
advantages of the previous YOLO series algorithms, methods such as decoupling head, anchorless frame mecha-
nism, and new data enhancement methods are added to enhance the feature extraction capability of the model.

Figure 6.   Improved YOLOX_S network structure.
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Aiming at the problems of small target detection accuracy and multi-target detection leakage in vehicle detec-
tion, this paper improves the original YOLOX model network structure as follows: In this paper, firstly, the chan-
nel pruning method is used to simplify the YOLOX network model, and the number of parameters is reduced 
to improve the detection speed of the model. When training the model, sparse factors are introduced into the 
network’s normalization layer, and each channel’s contribution rate is calculated. According to the experimental 
verification of different pruning rates, the pruning rate with the optimal detection effect is selected to prune the 
channel with a low contribution rate, and then the model with the best detection performance after pruning is 
trained by fine-tuning the model; secondly, the Coordinate Attention module is selected to make full use of the 
spatial feature information and the channel feature information and to improve the ability of small target feature 
extraction. The CA module is placed after the CBL convolution operation of the residual structure, after the three 
adequate feature layers of the backbone network dark3, dark4, and dark5, as well as the above two positions 
simultaneously. The model is trained on the dataset of this paper to verify which placement position is the best, 
and the results show that the placement of the CA module in the residual structure is the best for the detection 
performance; thirdly, the adaptive feature fusion module is added behind the path aggregation feature pyramid 
network PAFPN, using the weight coefficients to increase the proportion of shallow features before inputting 
the three branches of the decoupling head for feature prediction to improve the ability of small target feature 
extraction; finally, the SiLU loss function of the classification prediction part of the three decoupling heads in 
the prediction layer is changed to the focal loss function to optimize the problem of sample imbalance. On the 
re-labeled dataset in this paper, the improved YOLOX model achieves a recognition accuracy of 77.19%, 4.86% 
higher than the original YOLOX model. The overall framework of the improved algorithm is shown in Fig. 6.

Methods
Model pruning
The YOLOX network structure is highly complex, and the backbone and detection structures contain many 
convolution operations. Training the model once will produce many redundant weight parameters and chan-
nels, affecting the convergence speed. Effective model compression methods can be used to simplify the network 
structure and reduce the computational complexity of the model, and commonly used model compression 
techniques mainly include knowledge distillation, shared weights, model pruning, and low-rank decomposition. 
Knowledge distillation refers to constructing a lightweight, small model (student model) and learning to migrate 
the supervisory information contained in the already trained model (teacher model) into the small model and 
train it to achieve better detection performance. Wenjun et al.27 standardize the activation map of each channel, 
minimize the asymmetry of the Kull Back-Leibler (KL) scatter between the activation maps of the two models, 
and propose a soft technique that makes the student model focus on mimicking regions with activation values, 
which ultimately leads to better detection results for the student model than the teacher model. Shared weighting 
refers to the use of the same convolutional kernel (weight matrix) for feature extraction at different locations of 
the image in CNN, which makes the local features translation invariant; Liao et al.28 used DBSCAN to divide 
the dataset into clusters, clustered the density information, and set each cluster of all data points to set the same 
weight parameter. The final model obtained achieved better experimental results. Low-rank decomposition 
refers to decomposing a high-dimensional parameter vector into several low-dimensional parameter vectors 
and approximating the original high-rank parameter vectors with the low-dimensional parameter vectors; Wang 
et al.29 proposed a neural network based on low-rank and grouped sparse tensor decomposition, where the ten-
sor of each convolutional layer is decomposed into multiple subtensors, and the sum of the subtensors is used to 
approximate the original weight tensor. Model pruning is the process of cutting out redundant structures that 
have a small impact on the detection results to reduce the number of model parameters while maintaining the 
detection accuracy to improve the model inference speed. Wu et al.30 used the model pruning method to optimize 
the YOLOv4 model, and the test results showed that the model size of the pruned detection model was reduced 
by 231.52 MB, and the model inference time was reduced by 39.47%. Guo et al.31 conducted test experiments of 
pruning operation on three network structures, namely ResNet20, VGG, and DenseNet40. The results showed 
that the computation of the deep neural network was reduced by the pruning method and the detection perfor-
mance was maintained. Therefore, in this paper, the method of network pruning is chosen to simplify YOLOX.

Model pruning is divided into structured pruning and unstructured pruning. Unstructured pruning cuts out 
neurons whose weights are below a threshold and sets the connection weights between them and other neurons 
to 0. The simplified model is trained iteratively each time to reduce the loss of accuracy caused by pruning. The 
advantage of unstructured pruning is that the algorithm is simple, and filling the unimportant weights with zeros 
can improve model overfitting. The disadvantage is that most deep learning frameworks cannot accelerate the 
computation of sparse matrices, and they must rely on specific hardware environments to achieve the effect of 
compression and acceleration. In contrast, structured pruning is a method for pruning the importance of filters or 
network structure layers, which is divided into filter pruning, channel pruning, and layer pruning. The advantages 
of structured pruning are that the original convolutional structure can be preserved, and model compression 
can be achieved without a specific hardware environment; the disadvantages are that its algorithm is complex, 
the network structure is pruned, and the change of input and output dimensions will cause some deviations. To 
better simplify the depth and width of the model, this paper adopts the channel pruning method to process the 
YOLOX_S network structure, and the model pruning is mainly divided into three processes: sparse training, 
pruning processing, and fine-tuning parameters.

In practice, too much pruning leads to a significant reduction in detection accuracy, so it is necessary to con-
stantly adjust the selection of the appropriate thinning rate and pruning rate. The specific process of the current 
model pruning is first to add L1 paradigm regular terms to constrain its coefficients in the BN layer to complete 
the coefficients sparsification training and then select the redundant parts whose pruning rate has a negligible 
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impact on the network detection results to be pruned, and finally fine-tune the model and iteratively repeat the 
above process in each layer of the structure, which will be able to complete the channel scaling to improve the 
speed of the model detection.

Sparsification training
In the YOLOX network, a Batch Normalization layer is added after each convolutional layer for normalization to 
speed up network training and convergence. The gamma coefficients of the BN layer are set to the scaling factor 
γ multiplied by the output of its corresponding channel, and the following normalization formula normalizes 
the output of each layer:

In the formula, R and C represent the result of the convolutional computation of the layer (the input of the 
normalization process) and the output of the normalization process, respectively; ε is a minimal non-zero value 
such that the denominator is not 0; x and s2 denote the mean and variance of R, respectively; β is the normaliza-
tion bias, and both parameters β and γ are learnable.

The model must be sparsely trained before pruning because the network structure has different weights for 
each parameter. Different sparsity rates need to be set to test its adaptability during training; the higher the spar-
sity rate, the faster the BN layer converges, which can lead to a severe drop in accuracy; the smaller the sparsity 
rate, the slower the sparsity process. The L1 regular term is combined in the objective function to sparsify the 
gamma parameters and increase the robustness of the model. The objective function (total loss function) is as 
follows:

In the formula, the item l(·) to the left of the plus sign is the original loss function; the item to the right is the 
regularization term (constraint); x and y represent the training data and labels, respectively;� are the compensat-
ing factors of the two terms, which can be adjusted according to the data set.

Pruning treatment and fine‑tuning
After determining the sparsity rate to complete the sparsification, a scaling factor γ is used to measure the impor-
tance of the channel output. When γ is a small value, the C value obtained from Eq. (2) will be correspondingly 
small. The appropriate pruning rate is selected according to the effect of the model with different pruning ratios, 
and the channels with a negligible impact on these detection results (the orange part) are pruned to save the 
output of the channels with high importance, as schematically shown in Fig. 7.

In this paper, different pruning ratios are used to prune the YOLOX_S model that has completed the spar-
sification, and the gamma value during the pruning process suggests that the pruning rate in this paper takes 
value ranges from 0 to 0.6705. Figure 8 represents the variation of model parameters after fine-tuning at different 
pruning rates when the sparsity is taken as 0.005.

In Fig. 8a, when the pruning rate is less than 0.3, the model has a small range of variation in the map values; 
the map values were highest when the pruning rate was 0.3, the map value is reduced by 0.7% compared to 
regular training and indicates the best recognition; the map value decreases rapidly as the shear rate increases 
when the shear rate is more significant than 0.3. In Fig. 8b, the number of senators decreases as the clipping 
rate increases. In Fig. 8c, the detection speed of the original model is 32.24 fps, and the detection speed changes 
smoothly when the pruning rate is more significant than 0.3; the increase in detection speed is more significant 

(1)c̃ =
R − x√
s2 + ε

(2)C = γ · c̃+ β

(3)Loss =
∑

(x,y)

l(f (x,W), y)+ �

∑

γ∈Ŵ
g(γ )

(4)g(x) = |x|

Figure 7.   Schematic diagram of channel pruning.
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when the pruning rate is more significant than 0.2. Combined with the change of model parameters, in order to 
ensure that the number of parameters is as tiny as possible and the detection speed is as large as possible under 
the conditions of the best choice of map value, the pruning rate in this paper is taken as 0.3, which can effectively 
reduce the number of model parameters to improve the detection speed and accuracy.

The pruned model network suffers from the reduced learning ability of the pruned part and reduced detection 
accuracy, thus requiring fine-tuning of the streamlined model. The fine-tuned model should enter the pruning 
module again to prune the next layer of channels, select the pruning rate and other parameters again by com-
paring the model effect, and iterate the above process until the detection model reaches the requirements of the 
optimization goal. The steps of the model pruning operation are as follows:

(1)	 This experimental dataset is input into the YOLOX_S network for training to obtain an initial model;
(2)	 Equations  (1) and (2) are used to normalize the channel parameters;
(3)	 To determine the sparsity rate, the L1 regular term is added, and the BN layer coefficients are sparsified 

using Eqs. (3) and (4);
(4)	 To extract the scaling factors of all channels and rank their absolute values, the model effects of different 

pruning rates are evaluated to determine the appropriate pruning rate and threshold, and channels below 
the threshold are pruned out, and those above the threshold are retained;

(5)	 Refinement of the model;
(6)	 The iterations of the above steps are repeated until the optimal result is achieved.

Improvement of attention mechanisms
The human visual attention mechanism is the ability to select the interesting parts of an image for observation32. 
Suppose the feature extraction network also has an excellent ability to do this in target detection. In that case, it 
can reduce the interference of a large amount of redundant information caused by the convolution operation and 
then improve the network model’s attention to small target features and the accuracy of small target detection.

Attention is divided into spatial attention and channel attention33. Spatial attention is to obtain the weights 
of the two dimensions of height H and width W and multiply them by the feature area to obtain the feature 
information; channel attention is to obtain the weights of the channel dimension C and then multiply them by 
the feature area. The attention mechanisms commonly used in neural networks are SE, CAM, SAM, CBAM, and 
BAM modules. SE module (Squeeze-and-Excitation Networks) is a lightweight attention module that obtains 
the importance degree of different channels through the global average pooling operation and the two fully 
connected layers and uses this importance degree to give different weight values to each feature with different 
weight values to obtain more important feature information, but does not consider the attention of obtaining 
location information; CAM Module (Channel Attention Module) means the channel attention module, which 
attaches importance to the information of each channel of the feature map, and uses the average pooling and 
maximum pooling to compress the spatial information in conjunction with the input image, and finally obtains 
the channel attention feature map. SAM module (Spatial Attention Module) is the spatial attention module that 
attaches importance to the location information of the features and selectively focuses on each spatial feature 
information by weighting the spatial features; CBAM module (Convolutional Block Attention Module) repre-
sents the lightweight convolutional attention module, contains CAM and SAM sub-modules for channel and 
spatial attention extraction respectively, and the outputs of the two sub-modules are multiplied to obtain the 
attention vector; BAM module (Bottleneck Attention Module) denotes the bottleneck attention module, which 
can be connected to any feed-forward convolutional neural network and infer the attention mapping along the 
two paths of channel and space. CBAM can be seen as a tandem connection between CAM and SAM, and BAM 
can be seen as a parallel connection between the two. However, BAM and CBAM separate spatial and channel 
attention and can only obtain local range information, not the remote interaction relationship of feature maps. 
The CA module refers to the coordinate attention module, which embeds the spatial position information into 
the channel attention and comprehensively considers the relationship between the channels and the spatial posi-
tion information of the features, which can alleviate the problem of fuzzy or missing information of the deep 

Figure 8.   Variation of model parameters at different pruning rates.
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feature edges of the small target, and improve the localization ability of the feature information in the target 
area. Zha et al.34 embedded the coordinate attention module into the lightweight feature extraction module 
of the YOLOv4_tiny model to enhance the feature information, and the experimental results showed that the 
improved method improved the detection model detection; Zhang et al.35 introduced the coordinate attention 
module into the tail of the backbone network of the YOLOv5, which improved the detection accuracy of the 
model. The structure of the CA module is shown in Fig. 9.

The specific operation of the coordinate attention module is divided into two steps: coordinate information 
embedding and coordinate attention generation. In the coordinate information embedding session, the CA 
module first performs a global average pooling operation on the input features (C × H × W) in the horizontal 
and vertical directions sequentially to obtain two feature maps of C × H × 1 and C × 1 × W. The global average 
pooling calculation formula is as follows:

In the formula, C is the number of input feature channels; H is the height of the input feature; W is the width 
of the input feature; Zc is the output feature of channel c; and xc is the input feature of channel c.

Specifically, each channel is horizontally and vertically coded using pooling kernels of dimensions (H,1) and 
(1, W), respectively, to obtain two outputs of height h and width w in channel c, calculated as follows:

(5)zc =
1

H ×W

H
∑

i=1

W
∑

j=1

xc(i, j)

Figure 9.   Schematic diagram of the CA module structure.

Figure 10.   Backbone_CA structure.

Figure 11.   Resunit_CA structure.
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In the formula, Th
c(h) is the characteristic output of channel c in the vertical direction; Tw

c(w) is the charac-
teristic output of channel c in the horizontal direction;

After the above two transformations, the distance dependency in one spatial direction and the positional 
accuracy information in another can be obtained, completing the embedding of the coordinate information. 
The two output features obtained in the previous step are then subjected to a splice operation, and the channel 
is compressed using a 1 × 1 convolution; after BN normalization and non-linear activation function, the inter-
mediate features are separated and decomposed into two directional feature tensors fh and fw, and then the two 
feature tensors are subjected to 1 × 1 convolution operation to adjust the number of channels as well as sigmoid 
activation operation to obtain the two components gh and gw, which are consistent with the number of channels 
of the input features, and the calculation formulae are as follows:

In the formula, f is the intermediate feature map generated by the position information in two spatial direc-
tions; δ(·) is the non-linear activation function; σ(·) is the sigmoid activation function; and F(·) are all convolu-
tion functions.

Finally, the two components gh and gw are weighted with the original input features to obtain the final output 
yc of the CA module in channel c. The formula is as follows:

In the formula gh
c(i) and gw

c(j) are the weight values in different directions.
The Coordinate Attention Module has plug-and-play characteristics and is deployed in the backbone network 

to enhance the feature extraction capability of the backbone network. In order to choose the appropriate loca-
tion for the CA module addition, this paper adds the CA module to the three adequate feature layer tails and 
residual structures of the backbone network of the YOLOX_S model for experimental performance comparison, 
respectively, and the improved structure are shown in Figs. 10 and 11.

The CA modules were added in two locations to train 200 rounds on this experimental dataset to obtain the 
improved models YOLOX_S-backbone_CA and YOLOX_S-resunit_CA. The results of the comparison of the 
two model training MAP curves are shown in Fig. 12.

Based on the pruned YOLOX_S model, the detection performances of adding the CA module to the three 
effective feature layers in the feature extraction network, the residual structure, and the detection model added at 
both of these positions are compared. Among them, the residual structure is added at the position after the con-
volution operation and the CBL structure. The feature information obtained from the Focus structure is entered 
into the dark2, dark3, dark4, and dark5 modules, respectively, and the CSP1_x structure can be improved to 

(6)Th
c (h) =

1

W

∑

0≤i<W

xc(h, i)

(7)Tw
c (w) =

1

H

∑

0≤j<H

xc(j,w)

(8)f = δ

(

F1([zh, zw])
)

(9)

{

gh = σ(Fh(f
h))

gw = σ(Fw(f
w))

(10)yc(i, j) = xc(i, j)× ghc (i)× gwc (j)

Figure 12.   map curve comparison.
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improve the learning ability of the small target head features by the improved residual structure; the CA module 
added in the effective feature layer is located behind the CSP1_3 and CSP2_1 structures in the dark3, dark4, and 
dark5 modules, with the extracted features of three scale sizes of 80 × 80 × 256, 40 × 40 × 512 and 20 × 20 × 1024 
being processed by the CA module to input the feature information into the enhanced feature extraction network 
for further deep feature extraction.

From Fig. 12 and Table 1, it can be seen that adding the coordinate attention module to the residual structure 
improves the model’s mAP by 0.92%, adding it to the three effective feature levels improves the mAP by 0.38%, 
and adding both positions to the CA module at the same time improves the model’s mAP by 0.13%. Since the 
increase in the convolution operation resulted in a slight increase in the number of model parameters, and 
the addition of the CA module at a single location did not result in an increase in model computation, and 
therefore the detection accuracy and speed of the model was inferior to that of the model with the CA module 
introduced at two locations. The results show that the degree of influence on the model detection performance 
is different when the coordinate attention module is added at different positions of the model. The model map 
value obtained by adding the CA module to the residual structure is better than that obtained by adding it to the 
effective feature layer, so the CA module is considered to be added to the residual structure from the aspects of 
detection accuracy and detection speed.

Adaptively spatial feature fusion module(ASFF)
The PAFPN structure is mainly composed of feature pyramid network FPN and path aggregation network PAN 
structure and usually uses splicing or pixel fusion and other direct articulation or summation to complete the 
fusion of deep features and shallow features, which can not make full use of the feature information of different 
feature scales between the multi-layers, and the richness of features can be extracted is limited36. Its structure 
is shown in Fig. 13.

In the process of target detection, large targets require larger sensory fields and deeper semantic features to 
be more easily captured by deeper features. In contrast, recognizing small target features requires more shal-
low feature localization information to play a role. The core idea of the adaptively spatial feature fusion module 
ASFF is to multiply and then fuse (sum) the three scale layer features L1–L3 generated by PAFPN with the cor-
responding learnable weights to obtain three corresponding scale features ASFF-n, n = 1,2,3, and its structure 
is shown in Fig. 14.

Taking ASFF-3 in the figure as an example, L1–L3 are the three enhanced feature layers extracted by the PAFPN 
structure, whose features are denoted as X1, X2, and X3, respectively. Firstly, the number of feature channels 
of the three scales is adjusted to be equal to the number of channels of L3 by the operation of up-sampling or 
down-sampling. Then, the fusion weight parameters α, β and � are learned and defined using the softmax with 
the control scalars �α , �β and �γ functions, respectively. The calculation formula is as follows:

Table 1.   Comparison of experimental performance at different addition locations.

Placement mAP/% Params/M

No additions 72.33& 3.86

Residual structure 73.25% 3.86

Effective feature layer 72.71% 3.86

All 72.46% 3.88

Figure 13.   PAFPN structure of YOLOX_S.
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The weight parameters need to be satisfy: αLn
ij + β

Ln
ij + γ

Ln
ij = 1;αLn

ij ,β
Ln
ij , γ

Ln
ij ∈ [0, 1][0, 1].

In the formula, i and j denote rows and columns, respectively; parameters �α , �β and �γ are obtained from 
X1, X2, and X3 after 1 × 1 convolution, respectively, and can be learned by backpropagation until the appropriate 
weights are found.

The last three features with the same number of channels are multiplied and summed with the corresponding 
weights to obtain the new feature ASFF-3 ( yLnij  ), which is calculated as follows:

In order to perceive and detect the detailed features of small target vehicles, it is necessary to make full use 
of the semantic information of the deep features and the positional information of the shallow features for 
strengthening the learning ability of the fine-grained features in the shallow features. In this paper, the ASFF 
module is added to the tail of the PAFPN structure to multiply and then add the features of each layer with its 
corresponding weight parameters to achieve fusion. The proportion of features in each layer is adjusted using the 
parameters, which can effectively retain the features in the region of interest and filter the unimportant feature 
information so that the features extracted by the model are more hierarchical to improve the model’s ability to 
learn the features of small targets.

Loss function improvements
A loss function is used in the prediction phase of the model to measure the extent to which the predicted value 
differs from the actual value. The larger the error is, the larger the loss value. During the iterative training of 
the network model, the loss value is continuously minimized, and the loss value can be used as a reference for 
backpropagation to update the model parameters to bring the predicted value closer to the actual value37. In the 
YOLOX model, after completing the third part of the refined allocation strategy, the error between the actual 
frame and the predicted frame is calculated to obtain the loss function value. The loss function for the YOLOX 
model consists of category prediction loss (loss_cls)—using binary cross-entropy loss, object existence prob-
ability loss (loss_obj)—using binary cross-entropy loss, and IOU loss (loss_iou)—using IOU cross-merge ratio.

The YOLOX model does not need to generate candidate frames to directly associate the predicted and labeled 
frames, which improves the speed of model inference but also results in an imbalance of positive and nega-
tive samples. There are more candidate frames without targets than with targets, resulting in decreased model 
accuracy. In actual practice, the different control requirements for the type and number of vehicles in operation 
in each traffic scenario often result in more cars than other types of vehicles and the presence of more difficult-
to-classify samples, leading to unstable model performance. The presence of occlusion can also cause problems 
with small targets being inconspicuous or misdetecting traffic devices on the road as positive samples, and these 
problems will increase the difficulty of tracking the trajectories of small cars in future traffic accident detection 
studies. Liu et al.38 changed the cross-entropy loss function of YOLOv3_tiny to Focal Loss loss function and 
conducted comparison experiments with the original loss function, and the results showed that the detection 
accuracy of the model using Focal Loss was 4.25% higher compared to the original model; Zhang et al.39, to solve 
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Figure 14.   PAFPN + ASFF structure.
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the problem of imbalance between the positive and negative samples and the difficult and easy samples, replaced 
the classification loss function of YOLOv5 to Focal Loss loss function, and the detection accuracy reaches 92.5%. 
In order to improve the problem of detection accuracy degradation caused by the uneven number of positive and 
negative samples, this paper studies the classification prediction part on the three decoupling head branches. The 
binary cross-entropy function BCEWithLogitsLoss for the category prediction loss is replaced by the focal loss 
function12 to improve the model’s focus on difficult-to-classify or small target samples.

The binary cross-entropy loss function is calculated as follows:

In the formula, y = 1 is the positive sample label value; otherwise, it represents a negative sample; p ∈[0,1] is 
the probability that the model predicts y = 1, and the larger the p-value indicates that the model is more accurate 
in its prediction, so BCELoss is not able to balance the positive and negative categorization of samples well. By 

defining pt as: pt =
{

p if y = 1
1− p otherwise,

 and obtaining the following formula:

Among these, the pt can directly reflect the proximity of the predicted classification to the positive sample, 
and the larger pt indicates the more accurate classification results. A hyperparameter α is introduced to balance 
the proportion of positive and negative samples based on Eq. (14), and a parameter (1 − pt)γ is set to increase the 
attention to hard-to-classify samples to obtain the formula for calculating the Focal loss function:

In the formula, γ ∈ [0,5] is used to regulate the weights of positive and negative samples; α ∈ [0,1] is a weight 
factor to balance the classification of positive and negative samples.

Based on the above improvement method, this paper improves the loss function of the Head structure of the 
optimized YOLOX_S model. The parameter γ is set to 2 when the weight factor α is set to 0.35 to alleviate the 
uneven classification of samples.

Experiments and analysis of results
Experimental platform and parameter configuration
The parameters of the equipment used in the experiments of this paper are shown in Table 2:

The experimental training parameters and formula parameter settings are shown in Table 3:

Datasets and evaluation indicators
The UA-DETRAC​40 dataset is a publicly available vehicle detection dataset with videos from 24 locations in 
Beijing and Tianjin, providing tens of thousands of images with annotations for vehicle detection categories. The 
dataset has a rich set of traffic scenes and was captured under different weather conditions and light intensities, 
including four categories: cars, buses, trucks, and others.

The experimental dataset in this paper is selected from some video sequences in MVI_20011, MVI_39761, 
MVI_40131, and MVI_63521 of the UA-DETRAC public vehicle detection dataset, with a total of 4570 video 
frame screenshots taken at a resolution of 960 * 540 pixels, and the dataset sample is shown in Fig. 15. Consid-
ering that the traffic scenarios in the dataset samples are mainly urban roads, and the restrictive driving poli-
cies for trucks are set in several administrative areas in Beijing and Tianjin, the number of car samples in the 
dataset samples is the largest, minivans and buses are smaller, and the number of trucks is only a few. To avoid 
the problem of unbalanced sample size and overfitting of the model, this paper does not include trucks in the 

(13)CE(p, y) = −y log p− (1− y) log(1− p) =
{

− log(p) if y = 1
− log(1− p) otherwise

(14)CE(p, y) = CE(pt) = − log(pt)

(15)FL(pt) = −αt(1− pt)
γ log(pt)

(16)FL(p) =
{

−α(1− p)γ log(p) if y = 1
−(1− α)pγ log(1− p) otherwise

Table 2.   Experimental equipment parameter table.

Hardware and software Version model

Computer system Windows 10

Computer processor Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz 1.80 GHz

Operational memory 8 GB

GPU NVIDIA GeForce 940MX

Graphics memory 4 GB

Experimental software PyCharm2021.3.1

PyTorch 1.13.1

Language Python3.8

Configuration device NVIDIA CUDA11.6 Cudnn8.4.0
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labeling categories. It classifies buses and minivans into the same category, and the detection targets into two 
categories, car and bus. The annotation software Labelimg is used to re-label the selected images into categories, 
generate the dataset in Pascal VOC format, and divide the dataset into training, validation, and test sets in the 
ratio of 8:1:1. Labelimg annotation interface is shown in Fig. 16. The .xml file records the location information, 
and each line represents a target, which is separated by a space, and represents the category ID of the target, and 
the x coordinate of the centroid and y coordinate of the centroid after the normalization process, w and h of the 
target box, respectively.

In this paper, to validate the performance of the improved model, ablation experiments, comparison experi-
ments of different detection models, and multiple metrics were used to evaluate the optimization of the improved 
detection model. The evaluation metrics used in this experiment are Average Precision (AP), Mean Average 
Precision (mAP), and Frame Per Second (FPS).

TP (True Positives) indicates the number of predicted positive samples that are actually positive samples;
FP (False Positives) indicates the number of samples that are predicted to be positive and are actually nega-

tive samples;
TN (True Negatives) indicates the number of predicted negative samples that are actually negative samples;
FN (False Negatives) indicates the number of predicted negative samples that are actually positive samples.

Table 3.   Table of training parameters and formula parameters.

Parameter name Parameter value

Epochs 200

batch_size 8

Image size 640 × 640

Sparsity rate 0.005

Pruning rate 0.3

Weight factor-α 0.35

γ 2

Figure 15.   Partial pictures of selected datasets.
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Figure 16.   LabelImg interface.

Figure 17.   Comparison of model loss curves before and after improvement.
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In the formula, Precision is the accuracy rate, which indicates the probability that the predicted samples are 
positive samples; Recall is the recall rate, which indicates the probability that the positive samples are correctly 
identified.

Analysis of experimental results
Comparing the training loss curves before and after the improvement of the YOLOX_S model, it can be observed 
from Fig. 17 that the loss value decreases rapidly in the pre-training period. However, as the number of training 
rounds increases, after about 25 rounds, the decreasing trend of the loss value is smooth, and after training to 75 
rounds, the loss value decreases slowly. The optimized model loss curve has a lower loss value than the original 
model loss curve, and the convergence is smoother and faster, so the improved method and each experimental 
parameter setting in this paper help improve the detection accuracy.

In order to verify the effectiveness of the improved model in this paper, an ablation experiment is designed, 
and the influence of different improvement methods on the original YOLOX_S model is shown in Table 4. “ × ” 
indicates that the method was not used, and “√” indicates that the method was used. The experimental results 
showed that the feature extraction ability was weakened after pruning the original YOLOX_S model. However, 
the accuracy was only reduced by 0.7%, and the FPS was improved from 32 to 44 fps. The reason for this was 
the streamlining of the baseline network structure and the reduction in the number of model parameters, which 
improved the detection speed. It shows that the model pruning method can improve the detection speed while 
maintaining the detection accuracy for this dataset. Based on the pruning of the YOLOX_S model, the original 
residual structure is optimized and improved to obtain the resunit_CA structure, with the mAP value improved 
by 1.58%, but the detection speed reduced to 41 fps due to the increase in the number of convolutional operations. 
After introducing the adaptively spatial feature fusion ASFF, the increase in the number of model parameters 
led to a decrease in the detection speed of 10.56 fps. However, the effect of detection accuracy enhancement was 
evident, and the mAP value was improved by 3.07%. It shows that ASFF makes fuller use of multi-scale feature 
layers and effectively strengthens the model’s ability to extract features from small targets. Optimizing the loss 
function based on the first three improved methods and using the Focal Loss function to regulate the distribu-
tion of positive and negative samples, the mAP was further improved by 0.87%, and the detection speed was 
reduced to 29 fps. The reduced detection speed (increased inference time) of the improved YOLOX_S model 
compared to the original YOLOX_S model was mainly due to the increased resolution of the input feature maps.

Contrasting experiments are conducted on the dataset of this paper using the two-stage target detection 
model SSD and the one-stage target detection models YOLOv3, YOLOv4, YOLOv5_s, as well as the original 
YOLOX_S model with the improved model, and the results of the experimental performance of the different 
models are shown in Table 5. The results of the metrics, such as AP value, mAP value, and detection speed FPS 
for each category of the improved model, are better than the SSD, YOLOv3, YOLOv4, and YOLOv5_s models. 
From the experimental data, the detection accuracy of the improved model is completely better than that of the 
original YOLOX_s model, which is valuable in terms of detection effect.

The comparison of the performance parameters of different detection models shows that in terms of detec-
tion accuracy, the improved model in this paper improved 35.06%, 20.11%, 15.98%, 16.1%, 8.97%, 4.75%, and 
4.86% over SSD, Faster-RCNN-VGG16, Faster-RCNN-Res-101, YOLOv3, YOLOv4, YOLOv5_s, and the original 
YOLOX, respectively; The AP values of each category of the improved YOLOX_S model were higher than those 
of the other models, and the AP values of the car and bus categories of the improved model were respectively 

(17)P = Precision =
TP

TP+ FP

(18)R = Recall =
TP

TP + FN

(19)AP =
∫ 1

0
P(R)d(R)

(20)mAP =
1

C

C
∑

i=1

AP(i)

Table 4.   Ablation experiments.

Model Prune Coordinate attention ASFF Focal loss mAP/% FPS(f/s) Params/M

YOLOX_S  ×   ×   ×   ×  0.7233 32.24 8.94

YOLOX_S-prune √  ×   ×   ×  0.7167 44.07 3.86

YOLOX_S-prune + CA √ √  ×   ×  0.7325 41.31 4.27

YOLOX_S-prune + CA + ASFF √ √ √  ×  0.7632 31.87 9.75

YOLOX_S-prune + CA + ASFF + Focal Loss √ √ √ √ 0.7719 29.73 9.68
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Table 5.   Contrast experiment.

Target detection model

AP/%

mAP/% FPS/(f/s)Car (%) Bus (%)

SSD 45.97 38.29 42.13 7.41

Faster-RCNN-VGG16 61.79 52.37 57.08 5.39

Faster-RCNN-Res-101 63.48 58.94 61.21 2.76

YOLOv3 62.42 54.56 58.49 14.82

YOLOv4 71.39 59.85 65.62 20.14

YOLOv5_s 76.47 63.21 69.84 24.23

The original YOLOX_S 80.23 64.42 72.33 32.24

The improved YOLOX_S 84.16 70.22 77.19 29.73

Figure 18.   Comparison of model detection effect before and after improvement.
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improved by 3.93% and 5.8% compared to the original YOLOX_s model; In terms of detection speed, the 
improved model was 22.32 fps, 24.34 fps, 26.97 fps, 14.91 fps, 9.59 fps, and 5.5 fps faster than the SSD, YOLOv3, 
YOLOv4, and YOLOv5_s models respectively, but inferior to the original YOLOX_S model. However, from the 
overall data, the improved YOLOX_S model possesses higher detection accuracy and real-time performance 
than the SSD, Faster-RCNN-VGG16, Faster-RCNN-Res-101, YOLOv3, YOLOv4, and YOLOv5_s models, which 
have certain advantages.

The original YOLOX_S model and the improved model are used to visualize vehicle detection in three traf-
fic scenarios, and the results are shown in Fig. 18. The left column of images (a) shows the original YOLOX_S 
detection results, and the right column of images (b) shows the detection results of the improved model. As can 
be seen from the comparison graph, the improved model can detect long-range small targets not detected by 
the original YOLOX_S model in low-light environments, and the detection accuracy of small targets was also 
better than that of the original YOLOX_s model. Compared with the original YOLOX_S model, the improved 
model was more effective in detecting target vehicles at the boundary of the surveillance range. According to 
the visualization detection effect, the improved model detection effect is better than the original YOLOX_s 
model, and it can more accurately identify and detect vehicle targets in different light and distance, alleviating 
the problems of multi-target occlusion and small targets that are not easy to identify. Therefore, the effectiveness 
and real-time performance of the optimized and improved model of this paper for vehicle detection in traffic 
scenarios are further verified.

Conclusions
Aiming at the problem of multi-target and micro-target detection in traffic scenarios, this paper was based 
on the original YOLOX_S target detection model, and through the model pruning operation, the number of 
model parameters was reduced, and the detection speed was greatly improved; to compensate for the decrease 
in model detection accuracy caused by the pruning operation, the coordinate attention module was added to 
the effective feature layer and the residual network respectively and trained and tested on the dataset, and atten-
tion module was selected to be added to the residual structure according to the average accuracy rate of the 
detection, and the detection performance of the model was optimized; to make the model extract richer feature 
information, this paper added the adaptively spatial feature fusion ASFF to the tail of the PAFPN structure for 
deep features and shallow features, and the detection accuracy was significantly improved; optimizing the loss 
function in the detection header of the prediction layer improved feature learnability by increasing the weights 
of complex samples and controlling the loss values of positive and negative samples. The experimental results 
show that compared with the original YOLOX_S detection model and some of the current mainstream models, 
the improved model proposed in this paper effectively improved the accuracy of the detection precision, and 
the detection precision reached 77.19%. However, the detection speed decreased to 29.73 fps. In the subsequent 
research, real-time vehicle detection will be further optimized to provide a basis for real-time detection of traffic 
accidents in traffic management in the future.

Data availability
The public dataset the UA-DETRAC used in this research can be found at the following link: https://​detrac-​db.​
rit.​albany.​edu/. The source code of the algorithms used in this research can be found in the Github repositories 
[https://​github.​com/​Megvii-​BaseD​etect​ion/​YOLOX; https://​github.​com/​ultra​lytics/​yolov5; https://​github.​com/ 
Tianxiaomo/pytorch-YOLOv4.git; https://​github.​com/​ultra​lytics/​yolov3/​tree/​archi​ve; https://​github.​com/​amdeg​
root/​ssd.​pytor​ch]; https://​github.​com/​jwyang/​faster-​rcnn.​pytor​ch/​tree/​pytor​ch-1.0.
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