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Bridging functional and anatomical 
neural connectivity through cluster 
synchronization
Valentina Baruzzi 1, Matteo Lodi 1, Francesco Sorrentino 2 & Marco Storace 1*

The dynamics of the brain results from the complex interplay of several neural populations and is 
affected by both the individual dynamics of these areas and their connection structure. Hence, a 
fundamental challenge is to derive models of the brain that reproduce both structural and functional 
features measured experimentally. Our work combines neuroimaging data, such as dMRI, which 
provides information on the structure of the anatomical connectomes, and fMRI, which detects 
patterns of approximate synchronous activity between brain areas. We employ cluster synchronization 
as a tool to integrate the imaging data of a subject into a coherent model, which reconciles structural 
and dynamic information. By using data-driven and model-based approaches, we refine the structural 
connectivity matrix in agreement with experimentally observed clusters of brain areas that display 
coherent activity. The proposed approach leverages the assumption of homogeneous brain areas; we 
show the robustness of this approach when heterogeneity between the brain areas is introduced in 
the form of noise, parameter mismatches, and connection delays. As a proof of concept, we apply this 
approach to MRI data of a healthy adult at resting state.

The complex spatio-temporal patterns of activity exhibited by the brain derive from the interplay between the 
neural dynamics of cortical areas and their connectivity. From a modeling standpoint, one of the most challeng-
ing problems is the inference of network parameters in a brain model to reproduce empirically observed activity, 
namely the so-called inverse problem1. One of the pillars for deriving reliable models that under specific condi-
tions can reproduce experimentally observed human brain functions is the growing availability of neuroimaging 
techniques, which allow the detection of patterns of activity across neural units that encode objects, concepts, 
or states of information2. Various techniques based on imaging data have been developed to extract functional 
and structural connectivity matrices of the human/animal cortex, but the way brain function is shaped by the 
underlying anatomical substrate is far from being understood3. Moreover, despite its widespread use to probe the 
structural connectivity of the brain in both clinical and basic neuroscience, dMRI fiber tractography produces 
anatomical connectomes subject to quite a large degree of uncertainty, due to well-known pitfalls of this technique 
in terms of anatomical accuracy4. A second research path that is attracting a growing interest is how to employ 
network theory and nonlinear dynamics to build brain models based on imaging data5–12.

The orchestrated activity of neural populations has been postulated to be one of the key mechanisms under-
lying brain functions13. At a microscopic level, individual neurons exhibit hardly predictable firing rates, with 
a non-negligible stochastic component14. At a macroscopic level, however, we see the emergence of regular 
oscillations of the local field potential (LFP) in specific brain areas, including one or more populations, such as 
in the case of the cortical rhythms in the cerebral cortex15. We do not observe complete (or identical) synchro-
nization between brain areas, i.e., a situation in which all variables of all areas converge to the same dynamical 
state; synchronization is usually only approximate, with brain areas behaving coherently, and transient, with 
synchronized communities reoccurring intermittently in time and across scanning sessions16. One of the most 
common ways to non-invasively detect the presence of coherence among brain areas is to analyze the correla-
tion between the blood oxygen level-dependent (BOLD) signals measured in these areas through functional 
magnetic resonance imaging (fMRI).

It is commonly agreed that brain functions strongly depend on anatomy, other than neural dynamics. Vari-
ous efforts have been made to determine if functional connectivity and structural connectivity can be predicted 
from each other17: data-driven statistical models18–20 that do not assume any specific mode of interaction among 
neuronal populations; models emerging from network science and telecommunication engineering21 that concep-
tualize functional interactions as the superposition of elementary signaling events on the underlying anatomical 
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network; biophysical dynamical models22–24 that describe the collective dynamics of a neuronal ensemble in terms 
of their mean firing rate, which capture both local fluctuations and influence from other connected regions, and 
exhibit a rich repertoire of oscillations, synchrony, and waves. Many studies have investigated whether and how 
resting-state functional connectivity can be inferred from experimentally measured structural connectivity22,24,25, 
and have found that strength, persistence, and spatial statistics of functional connections are constrained by 
the large-scale anatomical structure of the human cerebral cortex. Some studies have also proposed analytical 
approaches to derive linear relationships between functional and structural connectivity matrices, based on 
neural field theory26 and spectral graph theory27.

In this paper, we investigate an approach to reconcile information about structural connectivity and informa-
tion on synchronous clusters obtained from fMRI data. Our proposed method provides a biophysical dynamical 
model in terms of a network, composed of weighted links and nodes representing brain areas. The network links 
(i.e., its topology) and weights are derived from an optimized version of the original structural connectivity 
matrix, obtained by imposing the network emergent dynamics to be compatible with the synchronous clusters 
evidenced by fMRI scans. The results are robust with respect to heterogeneity in the parameters of both network 
and nodes, the presence of noise, and connection delays. The main novelty element of this paper is the connection 
we establish between anatomical and functional data based on the study of cluster synchronization at different 
granularities. To the best of our knowledge, the concepts of cluster synchrony and equitable partitions have not 
been previously leveraged to relate the functional and structural connectomes of the brain.

As a proof of concept, we apply the method to public data obtained from 10 fMRI and 10 dMRI scans executed 
across a month of one healthy adult at resting state. Results obtained for two additional subjects of the same 
public dataset are provided in “Supplemental Material”, Note 2, and are aligned with the results presented here.

Results
Proposed method
The proposed method leverages structural and functional data in the form of connectivity matrices. In particular, 
structural connectivity matrices aggregate the information on fiber density between the different areas considered 
as network nodes; this information is derived from fiber tractography reconstruction techniques, which allow 
assessing the presence of neural tracts from dMRI data. Functional connectivity matrices aggregate the informa-
tion on the correlation between the BOLD signals measured in the different areas through fMRI.

Nonlinear dynamics provides tools for studying complete cluster synchronization28–30; when applying these 
tools to experimental data, for which synchronization is only approximate, a convenient first-order assumption 
is to deal with homogeneous nodes. On the one hand, this could be unrealistic, because in a real neuronal net-
work each area is expected to be unique, i.e., from a modeling standpoint, to have its own parameter values, as 
the corresponding neuronal populations are heterogeneous with respect to multiple physical properties. On the 
other hand, the identification of these heterogeneities (and corresponding model parameters) from measured 
data is highly nontrivial and depends on the quality and quantity of data, the noise inherent to measurements 
of biological systems, and the complexity of the chosen model.

Figure 1 illustrates the main elements of the proposed method, which starts from functional and structural 
connectomes derived from fMRI and dMRI scans, respectively. The functional data evidences the presence of 
approximate synchronization (namely, high correlation) between the neural activity of specific brain areas. 
The areas with high correlation are assumed to be part of the same synchronous cluster. In order to reduce the 
uncertainty on the weights of the structural connectome4 we look for network models, with different granularity/
resolution in terms of clusters, that are compatible with the clusters evidenced by the functional connectivity 
analysis. The key elements of the method are the following:

•	 We use the network topology defined by the structural connectome as a starting point.
•	 We use functional data to identify clusters of nodes with coherent activity through a hierarchical clustering 

algorithm, with multiple resolution levels.
•	 We add dynamics to the nodes through a neural mass model (NMM)31, choosing the network model to be 

homogeneous in the nodes, and focus the analysis on exact cluster synchronization; at this stage, we neglect 
higher-order model factors that pertain to the node features.

•	 We resort to the concept of equitable clusters32,33 in order to optimize the weights of the structural connec-
tome with the aim of making the network compatible with the existence of clusters of highly functionally-
correlated areas; this is done by changing the weights as little as possible from their experimentally measured 
values and by taking into account their measured uncertainty.

•	 We find a suitable range for a scale factor of the weights by applying the master stability function (MSF) 
approach34 in order to ensure the stability of the compatible synchronous clusters.

After the steps above are taken, one can choose the model with the most suitable resolution level, according to 
the specific objective, and check the extent of the model robustness by reintroducing heterogeneity in either the 
connection weights and delays or the nodes. This leads to a set of perturbed models compatible with the data, 
in which both functional and anatomical connectivity are incorporated. We emphasize that the chosen unper-
turbed model is able to reproduce the correlation in the BOLD signals observed experimentally in fMRI data 
(i.e., the approximate synchronization between brain areas) with connection weights that differ from the dMRI 
connectivity matrix by an amount that is comparable with the uncertainty introduced by the measuring process.
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Network model
We consider a weighted and undirected network graph with N nodes, each representing a cortical area. Edges 
represent long-range connections between the cortical areas. This graph can be described by a symmetric struc-
tural connectivity matrix A0 , with entries a0ij that are the connection weights. For a given subject, A0 is built by 
normalizing and averaging the available Md structural connectomes, which are measured in time periods that 
are short enough that anatomical connectivity at this scale does not vary significantly24,35. Information on the 
uncertainty of each weight is stored in a matrix �A0

 , where each entry is the variance of the weight among the 
Md normalized connectomes. A delay τij is assigned to the connection between nodes i and j, according to the 
distance between the nodes and the propagation speed. By assigning dynamics to each node, the network of N 
coupled neural oscillators is described by the following general set of equations ( i, j = 1, . . . ,N):

where xxxi ∈ R
m are the state variables of node i = 1, . . . ,N , FFF : Rm → R

m describes the dynamics of an isolated 
node, ŴŴŴ : Rm × R

m → R
m describes the coupling between nodes, and aij is the strength of the coupling from 

node j to node i. The parameter σ controls the overall strength of the connections and GGG : Rm → R
m is the cou-

pling function. The delays τij are quantized over L values τ l , with l = 1, . . . , L . This quantization is necessary for 
computational purposes, and fully heterogeneous delays will be reintroduced a posteriori.

Identification of clusters of nodes with coherent activity
The functional connectomes refer to the same N brain areas and are in the form of correlation matrices, in 
which each entry describes the pair-wise temporal correlation between the activity of two brain areas. Given Mf  
functional connectomes measured from the same subject in the same conditions, it is possible to identify the 
clusters of nodes that exhibit coherent activity through a hierarchical clustering approach, as commonly done in 
the literature36–39. Hierarchical clustering is applied to each functional connectome, and the resulting partitioning 
can be visualized as a dendrogram, an example of which is shown in Fig. 2 (see Methods for details).

A certain variability across the dendrograms obtained from different fMRI sessions is expected. We aim to 
identify the set of node partitions that best describes the functional connectivity of the subject at different scales 
(i.e., at different levels ℓ of the dendrogram); to this end, we define the similarity index �1(ℓ) , which measures 
the consistency of clusterings at different levels ℓ across the Mf  fMRI sessions. The local maxima of �1(ℓ) allow 
selecting Mℓ levels ℓ∗k (each one cutting k branches of the dendrogram, thus identifying k clusters), which are 
collected in a set L∗ = {ℓ∗k} (see Fig. 3a). The reference fMRI session s∗ is identified through the similarity index 
�2(s) , which provides an indication of how much the clustering obtained from a session is similar to the cluster-
ings from all other sessions; s∗ is chosen as the maximum value of �2(s) and the selected correlation matrix is 
referred to as X∗ (see Fig. 3b). The similarity indices �1(ℓ) and �2(s) are calculated by leveraging the Fowlkes and 

(1)ẋxxi(t) = FFF(xxxi(t))+ŴŴŴ

(
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Figure 1.   Summary of the proposed method. We start (top-left ovals) from data-driven structural (functional) 
connectomes, derived from dMRI (fMRI) scans. Each functional connectome evidences the correlation between 
the neural activity of different brain areas, and then the presence of approximately synchronized clusters, 
formed by areas with high correlation. There is a degree of uncertainty on the number of clusters the areas can 
be best aggregated into. Each structural connectome reflects the brain anatomy, with some uncertainty in the 
weight of each connection. Right (green) ovals: model-based method used to bridge functional and structural 
connectivity. The reference (homogeneous) network model has an initial topology defined by the structural 
connectome and node dynamics imposed by a NMM. The uncertainty on the clusters is managed through a 
multi-resolution approach, by analyzing different cluster partitions. For each resolution level, the uncertainty 
on the connection weights is reduced by optimizing them to enforce the existence of the cluster synchronous 
solution of that level. Bottom-left oval: one resolution level is chosen, and the corresponding model is made 
heterogeneous, thus obtaining again approximate synchronization.
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Mallows method40, which allows comparing two partitions by calculating the comparison measure 0 ≤ B ≤ 1 , 
as explained in detail in Methods.

To check if the structural connectivity matrix A0 is already compatible with the clusters emerging from the 
analysis of functional data, for each level ℓ∗k we simulate the network dynamics for an array of values of σ (see 
Eq. (1)) and different initial conditions; we then compute an average Fowlkes and Mallows matching index B̄ by 
comparing each partition obtained in simulation with the target partition associated with X∗ . This procedure 
is detailed in Methods. If A0 turns out to be inadequate to reproduce the clustering activity of the network (i.e., 
B̄ ≤ Bth , with Bth user-defined threshold), we take the next steps of the method. We heuristically set Bth = 0.7.

Refining the structural connectivity matrix according to synchronized clusters
As a first approximation, we model the identified clusters of nodes with coherent activity as synchronized clusters. 
This model must admit these synchronized clusters as a stable synchronous solution. To impose this constraint, 
there are two distinct issues to be addressed: one is ensuring the existence of the desired cluster-synchronous 
solution, and the other one is ensuring its stability. The existence of a cluster-synchronous solution requires that, 
for proper initial conditions, nodes in the same cluster synchronize. This solution is also stable if, under small 
enough perturbations, the system state goes back to the same synchronous clusters.

We leverage here a fundamental principle: the existence of a particular set of self-sustained synchronized 
clusters in a network graph with homogeneous nodes can be ruled out or not based on the network topology, 
independently from the dynamical model of the nodes; in particular, the existence of an equitable partition for a 
given network is a necessary condition for the existence of a cluster synchronous solution41,42. We remark that at 
this point we are only considering the existence of a cluster synchronous solution, not its stability; the possibility 
of convergence on such a solution depends also on the node dynamics, i.e., the functions FFF and ŴŴŴ in Eq. (1)43.

Let us first consider the case with homogeneous delays, i.e. L = 1 . A partition (and the corresponding color-
ing) is equitable if all nodes with color p receive the same overall input from the nodes of color q, for p, q = 1, ..., k . 
For each level ℓ∗k , given the set of target clusters, we want to obtain a structural connectivity matrix Ak for which 
they constitute an equitable partition.

The structural connectivity matrix A0 is derived from diffusion MRI data, and, as such, it has posi-
tive entries, is symmetrical, and has null diagonal entries. The optimized matrix Ak is also constrained to (i) 
have positive entries, (ii) be symmetric, and (iii) have null diagonal entries, to maintain the original features 
of the structural connectivity matrix. From the variance matrix �A0

 , a ‘reliability’ matrix �̂A0
 is defined as 

�̂A0
= max(�A0

)−�A0
+ ǫ , so that the entries with low variance have high reliability and vice versa; ǫ is an 

arbitrarily small quantity with the only function of avoiding zero entries. �̂A0
 is included in the cost function 

so that the more reliable an entry is, the less likely it is to be changed significantly in the optimization process 
to find Ak . The optimization process is as follows: the columns of Ak are stacked in the vector x; the columns 
of the matrix obtained multiplying entry by entry A0 by �̂A0

 are stacked in the vector α ; H is defined as the N2

Figure 2.   Given a correlation matrix, it is possible to identify the clusters of nodes that exhibit coherent activity 
with a hierarchical clustering approach. The obtained hierarchical clustering can be visualized in the form 
of a dendrogram, where nodes appear on the horizontal axis according to a permutation that places nodes 
belonging to the same cluster adjacent to one another. Depending on the level ℓ at which the dendrogram is cut 
horizontally, the corresponding clustering is described by the sub-trees originating from each branch cut by 
the line: for example, the red line cuts the dendrogram at the level corresponding to 13 clusters. The correlation 
matrix can be re-arranged based on the obtained permutation, so that the clusters can be evidenced along the 
diagonal.
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-size diagonal matrix with �̂A0
 entries on its diagonal; M1x = 0 codifies the equitable partition conditions and 

M2x = 0 codifies constraints (ii) and (iii). The optimal vector x (i.e., the matrix Ak ) is found by solving the fol-
lowing optimization problem, with quadratic objective function and linear constraints, of equality and inequality:

s.t.

This problem can be easily recast as a quadratic programming (QP) problem and numerically solved.
To carry out the optimization when delays τij are quantized over multiple values (i.e. L > 1 ) the structural 

connectivity matrix A0 is split into L matrices Al
0 , each corresponding to a coupling with delay τ l . In particular, 

entries of Al
0 corresponding to different delays are set to 0 and 

∑

l A
l
0 = A0 . Each matrix Al

0 is optimized individu-
ally, thus obtaining matrices Al

k , according to the definition of equitable partitions for graphs with L different 
kinds of couplings30. The final optimized structural connectivity matrix for level k is obtained as 

∑

l A
l
k = Ak . 

For high values of L, we would obtain extremely sparse matrices Al
0 , thus reducing the degrees of freedom for 

the optimization algorithm, since we constrain zero entries to be kept at zero.

Stability analysis through master stability function
The stability of the synchronous target clusters for each level ℓ∗k is assessed by using the MSF approach34. To 
illustrate this step of the proposed method, we refer to a network of N coupled Wilson-Cowan NMMs44 (see 
Methods), which can be described by the general set of equations (1) with m = 2 state variables:

(2)min
x

1

2
xTHx − αTx

(3)
x > 0

M1x = 0

M2x = 0.
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Figure 3.   (a) Cumulative (across the 10 fMRI sessions) similarity index �1 , based on the Fowlkes and Mallows 
comparison measure, for each dendrogram level ℓ . �1 measures the consistency of the corresponding clustering 
across the fMRI sessions. Specific levels ℓ∗k (corresponding to k clusters) are selected as local maxima of this 
curve (colored dots, same color code as in Figs. 5 and 6). We chose to discard local maxima that are not in 
ascending order and trivial partitions with too few or too many clusters (grey areas, corresponding to those in 
panel a) of Fig. 5). (b) Cumulative (across levels ℓ∗k ) similarity index �2 for each of the 10 sessions. �2 indicates 
how much the clustering obtained from a session is similar to the clusterings from all other sessions. The fMRI 
session corresponding to the maximum value of �2 (red dot, corresponding to the correlation matrix X∗ shown 
above) is chosen as the most representative of the subject.
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We can denote the cluster synchronization state as xxxi(t) = sssp(t) , where node i belongs to cluster Cp . Small per-
turbations wwwi(t) = xxxi(t)− sssp(t) , stacked in the state perturbation vector WWW(t) , are introduced to investigate the 
stability of the synchronous state and their linearized variational equations are derived (see Methods for details).

We resort to a coordinate transformation based on simultaneous block diagonalization (SBD)45–48, performed 

through the canonical transformation matrix T =

(
T�

T⊥

)

49. An alternative to this method is the one proposed 

in50. The k × N submatrix T‖ is associated with the directions along the synchronization manifold and the cor-
responding perturbations do not influence the stability of the synchronized clusters. The (N − k)× N submatrix 
T⊥ is associated with the directions transverse to the synchronization manifold and the evolution of the variational 
equation along these directions determines the stability of the synchronized clusters.

Transverse perturbations are denoted as ηηη⊥(t) = (T⊥ ⊗ Im)WWW(t) (where ⊗ is the Kronecker product and Im 
is a m×m identity matrix) and their variational equation is:

where the set 
{
sssp(·)

}
 collects all the synchronous solutions corresponding to the k clusters and ρ1 and ρ l

2 are 
time-varying matrices defined in Methods. The Lyapunov exponents for each ηηη⊥ component are calculated and 
the σ intervals where the cluster synchronous solution is stable are determined as those where the maximum 
Lyapunov exponent (MLE) is negative.

Introducing heterogeneity in the network model
The assumption of exact cluster synchronization is restrictive and unrealistic when referring to experimental data 
from recorded brain activity. For this reason, we check if the obtained stability intervals of σ values hold also for 
perturbed versions of Ak that produce approximate synchronization. For small perturbation of the matrix Ak , 
this was studied in42. We repeat the compatibility check as described in the simulation procedure in Methods 
on the optimized structural connectivity matrices Ak perturbed by additive Gaussian white noise with mean 0 
and standard deviation σA . This analysis tests for up to which level of noise on the connection weights the opti-
mized structural connectivity matrix remains compatible with the target clusters, derived from the functional 
connectivity matrix, in the considered σ intervals.

Similar analyses can be carried out by adding a white Gaussian noise term ηi(t) with standard deviation ση 
to every node’s input or by introducing heterogeneous node parameters.

Proof of concept of the method
In this section, the method steps are illustrated through a case study. All functional and structural connectomes 
used in this study are part of the Neurodata MRI Cloud database51. They are produced with NeuroData’s MRI 
Graphs pipeline52 from the HNU1 dataset53, which includes Mf = 10 fMRI and Md = 10 dMRI scans of 30 
healthy adults at resting state collected over the span of one month. The illustrative example presented in this 
paper refers to subject 0025452, which showed the highest similarity index �1 averaged across levels.

First, we present the results for different clustering granularities for the case with no connection delays 
(i.e. τij = 0 ∀ i, j ). Next, we analyze the case with delays τij quantized over L = 3 values for an intermediate 
granularity level ℓ∗k.

Network model
We consider a weighted and undirected network graph (described by the symmetric structural connectivity 
matrix A0 ) with N = 48 nodes (Fig. 4), each representing a cortical area according to the Harvard-Oxford Cor-
tical Atlas (HOA); a list of the cortical areas is provided in “Supplemental Material”, Note 1). Edges represent 
long-range connections between the cortical areas.

Identification of clusters of nodes with coherent activity
For each correlation matrix X, we define the corresponding dissimilarity matrix as D = 1N − X (where 1N 
is an N × N  matrix with all entries equal to 1). D is converted to vector form with Matlab’s squareform func-
tion and fed to Matlab’s linkage function with the ‘complete’ option (which implements the farthest neighbor 
method) in order to perform the hierarchical clustering. In this case, we identify L∗ = {ℓ∗13, ℓ

∗
18, ℓ

∗
21, ℓ

∗
31, ℓ

∗
39} (i.e., 

k ∈ {13, 18, 21, 31, 39} ) as the set of local maxima of �1(ℓ) , and maximum �2 for session s∗ = 10 (see Fig. 3). The 
level ℓ∗13 ( ℓ∗39 ) corresponds to the coarsest (finest) scale of description of the brain areas’ correlations.

xxxi =

[
Ei
Ii

]

,

FFF(xxxi) =

[
1
τE
(−Ei)

1
τI
(−Ii +

1

1+e−c(wEI Ei−θ) )

]

,

ŴŴŴ(xxxi , σ
∑

j

aijGGG(xxxj)) =

[
1
τE

1

1+e−c(wEEEi−wIEIi+P+E
syn
i −θ)

0

]

,

GGG(xxxj) =

[
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0

]

.
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}
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}
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Panel a of Fig. 5 shows the dendrogram associated with X∗ , where the levels ℓ∗k are marked by colored hori-
zontal lines. The sets of clusters corresponding to levels ℓ∗13 , ℓ

∗
18 , and ℓ∗31 are highlighted over the correlation 

matrix X∗ in panel b. Nodes on the dendrogram are labeled according to the HOA and their division in clusters 
corresponding to ℓ∗13 is evidenced by red boxes at the bottom of panel a. Nodes belonging to the default mode 
network (DMN), the first and most studied resting-state subnetwork55–57, are highlighted in yellow. We remark 
that we do not exploit neuroscientifically relevant a priori knowledge to identify the clusters, but only the func-
tional connectivity matrices obtained from fMRI data. Nonetheless, we can observe that 5 out of the 8 cortical 
areas constituting the DMN, as listed in58,59, belong to the same cluster (the frontal pole, the angular gyrus, and 
the posterior divisions of the supramarginal gyrus, the middle temporal gyrus and the superior temporal gyrus), 
2 constitute the adjacent cluster (the posterior division of the cingulate gyrus and the precuneous cortex), and 
only 1 (the frontal medial cortex) is isolated. This shows that we observe coherent behavior among the majority 
of the cortical areas belonging to the DMN.

Is the structural connectivity matrix A0 compatible with the clustering observed in the functional connectivity 
matrix X∗ ? To verify this, we model the network nodes as Wilson-Cowan neural masses44 and the BOLD signal 
associated with each node by using the Balloon-Windkessel hemodynamic model of Friston and Harrison60. 
Details on the models and model parameters (set so that the nodes exhibit oscillatory behavior, in accordance 
with the local field potential gamma oscillations observed in cortical activity) can be found in Methods.

The initial conditions for all network simulations (performed with the ode45 Matlab ODE solver) are set 
according to the following criteria: we want to give the same nIC initial conditions to the nodes belonging to the 
same target cluster, to enable the emergence of said cluster; at the same time, we want to perturb slightly these 
initial conditions to ensure that the state variables do not get stuck on an unstable orbit. For this reason, the initial 
conditions for the state variables of the nodes belonging to the same target cluster are defined as a common mean 
value, set randomly at each trial, plus Gaussian noise with a small standard deviation of 10−5 . Initial conditions 
for the state variables of the BOLD model are simply set randomly at each trial, regardless of the target cluster 
configuration. The correlation matrices are calculated using Matlab’s corrcoef function, which returns an N × N 
matrix with correlation coefficients of pairs of variables as off-diagonal entries.

In our case study, the average comparison measure B̄ is found to be low (always below 0.3) for all levels ℓ∗k 
and for all values of σ , as shown in Fig. 6.

This highlights that using the information contained in the structural connectivity matrix A0 ‘as is’ to model 
connection weights generates results that are incompatible with the observed functional connectivity. This finding 
is in agreement with other studies that have questioned the reliability of using connectivity matrices describing 
fiber density as a quantitative indication of connection weights61–63. Next, we show how the proposed method 
refines the structural connectivity matrix A0 to make it compatible with the observed functional connectivity.

Refining the structural connectivity matrix according to synchronized clusters
We apply the proposed optimization procedure, thus obtaining the new structural connectivity matrices Ak . 
For the sake of comparison, we define the matrix �k as the element-wise square difference between Ak and A0 , 
i.e., �kij = (akij − a0ij )

2 . For matrices �A0
 and �k we introduce, respectively, the permutations p�A0 and p�k of 

the linear index iℓ = i · N + j , which make the entries of the matrices ordered from the smallest to the largest. 
Fig. 7 (top panels) shows that the entries of the matrix �k plotted against the permutated linear index p�k (iℓ) are 

Figure 4.   Connectogram (left) described by the structural connectivity matrix A0 (right). For clarity, only 30 
% of the edges (corresponding to the highest weights) are displayed. Edges are shown in yellow if the associated 
weight a0ij ∈ [0, 0.33] , in orange if a0ij ∈ [0.33, 0.66] , in red if a0ij ∈ [0.66, 1] . Nodes are labeled according to the 
HOA. Connectogram graphed with SPIDER-NET software54.
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Figure 5.   (a) Dendrogram associated with X∗ . The levels ℓ∗k are marked by colored horizontal lines. Grey areas 
correspond to trivial partitions with too few or too many clusters. Nodes are labeled according to the HOA 
and their division in clusters corresponding to ℓ∗13 is evidenced by red boxes. Nodes belonging to the DMN are 
highlighted in yellow. (b) Correlation matrix X∗ where the sets of clusters corresponding to levels ℓ∗13 (red), ℓ∗18 
(orange), and ℓ∗31 (teal) are highlighted.
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Figure 6.   Comparison measure B̄ between the cluster partition obtained from network simulations with 
synaptic weights a0ij (entries of A0 ) and the target cluster partition associated with X∗ , averaged over 30 random 
trials for different values of σ . Different colors refer to different levels ℓ∗k.
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comparable in magnitude to the entries of the matrix �A0
 plotted against the permuted linear index p�A0 (iℓ) . We 

also note that the entries of the matrix �k are smaller as the number of clusters increases because the optimization 
process changes less the original matrix A0 . This indicates that the optimized matrices Ak do not differ from the 
original connectomes more than the uncertainty introduced by the measurement process. Bottom panels show 
that the square difference between the entries of the matrices A0 and Ak distributes similarly to the entries of 
the matrix �A0

 , i.e., the higher the uncertainty of a specific weight, the larger the change introduced by the opti-
mization algorithm. In this case, linear indices of both matrices are ordered according to the permutation p�A0.

Stability analysis through MSF and heterogeneity
Figure 8 shows the results of the robustness analysis for all levels ℓ∗k , along with the intervals of σ values for which 
the synchronous clusters for each level are stable according to the MSF approach (red lines). As expected, the 
average comparison measure B̄ between the target partition (derived from experimental data) and the parti-
tion obtained by simulating the network with the optimized and perturbed structural connectivity matrices Ak 
becomes lower as σA grows. It can be observed that B̄ is above the maximum value obtained by simulating the 
network with the original structural connectivity matrix A0 in the large region enclosed within the yellow dashed 
curve. In this region, the optimized network (with connectivity matrix Ak ) behaves in better accordance with 
the observed functional connectivity than the original network (with connectivity matrix A0 ). Dark regions that 
fall outside the curve for low values of σA are always beyond the stability interval identified through the MSF 
approach. This indicates that our results are robust to perturbations on the connection weights, also comparing 
the numerical values of σA with the fact that the entries of Ak have a mean of 0.029 and a standard deviation of 
0.065, with minimum 0 and maximum 0.952. The raster plots and BOLD signals corresponding to specific values 
of σA and B̄ (yellow dots in Fig. 8) are shown in Fig. 9: the progressive desynchronization of clusters is apparent 
in both the raster plots and the BOLD signals as σA increases and B̄ decreases.

A similar analysis was carried out by adding a white Gaussian noise term ηi(t) with standard deviation ση 
to every node’s excitatory subpopulation input (see Eq. (7) in Methods). In this case, network simulations are 
performed with a fixed-step explicit Euler method, with integration step dt = 10−4 . Panel a of Fig. 10 illustrates 
the results obtained for ℓ∗21 and strength σ = 10−3 : similarly, B̄ holds values close to 1 until ση ≤ 10−6 . Note 
that B̄ is higher than the value obtained by simulating the network with A0 for the same level and the same σ 
value, for standard deviation ση up to about 10−2 , which approaches the amplitude of the node input without 
noise; this means that the optimized structural connectivity matrix Ak appears to be in better accordance with 
the observed functional connectivity than A0 , even for a relatively high noise level. This provides evidence of 
the robustness of the obtained results.

The robustness of the model was also tested by introducing heterogeneous node parameters. In particular, the 
model parameters that represent connection weights between inhibitory and excitatory subpopulations within 
each node (see Eq. (7) in Methods) were sampled from Gaussian distributions with standard deviation σw . Results 
are shown in panel b of Fig. 10: also in this scenario, the optimized structural connectivity matrix Ak is in better 
accordance with the observed functional connectivity than A0 , up to about σw = 5 · 10−4.
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Figure 7.   Entries of the matrices �A0
 (red dots) and �k (black dots), for all levels ℓ∗k . Top panels: entries of both 

�A0
 and �k are displayed from the smallest to the largest and are plotted on a semi-logarithmic scale, with their 

linear indices iℓ ordered according to permutations p�A0 and p�k , respectively. Bottom panels: entries of �A0
 

are displayed on a linear scale from the smallest to the largest, with their linear indices iℓ ordered according to 
permutation p�A0 ; entries of �k are displayed following the same permutation.
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Introducing delays
The delays τij are calculated by multiplying an N × N distance matrix by a propagation velocity of 1.5 m/s64; the 
distance matrix collects the pair-wise 3D euclidean distances between nodes, specifically between the centers of 
brain areas according to the HOA. Here, we quantize delays τij over L = 3 values and carry out the optimization 
on A0 and the subsequent analysis for ℓ∗21 . Our particular choice of L = 3 aims to keep the complexity limited, 
while still obtaining good results, as shown in the following. The optimization process is summarized in Fig. 11: 
the structural connectivity matrix A0 is split into L = 3 matrices Al

0 , each corresponding to a coupling with delay 
τ l . Each matrix Al

0 is optimized individually, thus obtaining matrices Al
k , which are then summed to obtain the 

final optimized structural connectivity matrix Ak =
∑

l A
l
k.

Panel a of Fig. 12 shows that the entries of the matrix �k are still comparable with the entries of the matrix 
�A0

 , also considering L = 3 kinds of connections. Moreover, panel b shows that the square difference between 
the entries of the matrices A0 and Ak distribute similarly to the entries of the matrix �A0

.
The stability analysis through the MSF verified that the cluster synchronous solution for level ℓ∗21 is stable for 

σ ∈ [10−4, 0.1341] , where 10−4 is the lowest value of σ that we considered. The raster plot for σ = 10−3 and L = 3 , 
with delays quantized as in panel a of Fig. 13, is shown in panel c, evidencing the synchronization between the 
nodes in each cluster. Heterogeneity in delay values was reintroduced a posteriori to test the robustness of the 
result obtained for L = 3 . In particular, the delays were quantized over 50 values (panel b), which almost perfectly 
overlap with the original values of τij ; we did not use the τij values as is, because of the excessive computational 
burden. The corresponding raster plot is shown in panel d: as can be observed, heterogeneity in the delay values 
does not compromise the synchronization of the nodes within each cluster but influences the phase difference 
between clusters65. This analysis evidences that, from a theoretical standpoint, the proposed method can be 
generalized to account for heterogeneous delays in the network; however, the computational cost of simulating 
the network dynamics for fully heterogeneous delays becomes prohibitive, since the computational cost of the 
MSF approach increases linearly with L.

Discussion
Neuroscientists monitor brain activity in several ways, using a variety of recording techniques in subjects under 
a plethora of health, neurophysiological and mental conditions. It becomes then important to integrate insights 
across diverse datasets to understand brain functions66. In this paper, we have proposed a method that recon-
ciles dMRI and fMRI data of a given subject by using an approach based on nonlinear dynamics and cluster 
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Figure 8.   Comparison (through the average comparison measure B̄ ) between the target cluster partition 
(derived from experimental data) and the partition obtained from network simulations with optimized matrices 
Ak perturbed by Gaussian noise, for each level ℓ∗k ; σA on the abscissa denotes the noise standard deviation. 
Red bars on the vertical axis highlight the σ (synaptic strength) for which the synchronous clusters are stable 
according to the MSF approach. Dashed yellow lines are the level curves delimiting the regions where B̄ is higher 
than the maximum value obtained by simulating the network with the original structural connectivity matrix A0 
for the same level. Yellow dots mark the values of σ and σA used in Fig. 9.



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22430  | https://doi.org/10.1038/s41598-023-49746-2

www.nature.com/scientificreports/

synchronization. As a proof of concept, we have applied the proposed method to dMRI and fMRI recordings 
of a healthy adult subject at resting state. We first found that the original structural connectivity matrix was not 
compatible with the observed synchronous clusters of brain areas. By modifying the connectivity weights by an 
amount that is comparable with the uncertainty introduced by the measuring process, we obtained a network 
model that is able to reproduce the observed synchronous clusters, also in the presence of heterogeneity in the 
network. The proposed method may pave the way toward a better interplay of complex network principles and 
neurophysiological data.

It has been shown that synchronous electrophysiological activity of groups of neural populations underlies 
essential motor or cognitive processes in normal brain function67. Moreover, abnormal synchronization of brain 
areas can be associated with a wide range of neurological and psychiatric disorders: in Parkinson’s disease, abnor-
mal synchronization of neural circuits in the cortex and basal ganglia can be observed68, schizophrenia involves a 
disruption of neural synchrony69, and epileptic seizures are characterized by excessive and synchronized electrical 
activity in the brain70. Because of this, developing models that reproduce specific brain dynamics in terms of syn-
chronized groups of brain areas, obtained by integrating structural and functional connectivity through cluster 
synchronization principles, is particularly relevant and could lead to a deeper understanding of brain functions.

While in the present paper we focused on a single hierarchical clustering for a given subject, we are aware that 
the study of dynamic functional connectivity reveals that brain activity switches between a set of states, where 
a finite number of clusterings are identifiable24,71. Future work will focus on generalizing the proposed method 
by modifying the structural connectivity optimization process so that the optimized matrix admits multiple 
observed clusterings. The stability analysis could then be carried out for each synchronous cluster solution, and 
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Figure 9.   Raster plots (left) and normalized BOLD signals (right) for level ℓ∗13 , for different values of noise 
standard deviation σA and for fixed σ = 10−3 (see yellow dots in Fig. 8). Points in the raster plots denote the 
peaks of excitatory subpopulation activity of each node, with nodes belonging to the same cluster represented as 
adjacent to each other. The normalized BOLD signals correspond to nodes in three sample clusters, chosen to 
showcase clusters of different sizes (pink: 8 nodes, teal: 5 nodes, orange: 2 nodes). Values of σA increase from top 
to bottom and correspond to decreasing values of B̄.
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Figure 10.   a) Comparison (through the average comparison measure B̄ ) between the target cluster partition 
and the partition obtained from network simulations with connectivity matrix A21 and a white Gaussian noise 
term ηi(t) added to every node’s excitatory subpopulation input; the result is obtained for σ = 10−3 . ση is the 
noise signal standard deviation (see Eq. (7) in Methods). The gray dashed line marks the value of B̄ obtained 
by simulating the network with the original structural connectivity matrix A0 and without noise for the same 
level and same σ value (see Fig. 6). b) Comparison (through the average comparison measure B̄ ) between the 
target cluster partition and the partition obtained from network simulations with connectivity matrix A21 
and heterogeneous nodes. Heterogeneity is introduced by sampling the parameters wEE , wIE , wEI (see Eq. (7) 
in Methods) from Gaussian distributions with means µwEE = 3.5 , µwIE = 2.5 and µwEI = 3.75 and standard 
deviation σw . The result is obtained for σ = 10−3 . The gray dashed line marks the value of B̄ obtained by 
simulating the network with the original structural connectivity matrix A0 and homogeneous nodes for the 
same level and same σ value.

Figure 11.   The structural connectivity matrix A0 is split into 3 matrices A1
0 , A

2
0 and A3

0 , corresponding to link 
kinds with delay τ 1 = 0.0204 s, τ 2 = 0.0518 s and τ 3 = 0.0832 s, respectively. In this example, k = 21.
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Figure 12.   (a) Entries of the matrices �A0
 (red dots) and �k (black dots), for level ℓ∗21 . entries of both �A0

 and 
�k are displayed from the smallest to the largest and are plotted on a semi-logarithmic scale, with their linear 
indices iℓ ordered according to permutations p�A0 and p�k , respectively. (b) Entries of the matrices �A0

 (red 
dots) and �k (black dots), for level ℓ∗21 . entries of �A0

 are displayed on a linear scale from the smallest to the 
largest, with their linear indices iℓ ordered according to permutation p�A0 ; entries of �k are displayed following 
the same permutation.
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Figure 13.   (a) Delays τij sorted in ascending order (gray dots) and delays τ l quantized over 3 values (green 
lines). (b) Delays τij sorted in ascending order (gray dots) and delays τ l quantized over 50 values (green lines). 
(c) Raster plot for level ℓ∗21 , for fixed σ = 10−3 and delays quantized over 3 values. Points in the raster plots 
denote the peaks of the excitatory subpopulation activity of each node, with nodes belonging to the same 
cluster represented as adjacent to each other; clusters are represented by alternating black and gray colors to aid 
visualization. d) Raster plot for level ℓ∗21 , for fixed σ = 10−3 and delays quantized over 50 values.
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simulations with different initial conditions could give information on the basin of attraction of each one, thus 
providing a model able to fully reproduce the observed dynamic functional connectivity.

Differently from other model-based approaches, such as dynamic causal modeling72 or Multivariate Ornstein-
Uhlenbeck processes73, our approach does not aim at inferring effective connectivity, intended as a measure of the 
directional relationships in a dynamic model. In other words, we do not aim to generate a model able to retrace 
the spatiotemporal covariances of measured BOLD signals by inferring directed functional connections between 
nodes. Instead, we focus on reproducing the cluster synchronization observed among brain areas of a subject. 
The connections in our model are undirected and are heavily based on the measured structural connectivity: the 
small variations applied to the weights during the optimization process do not yield particular relevance from a 
neuroscientific point of view, and do not constitute a process of inference of unknown connections. These small 
variations, however, are enough to codify the balanced coloring condition in the structural connectivity matrix. 
This provides a network model that is strongly based on the physical connections and whose emergent dynamics 
exhibit the synchronous clusters observed in the functional connectivity of the subject. Notice that the proposed 
approach could nonetheless be generalized to asymmetric connectivity matrices detailing directed connections30.

Next we discuss in deeper detail some key points of the proposed approach to evidence its flexibility. In the 
presented case study, we used functional and structural connectivity matrices where network nodes are regions 
of interest (ROIs) defined according to the HOA. Our method can however be applied independently of the 
anatomical atlas used, or even exploit functional and structural connectivity matrices where nodes are spatial 
brain components estimated by independent components analysis (ICA)74–76, instead of ROIs. Moreover, func-
tional connectivity matrices and the associated clustering could also be derived from other kinds of functional 
data (e.g. EEG, MEG)77.

Hierarchical clustering is an established method to identify clusters of nodes in brain networks7,36–39, due to 
the hierarchical modularity exhibited by the human brain78. However, the identification of the most appropriate 
number of clusters from a dendrogram is not straightforward. We carried out a multi-level approach and selected 
the levels of interest ℓ∗k based on considerations derived from the experimental data. We remark that the proposed 
method remains valid regardless of the nature of the identified clusters, which could also be defined on the basis 
of neuroscientifically relevant a priori knowledge such as known resting state networks, like the DMN. In the 
absence of multiple scans for each subject or with no a priori knowledge, it is also possible to use other metrics 
to determine the optimal number of clusters, such as the silhouette score79 or the gap statistic80. In principle, one 
could also consider all levels, but this would greatly increase the computational cost of the method. Moreover, 
if multiple scans are not available, we cannot obtain information on the variance of the structural connectivity 
matrices among sessions. In this case, this information is simply not included in the optimization process: vector 
α in Eq. (2) is simply defined as the stacked columns of matrix A0 . In general, the cost function can be further 
customized, e.g., to impose that some elements of the connection matrix are not changed or to weigh differently 
the uncertainty about the entries of A0.

In the proposed example, nodal dynamics are described by the Wilson-Cowan NMM44, with couplings as 
in5,81 and parameters as in81. In accordance with these and other studies82,83, we only modeled long-range excita-
tory projections targeting excitatory sub-populations, since we do not have information regarding whether and 
which connections directly target inhibitory subpopulations. The direct contribution of the synaptic current 
to the inhibitory subpopulation could be taken into account by adding the term Esyni  to the exponent of the 
second equation in Eq. system (7). Such modification of the Wilson-Cowan neural mass model would not alter 
the method proposed in the paper. Alternative models could also be employed, such as next-generation neural 
mass models, which exactly reproduce the macroscopic dynamics of heterogeneous spiking neural networks84–88. 
This would allow the use of heterogeneous parameters identified with high precision. The MSF step can be taken 
provided that the considered neural mass model falls under the proposed formalism or the formalism is appro-
priately generalized. The node homogeneity hypothesis needed to carry out the optimization of the structural 
connectivity matrix and the stability analysis would require the use of average parameters, under the assumption 
that parameters of distinct brain areas are not too different89. The proposed results have been obtained with data 
measured on healthy subjects in resting state. For non-healthy subjects, specific neural mass models should be 
used (e.g., the epileptor90 for epilepsy, or the model proposed in91 for Parkinson’s disease), but the proposed 
approach remains valid, mutatis mutandis. For healthy subjects exposed to a specific stimulus, an external input 
representing said stimulus could be added to the model. This would allow separating stimulus responses from 
ongoing activity92.

Methods
Definition of partition and coloring
Given a graph with N nodes, a partition P = {C1, C2, ..., Ck} of the graph is defined as a subdivision of its node set 
into k clusters, with cluster Cp composed of np nodes, 

∑k
p=1 np = N such that (i) there are no empty clusters, (ii) 

the clusters comprise all nodes and (iii) the clusters are pairwise disjoint. Each cluster can be identified through 
the labels of its constituting nodes and a given color. A network graph can admit many different colorings, each 
one describing a different partition.

Hierarchical clustering and similarity indices �
1
 and �

2

Depending on the level ℓ ∈ {1, . . . ,N} at which the dendrogram is cut horizontally, the corresponding cluster-
ing is described by the sub-trees originating from each branch cut by the horizontal line: for example, in Fig. 2 
the red line cuts the dendrogram at the level corresponding to 13 clusters. For each level ℓ of the dendrograms 
obtained from the hierarchical clustering of the correlation matrices, we calculate a cumulative (across sessions) 
similarity index �1:



15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22430  | https://doi.org/10.1038/s41598-023-49746-2

www.nature.com/scientificreports/

where Bi(ℓ) is the comparison measure between a single pair of functional connectivity matrices (correspond-
ing to different fMRI sessions on the same subject) and Ns is the total number of possible pairwise comparisons 
between the sessions; Bi(ℓ) = 1 when two partitions are identical and Bi(ℓ) = 0 when no pair of objects that 
appears in the same cluster in one partition is assigned to the same cluster in the other partition. We thus obtain 
N samples �1(ℓ) . The clusters corresponding to each level ℓ∗k are established by computing a second cumulative 
(across the selected levels) similarity index �2 for each session:

where Bi(s) is the comparison measure between the partition in the current session s and the partition in session i.

Simulation procedure

1.	 We simulate the network dynamics and the corresponding BOLD signals for an array of values of σ (see Eq. 
(1)), and repeat the procedure nCI times starting from different initial conditions chosen randomly.

2.	 For each simulation, we calculate the correlation matrix of the BOLD signals, discarding transient data. The 
resulting correlation matrix can be compared with the functional connectivity matrix X∗.

3.	 We apply the same hierarchical clustering that was applied on X∗ on each of the calculated correlation 
matrices, thus obtaining Mℓ clusterings with k clusters, each corresponding to the level ℓ∗k . We compare 
each obtained partition with the target partition associated with X∗ , and compute the Fowlkes and Mallows 
matching index averaged over the nCI trials, which we denote as B̄.

Wilson–Cowan neural mass model
The dynamics of the i-th node is described by the equations:

with

where the state variables Ei(t) and Ii(t) are the fraction of excitatory and inhibitory neurons firing per unit time 
at instant t, respectively; the weights wuv , with u, v = {E, I} , describe the intra-population strength of connection 
from neuron type u to v; c and θ are, respectively, the gain and the threshold of the sigmoid; P is a spontaneous 
excitatory background input; ηi(t) is a white Gaussian noise signal, kept null unless otherwise stated; τE , τI control 
the timescales of the first-order kinetics; Esyni  is the synaptic input to node i, which is determined by the structural 
connectivity matrix entries aij and the fraction of active excitatory cells in each j-th pre-synaptic population. Eq. 
(8) follows from the fact that long-range connections between cortical areas are only excitatory93. Delays τij are 
assigned to each connection between nodes i and j, i.e., to each entry of the structural connectivity matrix A0 . 
We set the parameters as in81: wEE = 3.5 , wIE = 2.5 , wEI = 3.75 , c = 4 , θ = 1 , P = 0.34 . P is chosen so that the 
isolated node converges to an equilibrium point corresponding to a low activity state, but coupled nodes converge 
to limit cycles even for small coupling weights. A bifurcation diagram of the isolated node with respect to P is 
provided in the “Supplemental Material”, Note 3. Time constants are set to τE =0.002 s and τI =0.004 s, so that 
their ratio is as in81, but the nodes exhibit oscillations in the γ range (around 40 Hz) as in5.

For a fixed value of P, the convergence of the steady-state trajectory to a limit cycle or to an equilibrium point 
depends on the value of the synaptic input Esyni  , which in turn is influenced by the overall strength of the con-
nections σ in Eq. 8. In this paper, we consider the interval σ ∈ [0.0001, 0.2] , which yields oscillatory behavior of 
the nodes. For σ > 0.2 a growing portion of nodes ‘saturates’, converging to an equilibrium point, thus yielding 
constant Ei(t) and Ii(t) that are incompatible with the oscillating nature of the local field potential.

BOLD model
We calculate the BOLD signal for each node i by using the Balloon-Windkessel hemodynamic model of Friston 
and Harrison60, which relates neural activity to perfusion changes. The model is described by the equations:

(5)�1(ℓ) =
1

Ns

Ns∑

i=1

Bi(ℓ)

(6)�2(s) =
1

Mℓ

∑

L∗

1

Mf

Mf
∑

i = 1

Bi(s)

(7)

{
τEĖi = −Ei +

1

1+e−c(wEEEi−wIEIi+P+ηi (t)+E
syn
i −θ)

,

τI İi = −Ii +
1

1+e−c(wEI Ei−θ) ,

(8)E
syn
i (t) = σ

∑

j

aijEj(t − τij),
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where si is the vasodilatory signal, which increases according to the neuronal activity zi of the i-th region (in our 
case zi(t) = Ei(t)+ Ii(t) ), and is subject to autoregulatory feedback; fi is the inflow, νi is the blood volume and 
qi is the deoxyhemoglobin content. Parameter α = 0.32 is the Grubb’s exponent94, ρ = 0.34 is the resting oxygen 
extraction fraction and the other biophysical parameters are set to κ = 0.65 per s, γ = 0.41 per s and τ = 0.98 
s, as per the mean values reported in60.

The BOLD signal is taken to be a static nonlinear function of νi and qi:

where V0 = 0.02 is the resting blood volume fraction60.

Master stability function
The cluster synchronization state obeys the following equation:

where the k−dimensional matrix Rl = {rlpq} is the quotient matrix, such that rlpq =
∑

j∈Cq
alij 

( i ∈ Cp, p, q = 1, 2, . . . , k ). We preliminarily define

and

where DFFF is the m×m Jacobian of the nodes’ vector field and the m-dimensional matrix DŴŴŴ1 ( DŴŴŴ2 ) is the 
derivative of ŴŴŴ with respect to its first (second) argument. The linearized equations governing the dynamics of 
the perturbations about the synchronous solution sssp(t) can be written as:

Now we can rewrite Eqs. (14) in vector form by stacking all the state perturbation vectors together in one vec-
tor WWW(t) . Moreover, we introduce the N × N diagonal matrix Ep , which is the cluster indicator matrix: Ep has 
entries Ep,ii = 1 , if node i ∈ Cp , 0 otherwise, i.e., this matrix identifies all the nodes i’s that belong to cluster Cp . 
Therefore, we have:

We compute the canonical transformation matrix T as the orthogonal matrix that simultaneously block-diago-
n a l i z e s  t h e  m at r i c e s  A1 ,  A2 ,. . . ,  AL  ,  E1 ,  E2 ,. . . ,  EC  i n t o  D  d i a g o n a l  b l o c k s , 

T =

(
T�

T⊥

)

= SBD(A1,A2, . . . ,AL,E1,E2, . . . ,EC) . Application of the matrix T yields TAlT−1 = Âl , where 

Âl = Âl
� ⊕ Âl

⊥ = ⊕D
j=1Â

l
j . The symbol ⊕ denotes the direct sum of matrices and the blocks Âl

j j = 1, 2, . . . ,D 
have the same dimension. We remark that Âl

� = Âl
1 and Âl
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j=2Â

l
j . Moreover, we have that TEpT−1 = Ep.

By using matrix T, for the transverse perturbations we obtain,
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(11)ṡssp(t) = FFF(sssp(t))+ŴŴŴ

(

sssp(t), σ
∑

l

∑

q

rlpqGGG(sssq(t − τ l))

)

,

(12)DF̃FF(sssp(t)) = DFFF(sssp(t))+ DŴŴŴ1

(

sssp(t), σ
∑

l

∑

q

rlpqGGG(sssq(t − τ l))

)

(13)DŴ̃ŴŴp = DŴŴŴ2

(

sssp(t), σ
∑

l

∑

q

rlpqGGG(sssq(t − τ l))

)

,
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where the block-diagonal matrix marked with ⊥ is a minor of the complete matrix Âl = TAlT−1 , containing 
only the blocks related to the transverse perturbations.

Data availibility
The datasets analyzed during the current study are available in the “M2G: Reliable Human Connectomes At 
Scale” repository, https://​neuro​data.​io/​mri/.
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