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Inhibition of the Nogo‑pathway 
in experimental spinal cord injury: 
a meta‑analysis of 76 experimental 
treatments
Julian Hirt 1, Alireza Khanteymoori 2, Marc Hohenhaus 2, Marcel A. Kopp 1, David W. Howells 3, 
Jan M. Schwab 1,4,5 & Ralf Watzlawick 1,2*

Recovery after spinal cord injury (SCI) may be propagated by plasticity-enhancing treatments. 
The myelin-associated nerve outgrowth inhibitor Nogo-A (Reticulon 4, RTN4) pathway has been 
shown to restrict neuroaxonal plasticity in experimental SCI models. Early randomized controlled 
trials are underway to investigate the effect of Nogo-A/Nogo-Receptor (NgR1) pathway blockers. 
This systematic review and meta-analysis of therapeutic approaches blocking the Nogo-A pathway 
interrogated the efficacy of functional locomotor recovery after experimental SCI according to a pre-
registered study protocol. A total of 51 manuscripts reporting 76 experiments in 1572 animals were 
identified for meta-analysis. Overall, a neurobehavioral improvement by 18.9% (95% CI 14.5–23.2) 
was observed. Subgroup analysis (40 experiments, N = 890) revealed SCI-modelling factors associated 
with outcome variability. Lack of reported randomization and smaller group sizes were associated 
with larger effect sizes. Delayed treatment start was associated with lower effect sizes. Trim and 
Fill assessment as well as Egger regression suggested the presence of publication bias. Factoring in 
theoretically missing studies resulted in a reduced effect size [8.8% (95% CI 2.6–14.9)]. The available 
data indicates that inhibition of the Nogo-A/NgR1pathway alters functional recovery after SCI in 
animal studies although substantial differences appear for the applied injury mechanisms and other 
study details. Mirroring other SCI interventions assessed earlier we identify similar factors associated 
with outcome heterogeneity.

Spinal cord injury (SCI) leads to destruction of neurons, astrocytes and oligodendrocytes disrupting ascend-
ing and descending axonal tracts. In contrast to the peripheral nervous system, central nervous system (CNS) 
axons regenerate far less after injury. Axonal outgrowth in the adult CNS is hindered by both intrinsic and 
extrinsic factors. Extrinsic nerve fiber growth impediments include myelin debris, reactive astrocytes and scar-
ring fibroblasts1–6. In the 1980s the first molecules underlying myelin inhibition blocking neurite outgrowth 
were identified2,7,8 (Fig. 1). The first myelin associated nerve growth inhibitor (NGI) has been characterized 
and referred to as Nogo-A9, as a member of the reticulon family10,11. Other NGI were discovered subsequently, 
namely the myelin associated glycoprotein (MAG)12 and oligodendrocyte-myelin glycoprotein (OMgp)13,14. 
These three NGI were shown to directly bind to two receptors on CNS axons: the Nogo-66 receptor NgR1 and 
the paired immunoglobulin-like receptor B (PirB)8,15. At the moment much less is known about PirB but NgR1 
has been extensively studied8. NgR1 can form a receptor complex with several possible coreceptors such as 
LINGO-116, p7517 and TROY18. Of note NgR1 is a receptor for the plasticity restricting chondroitin sulphate 
proteoglycans (CSPGs)19 which are localized in the reactive astrocytes. MAG also binds to the NgR2 receptor20. 
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Other outgrowth blocking molecules localized in the myelin, among others, include EphrinB3 and the Repulsive 
Guidance Molecule a (RGMa)21,22, which bind to EphA4 or neogenin respectively23–25. Intraaxonal integration 
of inhibitory molecular cues result in abrogation of neuroaxonal sprouting responses5,26. Additional reports 
indicate that blocking the Nogo-A pathways can also exert vasculoprotective and vasculogenic functions27,28.

Experimental SCI models reported propagated axonal outgrowth and motor recovery through inhibition 
of the Nogo-A/receptor pathway1,32. Results from large animal models applying Nogo-A antibody treatment of 
SCI verified plasticity-enhancing effects33 and led to the development of the human antibody ATI355. A phase I 
clinical trial of ATI355 demonstrated safety after intrathecal application in human SCI patients34 and a phase II 
clinical trial is currently underway. A complementary interventional approach applies a human fusion protein 
targeting the Nogo receptor (NgR) to mitigate myelin-associated axonal outgrowth signalling operated through 
the ligands Nogo-A, MAG, and OMgp35. The NgR1 receptor blocker Axer 204 has been tested in early first-in-
man studies recently36.

Recent reports indicate that the predictive value in experimental SCI studies can be undermined by underes-
timated variability and overstated effectiveness37. As the field of SCI progresses towards interventional testing we 
conducted a systematic and meta-analytic (including Funnel plotting, Egger regression & trim and fill method) 
assessment of effect sizes associated with various strategies interfering with the Nogo-A pathway to inform the 
translational process.

Results
Study selection
The initial search identified 3458 studies, of which 560 were immediately excluded due to them being replicates 
in the multiple data bases searched (Fig. 2). A further 2829 studies were excluded because of lack of relevance 
based on title and abstract after screening by two reviewers, leaving 69 for closer inspection. Of these 69 publica-
tions, 41 met the inclusion criteria and were included into this meta-analysis. Seven studies were excluded as they 
reported no behavioural testing, six because they had statistical inconsistencies, four were not full publications 
with missing study details, four only reported combined treatment, two did not inhibit the Nogo-A pathway, 
two were reviews, two did not injure the spinal cord and one was a duplicate publication (same data published 
in two different publications, one was included). The search update in 2022 added 1985 studies of which 10 

Figure 1.   Nogo-A signaling restricting axonal outgrowth. After SCI nerve growth inhibitory molecules from 
oligodendrocytes interact with various receptors on injured neurons within the Nogo-pathway29. Nogo-A, 
oligodendrocyte-myelin glycoprotein (OMgp) and myelin-associated glycoprotein (MAG) exert signaling 
mainly through the Nogo Receptor 1 (NgR1) which can form a receptor complex with leucine rich repeat and 
Immunoglobin-like domain-containing protein 1(LINGO1), and p75NTR or TROY. Additional signaling from 
repulsive guidance molecule–A (RGMa), ephrin B3 and the N-terminal domain of Nogo-A (Amino-NOGO) 
interact with other neuronal receptors (NgR2, neogenin, EphA4, S1PR230). Downstream signaling results in 
RhoA/ROCK-activation (Ras homolog family member A / Rho-kinase) and the block of nerve fiber growth31. 
Possible therapeutic interventions targeting the Nogo-signaling are shown in red. (Modified form1,5).
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additional studies were included. For the final analysis 51 studies with 76 experiments and 1572 animals were 
included (Supplemental Table 1).

Characteristics of studies
Overall, 76 experiments were conducted in different mammalian species (46 in rats, 26 in mice and 4 studying 
non-human primates). Four different types of injury were observed: 52 experiments performed spinal cord 
hemisection, 15 experiments reported contusion injuries, 8 experiments performed complete transections and 

Figure 2.   Study selection. The performed literature research interrogating several data bases (PubMed, Ovid, 
ISI Web of Science) identified 5443 studies where 51 studies were selected for the final data analysis. The analysis 
focused on studies with reported motor outcomes.
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one experiment used compression injury. The most commonly used intervention was the application of Nogo-
A-Antibodies (28 experiments) followed by NgR-blockers (31 experiments) and Nogo or NgR-knockout animals 
(NgR/Nogo-knockout, 17 experiments). Concerning neurological outcome, the BBB scale38 was used in 51 
experiments. 12 experiments utilized the BMS scale39 and 13 experiments used other neurological scales. All 
studies injured the spinal cord in either cervical or thoracic segments with 7 experiments applying damage to 
the cervical and upper thoracic spinal cord (C3–T2) and 69 experiments applying damage to the thoracic spinal 
cord (T6–T10).

Overall neurobehavioral outcome
Inhibition of the Nogo-pathway led to improvement of neurobehavioral outcome by 18.9% (95% CI 14.5–23.2) 
within the randomised effects model. Stratified meta-regression of the entire data set revealed that “Drug group” 
had a significant impact on study heterogeneity with the effects of Nogo-A and NgR-receptor having the great-
est efficacy (p = 0.02, Fig. 3A). Stratification for neurological recovery suggested that response to treatment in 
mice (assessed by BMS39) is lower [effect size] as compared with rats (assessed by BBB scale38) (p = 0.08, Fig. 3B). 
Primates are clustered in the category “others”. It is noteworthy that while recovery was the highest the variance 
detected in these studies was also highest. To explore reasons contributing to outcome heterogeneity, a sub-
group analysis was performed comprising the largest and most homogeneous data (smallest CI, Fig. 3B) cohort 
of experimental SCI in rats (BBB Score). Since the BBB-score has been applied for neurobehavioral testing in 
some mice experiments (11 experiments), these experiments were also excluded from the subgroup analysis.

Subgroup analysis
To exclude the skewing effects of variable outcome tests and different species, we focused on data applying the 
most prevalent SCI recovery assessment, the BBB score. The BBB has been developed to study for locomotor 
recovery after SCI in rats. Experiments applying outcomes other than the BBB-score or using animals other than 
rats were excluded. This provided a large homogenous subgroup containing data from 40 experiments contain-
ing 890 rats (802 Sprague–Dawley, 46 Lewis, 42 Longs-Evans) (Fig. 4). The random effect model indicated an 
overall effect size of 18.7% (95% CI 14.4–23.0) for the included experiments (Fig. 5). Stratified meta-regression 
indicated substantial differences between ten subgroups (Fig. 4).

A.	 Intervention: Overall when assessing interventions in SCI rat models using BBB outcome assessments, 
strategies applying Nogo-A antibodies demonstrated a 13.3% improvement. Blockade of the NgR resulted 
in an effect size of 26.2%. Genetic knock-out approaches either deleting NgR or Nogo-A regions revealed 
an effect size of 26.7% (p < 0.01, Fig. 4A).

B.	 SCI Type: Static compression models resulted in the smallest effect sizes compared to transection and con-
tusion models. Hemisection cord injury permitted the greatest intervention efficacy, especially for lateral 
hemisections (p < 0.01, Fig. 4B). However, the stratification for complete and incomplete SCI showed an 
improved effect size of 5.3% in favour of incomplete studies but this stratification did not account for statisti-
cal significance (data not shown).

C.	 Lesion level: More than half of the experiments induced thoracic SCI lesions at the level T8–T10. These 
showed comparable and significantly beneficial effect sizes. Cervical and high thoracic injuries displayed 
the highest variability (p < 0.01, Fig. 4C).

Figure 3.   Stratified meta-analysis for the overall dataset (all outcome parameters). The reported overall effect 
size was 18.9% (95% CI 14.5–23.2) indicated by the blue shaded area within the forest plot. Several aspects of the 
study design accounted for ‘between-study’-heterogeneity such as drug target/intervention, chosen SCI modality 
and corresponding neurobehavioral scale. (A) Interventions blocking the Nogo-receptor indicated the highest 
effect sizes within the overall dataset. (B) The most commonly used score for neurobehavioral assessment was 
the BBB-score in 67% of all included experiments. “Others” subsumes primate data revealing the largest effect 
sizes likely attributable to more subtle transection lesions with larger spared plasticity reservoirs. (ES: effect size, 
CI: confidence interval, BBB: Basso, Beattie, and Bresnahan score38, BMS: Basso Mouse Scale39). 
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Figure 4.   Effect of study characteristics on locomotor recovery. Differential effects of SCI modelling on 
neurological recovery were assessed by including only studies restricted to rats applying the BBB-score (40 
experiments containing 890 rats) to increase the level of homogeneity (stratified meta-analysis). The blue shaded 
area within the forest plot represents the 95% CI limits of the global estimate of efficacy: 18.7% (95% CI 14.4–
23.0). The horizontal error bars represent the 95% CIs for the individual estimates. Each stratification accounts 
for a significant proportion of between-study heterogeneity (ES: effect size, CI: confidence interval). 
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Figure 5.   Empirical evidence of missing data (data asymmetry). (A) Funnel plotting of the rat (BBB-only) 
cohort including 40 included experiments (n = 890) reported an overall neurobehavioral efficacy of 18.7% (95% 
CI 14.4–23.0). (B) Trim and fill analysis added 19 experiments (white circles) indicating missing data. Factoring 
in missing data points resulted in a reduced effect size of 8.8% (95% CI 2.6–14.9). (C) Contour-enhanced funnel 
plot adds three shaded areas of statistical significance to the funnel plot. Most of the experiments lie within the 
grey area (highly significant results p < 0.01) or within the light green area (p < 0.05). Visual inspection for plot 
symmetry would impute potential missing studies close to the threshold of significance on the left side of the 
funnel plot or within the grey area of statistical significance40.
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D.	 Sub-specification of SCI injury modality: Method of injury induction: SCI induced by impactors inflicted 
a deficit which achieved the smallest motor recovery. Use of a fine needle to cut the spinal cord allowed the 
largest amount of recovery consistent with a smaller lesion size (p < 0.01, Fig. 4D).

E.	 Treatment start after SCI: More than two thirds of the interventions were applied before or immediately after 
the injury. The largest effect size was observed when the intervention has been started within 14 days after 
injury. Subsequent treatment resulted in a reduction of effect sizes (p < 0.01, Fig. 4E).

F.	 Follow-up (observational) time window: When animal experiments were assessed within one month after 
SCI, the effect sizes were higher when compared to experiments assessed up to nine months after SCI 
(p < 0.01, Fig. 4F).

G.	 The number of animals in the treatment group had a significant inverse effect on reported efficacy. Groups 
with 7 or less animals demonstrated between twice and three times the effect size compared to larger animal 
groups (p < 0.01, Fig. 4G).

H.	 Item randomisation accounted for a significant amount of between-study heterogeneity as the only item of 
the quality score. Randomised studies provided significant benefit (15.5%), but this was 8.9% lower than 
reported by non-randomised studies (p = 0.03, Fig. 4H). Of note, blinded assessment of outcome revealed an 
effect size of 17.9 (95% CI 13.4–22.4) in 34 experiments whereas studies without blinding showed an effect 
size of 23.7 (95% CI 6.7–40.6). However, blinded assessment of outcome did not account for a statistically 
significant amount of heterogeneity (p = 0.41, data not shown).

Evaluation of theoretical missing data
We assessed the obtained data-sets for potentially underlying (publication) bias applying funnel plotting and 
Egger regression analysis for small study effects. Publication bias is a major source of missing data and attributed 
to unpublished studies. Funnel plotting for the 40 included experiments reported an overall neurobehavioral 
efficacy of 18.7% (95% CI 14.4–23.0). Several methods were applied to assess for missing data (Fig. 5A). Fist, 
trim and fill analysis imputed 19 missing experiments resulting in a reduced effect size of 8.8% (95% CI 2.6–14.9) 
(Fig. 5B). Second, Egger regression detected an intercept of 2.34 suggestive of missing data and confirmed statisti-
cal significancy in the egger test (p < 0.005, Supplemental Fig. 1). Third, contour-enhanced funnel plot verified 
the existence of publication bias (Fig. 5C). The majority of experiments were located close to the most common 
limit of statistical significance (p value of 0.05) or within the area of high statistical significance (p < 0.01), whereas 
less than one fourth of experiments were located in the area of statistical non-significance40.

Discussion
Overall study results
This systematic review and meta-analysis of preclinical SCI experiments includes data of 1572 animals report-
ing inhibition of the Nogo-A pathway after traumatic spinal cord injury. Systematic reviews and meta-analyses 
can provide empirical evidence of preclinical interventions41. Among the main options to intervene with Nogo 
pathway, the application of NgR blockers revealed the highest effect sizes followed by Nogo-A antibody inter-
ventions. This may be due to capacity of NgR-based interventions to block several inhibitory proteins in addi-
tion to Nogo-A. The effect of Nogo-A and NgR loss of function (genetic) knockouts have been lower possibly 
indicating compensatory effects such as elevated levels of semaphorins and ephrins and their receptors in the 
CNS of mice lacking Nogo‑A, as described before42. Another underlying reason could be the variable sequences 
being knocked out in the Nogo-A or NgR gene domain which are coding for different proteins with variable 
functional relevance for impeding outgrowth. Another possibility is that compared to genetic deletion of Nogo-
A/NgR protein-based interventions through Nogo-A antibodies or Nogo-Receptor blockers may cause further 
protein–protein interactions interfering with the downstream signalling beyond NgR-1 only.

Subgroup analysis to reduce Heterogeneity
After screening for sources of heterogeneity attributed to differences in SCI modelling, we identified experi-
mental SCI in rats using BBB locomotor assessments as the being the largest (N = 890) and most homogenous 
group (smallest CI). To reduce heterogeneity the subsequent analysis was characterized by the use of the same 
neurobehavioral scores and animal model. Here an overall effect size of 18.7% was calculated.

In the following we summarized variable effects sizes attributable to variable aspects of SCI modelling. Sub-
stantial differences in neurobehavioral outcome were revealed based on the method of SCI induction (Fig. 4). 
Complete injuries such as compression or transection of the spinal cord showed the lowest efficacy for Nogo-A 
pathway inhibition, whereas incomplete lesions such as dorsal and lateral hemisections revealed double the 
effect size than the other.

Sprouting and plasticity of spared axons after incomplete SCI could be improved by certain treatments when 
there are sufficient spared axons, but that these same treatments might on their own not mediate axon regen-
eration across complete lesions and therefore do not have any effect on recovery in cases of severe SCI with no 
or few spared axons. Beneficial inhibition of the Nogo-A pathway might only occur within incomplete injuries 
as demonstrated in previous studies36. Furthermore, differences in hemisection injuries have been revealed in 
the subgroup analysis where lateral hemisections almost reported double the effect size compared to dorsal 
hemisection models. The anatomy of the spinal cord concludes in partially spontaneous recovery of hindlimb 
stepping for unilaterally injured animals making the evaluation of any treatment to laterally hemisected animals 
problematic. Cervical injuries resulted in neurobehavioral outcome with immense variability pointing toward 
a lack of a uniformly accepted standardized cervical injury model (Fig. 4). Thoracic injuries are most prevalent, 



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22898  | https://doi.org/10.1038/s41598-023-49260-5

www.nature.com/scientificreports/

predominantly localized from T8 to T10 and demonstrated similar effect sizes. Impactor-induced contusion 
injuries resulted in smaller effect sizes of motor recovery compared to partial transection injuries (Fig. 4B,C), 
as being reported earlier37,43.

Most of the included studies applied treatments before or immediately after SCI associated with neurobe-
havioral outcome higher than the overall estimate of efficacy (Fig. 4E). However, experiments with intervention 
starting seven days after SCI reported the highest effect size within this stratification. A delayed treatment start 
at more than 14 days post SCI was associated with a significantly reduced effect size. The follow-up time window 
allows to estimate for the ‘durability of effects’ after SCI. Over the first month the effects are highest and subside 
thereafter, possibly pointing towards the accumulating emergence of negative outcome modifier, such as acquired 
infections. In large clinical SCI studies, acquired infections have been identified earlier as independent risk factor 
for neuroworsening44. The observation that effect sizes diminish with extended observational period has been 
detected in other studies, irrespective of the specific intervention37. Hence this effect is likely also independent 
from the specific intervention investigated here.

Small sample sizes and study quality
Small sample sizes in animal experiments are prone to distort the effect sizes if animals are lost during the 
experiments (attrition bias)45. We observed a relative exaggeration of efficacy for animal studies reporting the 
use of less than 8 animals in the treatment group (Fig. 4F). Additionally, the reporting of randomization in the 
published studies reduced the reported effect size by 37%. Missing data is suggested by asymmetrical funnel plots 
and confirmed by Egger-regression analysis (Fig. 5). Factoring in predicted missing experiments by Trim and fill 
analysis resulted in a reduced effect size by 53%. However, the quantitative reduction of efficacy from 18.7% to 
8.8% after the imputation of the trim-and-fill method has to be appraised critically; an effect size of 8.8% would 
only represent 1–2 points on the 21-points BBB score. As discussed in the literature before, adjusted interven-
tion effect estimates from the trim-and-fill method alone should be interpreted with caution since the method 
is limited in the presence of substantial between-study heterogeneity46 (see also 4.4.).

Limitations
The applied statistical methods in our study are detailed, provide reliable results and are most commonly used 
within meta-analysis, but they are also intensively discussed and questioned within the statistical community. 
Four different approaches were used to detect potentially underlying (publication) bias within this study (funnel 
plotting, the trim-and-fill method, contour-enhanced funnel plot and egger-regression) to address this matter. 
However, we emphasize the careful interpretation of deductions from single statistical methods, e.g. the funnel 
plot asymmetry alone. Within funnel plots the distribution of effect sizes is caused by the studies’ variance, but 
does not account for possible different true effects47 based on study characteristics such as different method of 
SCI induction or different animal models. Another limitation is that different outcome testing modalities need 
to be chosen carefully with respect to the specific injury model, severity, and location48. Our analysis cannot 
discriminate whether the chosen surrogate outcome parameter BBB was truly justified to detect the best possible 
effect in all published experiments. Moreover, similar percentage changes measured by different scores may refer 
to different meanings of terms of functional relevance. Regarding the used neurobehavioral scores, the accuracy 
of our analysis relies on the reliability of the used locomotor recovery scales (e.g. BBB score). The standard BBB 
score constitutes a 21 item score and small differences of a point or two might be recorded as statistically sig-
nificant but actually be functionally meaningless in certain parts of the scale. This limitation has been discussed 
in the literature and transformations of the BBB score has been proposed49 based on the underlying raw data 
which is not available in this meta-analyis. On the other side, these scales to measure outcomes are extensively 
used and recognized as the most informative and commonly used neurobehavioral tool to evaluate the results 
of spinal cord injury models. Therefore, it’s unlikely for a preclinical intervention to be regarded for translation 
if it doesn’t lead to enhancements in the BBB score.

Conclusion
This systematic review and meta-analysis suggest an effect of Nogo-A pathway inhibition on improving neuro-
logical recovery after certain models of experimental SCI. Subgroup analysis suggest that this effect diminished 
with time after SCI. In line with other interventions tested in experimental SCI37 we observe similar factors 
associated with outcome heterogeneity.

Material and methods
Systematic database search
To identify studies describing the effect of inhibition of the Nogo-A pathway after SCI we conducted an electroni-
cal search in PubMed, EMBASE and ISI Web of Science, using the following search term.

(”Nogo” OR “Nogo-66” OR “Nogo-A” OR “RTN4a” OR “Anti-Nogo” OR “NgR” OR “Nogo-Receptor” OR 
“NgR1” OR “NgR2” OR “MAG” OR “Omgp” OR “LRP1” OR “TNFR” OR “p75” OR “TROY” OR “Lingo-1” OR 
“PirB” OR “In-1” OR “NEP1-40” OR “Nogo antibody” OR “Nogo antibodies” OR “neurite growth inhibitors” OR 
“myelin inhibitors“) AND (“spinal cord injury” OR “hemisection” OR “contusion” OR “dorsal column injury” 
OR “transection” OR “corticospinal tract injury” OR “compression” OR “spinal cord lesion”). The search results 
were filtered for experiments using animals if a filter was available. We used a modified animal filter for the 
search in Pubmed50. The initial search was performed on March 30, 2015 and updated on March 04, 2022 based 
on a study protocol finalized in advance of any data collection (accessible online https://​syrf.​org.​uk/​proto​cols).

https://syrf.org.uk/protocols
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Inclusion and exclusion criteria
Studies were included when they reported the effect of Nogo-A pathway inhibition in in-vivo models of traumatic 
animal spinal cord injury assessing motor recovery. Inhibition of the Nogo-A pathway was targeted by various 
therapeutic strategies: application of inhibitory drugs (e.g. antibodies, peptides, enzymes), knock-out models 
(KO), vaccination against receptors and signalling molecules, suppression of receptor expression or signalling 
molecules via lentivirally carried small hairpin RNA (siRNA). There were no restrictions on the published time 
period, the animal model or reporting language. Full publications as well as conference abstracts were included. 
Non-traumatic models of SCI and studies which reported only synergistic effects of combined treatment were 
excluded. Studies had to report the number of animals in the control and treatment group, the mean effect size 
and its variance (standard deviation or standard error of the mean).

Data extraction
Study characteristics which were extracted included the gender and breed of the animals, time, route and dose 
of application, anaesthetic used, method of injury induction and additional treatment. Functional outcome was 
assessed for each experiment comparing the group of animals receiving the treatment and control. Where the 
outcome was expressed graphically only, Universal Desktop Ruler (Version 3.6, AVPsoft) was used to visually 
extract the data points. Where data was expressed serially, numerical values were extracted. Only the final time 
point of the assessment of motor recovery was included for each group of animals.

Quality assessment
The methodological quality of each study was assessed using a modified 9-point item quality checklist, adapted 
from the CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data from Experi-
mental Studies) quality checklist51: (i) reporting of a sample size calculation, (ii) control of animals’ temperature, 
(iii) use of anaesthetics other than ketamine (because of its previously reported intrinsic neuroprotective activity), 
(iv) randomised treatment allocation, (v) treatment allocation concealment, (vi) blinded assessment of outcome, 
(vii) publication in a peer reviewed journal; (viii) statement of compliance with regulatory requirements and (ix) 
statement of potential conflicts of interest.

Analysis
A normalized effect size (ES) was calculated for each comparison which is defined as the improvement of out-
come in the treatment group compared to the control group adjusted for the maximum outcome in the motor 
score (normally represented by sham animals undergoing laminectomy surgery without injury to the spinal 
cord). The size of the control group was adjusted if a single control group was compared to more than one treat-
ment group.

We used random effects meta-analysis to calculate an overall estimate of effect size. The analysis was stratified 
according to the method of injury induction, type of SCI (complete / incomplete), type of treatment, time of 
treatment application, quality assessment score, additional treatment, time of assessment, year of publication, 
details of surgical procedure and type of anaesthetic. The metafor-package of R was used for meta-analysis52, 
the significance level was set at p = 0.05. To assess how much residual heterogeneity was explained by each inde-
pendent variable within a stratified dataset adjusted R2 values were calculated53. Restricted maximum likelihood 
(REML) was used to estimate the additive (between-study) component of variance τ2 within the meta-analysis 
and the Hartung-Knapp adjustment for random effects models52. The dependent variable was the normalized 
effect size in all cases. The method and statistical approach is described in greater detail elsewhere53. Funnel 
plots and trim and fill analyses54 were performed by plotting normalized effect size against precision (1/standard 
error of the mean) using the R package meta. Egger regression (meta-package in R) is used to detect the pos-
sible presence of publication bias measured by the intercept from standard normal deviates against precision55. 
Contour-enhanced funnel plot was performed using the R package meta.

Data availability
A study protocol was finalized in advance of any data collection. The study protocol is registered at the systematic 
review facility: https://​syrf.​org.​uk/​proto​cols. The analysis plan is included in the study protocol. The analysis was 
conducted according to the plan. Study selection is accounting for all experimental subjects is included within 
the figures according to the PRISMA guidelines for flow diagrams. Data from this study will be made available 
(as allowable according to institutional regulatory standards) by e-mailing the corresponding author. Analytic 
code used to conduct the analyses presented in this study are not available in a public repository. It can be made 
available upon request to the corresponding author. The authors agree or have agreed to publish the manuscript 
using “Open Access” option under appropriate license.
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