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Dynamics of major environmental 
disasters involving fire 
in the Brazilian Pantanal
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The 2020 environmental catastrophe in Pantanal has highlighted the fragility of environmental 
policies and practices for managing and fighting fires in this biome. Therefore, it is essential to 
know the causes and circumstances that potentiate these fires. This study aimed to: (I) assess the 
relationship between fire foci and carbon absorption (GPP), precipitation, and carbon dioxide (CO2) 
flux; (ii) analyze vegetation recovery using the differenced normalized burn ratio (ΔNBR) in Brazilian 
Pantanal between 2001 and 2022; and (iii) identify priority areas, where the highest intensities of 
fire foci have occurred, in order to guide public policies in Brazil to maintain local conservation. To 
this purpose, fire foci were detected using data from the MODIS MOD14/MYD14 algorithm, annual 
precipitation with CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data), and 
CO2 flux using the MODIS/MODO9A1 product, and Gross Primary Production (GPP) with the MODIS/
MOD17A2 product. The severity of the burned area was also assessed using the ΔNBR index and the 
risk areas were determined using the averages of these images. During the time series studied, a total 
of 300,127 fire foci were detected throughout the Pantanal, where 2020 had the highest number 
of foci and the lowest accumulated precipitation. The years with the highest precipitation were 
2014 and 2018. The year 2018 was also the second year with the highest GPP value. The Pettit test 
showed a trend for 2008 and 2011 as the points of change in the CO2 flux and GPP variables. Principal 
component analysis clustered fire foci and precipitation on opposite sides, as well as GPP and CO2 flux, 
while ΔNBR clustered HS, MHS and MLS classes with the years 2020, 2019, 2002 and 2021. There was 
a high negative correlation between fire foci × rainfall and GPP × CO2 flux. The years with the largest 
areas of High severity (HS), Moderate-high severity (MHS) and Moderate-low severity (MLS) classes 
were 2020 and 2019, respectively. The most vulnerable areas for severe fires were the municipalities 
of Cáceres, Poconé, and Corumbá. The major fire catastrophe in 2020 is correlated with the low 
precipitation in 2019, the high precipitation in 2018, and the increased GPP, as well government 
policies unfavorable to the environment.

Pantanal is the largest floodplain on the planet and is home to a rich biodiversity, riverside communities, indig-
enous and quilombolas peoples. Its primary economic activity is cattle ranching, which can be considered 
sustainable by exploiting native pastures. In 2020, fires in Pantanal drew worldwide attention for their impact 
and environmental degradation, with millions of wild animals killed and a vast area affected. Approximately 
four million hectares of forest, savannah, and scrubland were burned1–3. However, there had already been a 
significant increase in fires in previous years4, as well as their frequency, with four major fires recorded in the 
last 14 years in the biome5.

Burning to clear pastures is common practice in region and, when applied improperly and combined with 
climatic conditions, changes in land use and poor conservation policies lead to an increasing occurrence and 
intensity of wildfires6–8. These recurrent fires promote a loss of biodiversity, replacement of native species by 
invasive ones, changes in ecological processes, impact on water quality, as well as changes in soil properties9–13. 
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Additionally, the greenhouse gas (GHG) emissions resulting from these fires undermine the climate agreements 
signed by Brazil4.

Monitoring fires, vegetation behavior, and the extent of GHG emissions is essential for drawing up public 
policies that can at least minimize the effects of large fires such as the ones that occurred in 2020. Because of 
their large-scale detection ability, remote sensing (RS) techniques are used to map fire severity and progression, 
as well as to estimate carbon dioxide (CO2) emissions14,15. Furthermore, the impact of different levels of fires on 
the vegetation and ecological systems is poorly understood16, since the severity of fires is related to the changes, 
loss or consumption of organic matter under or on the soil17. Data on vegetation severity together with estimates 
of carbon dioxide (CO2) emissions from environmental fires are crucial for designing the recovery of ecosystems 
damaged by fire18.

Several spectral models have been used to monitor fires, the severity of burned areas, and CO2 emissions by 
orbital sensors. Vegetation indices based on optical data from passive sensors are used to assess the severity of 
fires17, mainly in the near-infrared wavelength. For example, the relativized burning rate (RBR)19, relative burning 
rate (RΔNBR)20, and differentiated normalized burn ratio (ΔNBR)21 can be used for this purpose.

These indices classify the degree of post-fire damage by using multispectral indices calculated as the ratio 
between the difference in near-infrared (NIR) and short-wave infrared (SWIR) band reflectance and the sum 
of NIR and SWIR band reflectance22. In short, this index assesses the changes in vegetation and soil reflectance 
caused by fires, since the reflectance of the SWIR spectral bands increases before and after the fire, while the 
NIR reflectance decreases23.

Evaluating changes in Gross Primary Production (GPP) before and after a fire can also be used as a way of 
assessing the severity of vegetation burning11, associating it to biomass24. After the GPP decreases when the 
vegetation is burned, it increases when the vegetation recovers and regrows25. Thus, fires and severe droughts 
have a significant impact on the vegetation and hence on the GPP26. Furthermore, in the burned area, there is an 
increased CO2 absorption as a result of vegetation regrowth and recovery of the post-fire ecosystem27. Fire impact 
on vegetation also depends on the moisture content of the soil organic matter and atmosphere, and the length 
and intensity of the dry season makes combustible materials more arid and favorable for burning28 Another 
important factor is that excess rainfall can increase vegetation biomass and hence increase fires in subsequent 
years of severe drought29, influencing the occurrence of fires in different ways, scales, and perspectives30.

Understanding the dynamics of events that can promote large fires in Pantanal is crucial for developing 
strategies to prevent these environmental disasters and their contribution to global warming. This informa-
tion is essential for decision making, where planning includes the restoration of highly degraded areas and fire 
management in unburned areas, taking into account the time scale to prioritize actions in the short and long 
term30. This study aims to identify areas with a high risk of fire in order to establish priority municipalities for 
fire prevention and firefighting actions in the Pantanal biome. Therefore, this study aimed to evaluate (i) the 
relationship between fire foci and carbon absorption (GPP), precipitation, and carbon dioxide flux (CO2); (ii) 
analyzing vegetation recovery using differentiated normalized burn ratios (ΔNBR) in the Brazilian Pantanal 
between 2001 and 2022; and (iii) identify priority areas, where the highest intensities of fire foci have occurred, 
in order to guide public policies in Brazil to maintain local conservation.

Results
Exploratory data analysis
From 2001 to 2022, 300,127 fire foci were detected throughout the Brazilian Pantanal biome (Fig. 1). The year 
with the highest absolute number of fire foci was 2020, with 50,159 outbreaks. This year also had the highest 
mean for the time series (4106.08) along with 2002 (2150.58) (Supplementary Table 1). The most affected State 
was Mato Grosso do Sul (MS), with 201,542 foci, which accounted for 67% of the total foci. When analyzing the 
number of fire foci per km2, Mato Grosso do Sul also had the highest values, 0.021 per km2, while Mato Grosso 
(MT) had 0.018 per km2 (Supplementary Table 2).

Figure 2 shows a 22-year time series (2001 to 2022) of precipitation monitoring via CHIRPS data across the 
Pantanal biome. There was high data variability throughout the Pantanal biome. The municipalities of Corumbá 
and Ladário showed a pattern of lower rainfall during the years of the time series.

The years with the highest accumulated and average rainfall were 2014 (2890.72 mm accumulated and 
240.89 mm average) and 2018 (2878.7 mm accumulated and 239.89 mm average). The years with the lowest 
accumulated values were 2020 (1665.25 mm), mainly in the northern region of the biome, followed by 2010 
(1829.13 mm). The difference in accumulated value between the year with the highest (2014) and the year with 
the lowest rainfall (2020) was 1225.47 mm (Supplementary Table 3).

Figure 3 shows the dynamics of the CO2 flux model over the entire time series (2001 to 2022). The munici-
palities in which the image shows the highest intensification of CO2 emissions were Corumbá, mainly in the 
southwestern region, and the municipalities of Sonora, Coxim, and Rio Verde de Mato Grosso in the eastern 
region of the biome. The years with the highest mean CO2 emissions were 2005 (162.6 μmol m−2 s−1), 2015 
(112.4 μmol m−2 s−1), and 2020 (156.2 μmol m−2 s−1) (Supplementary Table 4).

Figure 4 shows the mean gross primary production (GPP) over the years 2001 to 2022 throughout the Pan-
tanal biome. The highest GPP was observed in the northern Pantanal biome, mainly in the municipalities of 
Poconé and Barão de Melgaço. The lowest GPP was evident in the region bordering the Brazilian Pantanal with 
Bolivia, in the western region. The highest annual mean GPP values, considering the entire Pantanal biome, were 
recorded in 2018 (0.0179 kg) and 2017 (0.019) (Supplementary Table 5).
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Trend analysis
Mann-Kendal test applied to the variables evaluated (GPP, precipitation, fire foci, and CO2 flux) detected a sig-
nificant increase in trend for the GPP and CO2 flux variables for both States. Pettitt test then identified 2008 as 
the likely point of change in the time series for the GPP variable, and 2011 for the CO2 flux variable. No change 
points were identified for the precipitation and fire foci variables (Table 1).

Figure 1.   Fire foci monitoring in the Brazilian Pantanal biome using MODIS Thermal Anomalies/Fire 
Locations products, between 2001 and 2022. To prepare image was used the QGIS available through the Google 
Earth Engine platform (Google, https://​earth​engine.​google.​com/) through the dataset available at ee.Image 
(“MODIS/061/MOD14A1”).

https://earthengine.google.com/
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According to the PCA (Fig. 5) applied to two sets of data across the Brazilian Pantanal biome, the sum of 
the first components in both analyses explains more than 70% of the variation in the data, indicating that both 
analyses were considered statistically appropriate31. The first graph (Fig. 5A) shows the variables fire outbreaks, 
precipitation, GPP, and yearly CO2 flux for the two States evaluated. Year and GPP variables were vectors opposite 
the CO2 flux vector, showing that when there is an increase in GPP there is a decrease in CO2 emissions. Fire 

Figure 2.   Monitoring annual accumulated precipitation in mm, via CHIRPS data, in the Brazilian Pantanal 
biome between 2001 and 2022. To prepare image was used the QGIS available through the Google Earth Engine 
platform (Google, https://​earth​engine.​google.​com/) through the dataset available at ee.Image (“UCSB-CHG/
CHIRPS/DAILY”).

https://earthengine.google.com/
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foci distributed in the quadrant opposite the rainfall support the fact that when there was a higher incidence of 
rainfall there was a lower number of fire foci.

Figure 5B shows the data for the ∆NBR index classes (ERH, ERL, UM, LS, MLS and HS). The ERH and ERL 
classes were grouped together for the years 2005, 2007, 2009, 2015, and 2018. The HS and MHS classes were close 

Figure 3.   Monitoring CO2 flux using MODIS/MOD09A1 products in the Brazilian Pantanal biome between 
2001 and 2022. The year 2011 was indicated by the Mann–Kendall test as a probable year of change. To prepare 
image was used the QGIS with data available through the Google Earth Engine platform (Google, https://​earth​
engine.​google.​com/) through the dataset available at ee.Image (“MODIS/061/MOD09A1”).

https://earthengine.google.com/
https://earthengine.google.com/
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to the years 2020, 2019, and 2021. This grouping shows that in these years, the fires with the greatest extensions 
and severity occurred during the time series (Fig. 5).

After grouping the data between the States, a Pearson correlation analysis was carried out between the vari-
ables GPP, precipitation, CO2 flux, and fire foci in the States of Mato Grosso and Mato Grosso do Sul. Figure 6 
shows that there was a high negative correlation between the GPP variables and the CO2 flux, both for the entire 
Pantanal (− 0.604) and States of Mato Grosso (− 0.532) and Mato Grosso do Sul (− 0.633). A high negative 

Figure 4.   Gross primary production (GPP) via MODIS/MOD17A2 data in the Brazilian Pantanal between 
2001 and 2022. The year 2008 was indicated by the Mann–Kendall test as a probable year of change. To prepare 
image was used the QGIS with data available through the Google Earth Engine platform (Google, https://​earth​
engine.​google.​com/) through the dataset available at ee.Image (“MODIS/061/MOD17A2H”).

https://earthengine.google.com/
https://earthengine.google.com/


7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21669  | https://doi.org/10.1038/s41598-023-49154-6

www.nature.com/scientificreports/

correlation can also be observed between fire foci and precipitation for the entire biome (− 0.652), as well as for 
the States of MT (− 0.643) and MS (− 0.632).

Table 2 shows the results of the trend test applied to the time series of each class considered. No trend 
(p-value ≤ 0.05) was found for the ΔNBR classes (ERH, ERL, UN, LS, MLS, MHS, HS). Consequently, the Pettitt 
test did not identify any change points.

Boxplot analysis applied to the ΔNBR index classes in the Pantanal biome indicates that the classes with the 
highest mean values were UN and LS (Fig. 7). MHS and HS were the classes with the highest number of outliers, 
or data with the most discrepant values. The ERL class had the outlier furthest from the median.

Figure 8 shows the areas of the Pantanal biome that were classified with the ΔNBR index during the study 
period (2001 to 2022). The ∆NBR shows that there have been fires over the years in different parts of the Pantanal. 
However, the MHS and HS classes were very evident in 2020, 2019, and 2002, and in 2020 there was the greatest 
detection of the High Severity class in the entire time series, highlighting the place where there was the greatest 
detection of GPP (see Fig. 4), for a large portion of the study period. The southwestern region of the municipality 
of Corumbá had areas classified as MLS, MHS, and HS in various years, with this being most evident in 2002, 
2011, 2014, 2016, and 2019. In the municipality of Cáceres, in the region bordering Bolivia, areas classified as 
HS were also identified. In 2020, the largest area classified as HS was detected, with 811,558 ha, followed by 2019 
with 455,988 ha, the highest values identified throughout the time series (Supplementary Table 6). The years 
2020 (6,178,664 ha) and 2019 (5,308,235 ha) were also the ones with the highest number of areas classified with 
the sum of the MLS, MSH and HS classes.

Figure 9 shows the probability of fires occurring in each municipality of the biome, as well as for the entire 
Pantanal biome. The occurrence of areas with moderate risk predominated in a large part of the biome, mainly 
in the municipalities of Corumbá, Sonora, Rio Verde de Mato Grosso, Cáceres, and Poconé. The areas mapped 
as elevated risk were detected mainly in the municipalities of Cáceres and Poconé and in Corumbá. The areas 
mapped as high risk, where there is a high probability of fires, occurred in the municipalities of Cáceres and Poc-
oné. The municipalities classified as having a high or very high risk of fires were Cáceres, Poconé, and Corumbá.

Discussion
In 2019 and 2020 the Pantanal faced one of its worst droughts, with decreasing rainfall levels and high tempera-
tures and high heatwaves32–34. As a result, there was an increase in evapotranspiration rates, leading to a loss of 
moisture in the soil and vegetation35–37. Likewise, river levels have dropped, leaving organic matter available to 
burn slowly for weeks, which has increased the severity of the fire38. In addition to these factors, 2018 had the 
second highest rainfall, favoring the accumulation of organic matter29, which was subsequently dried out by the 
drought of 2019 and 2020 and intensified the availability of fuels for the catastrophic fires of 202034,39. All these 
factors together have resulted in 11,486,899 ha of burned areas.

The expansion and severity of the burned area were accentuated by the slope of the region, cleared areas, the 
availability of fuel, and the induction of drought in pastures where practices were adopted to prevent flooding, 
such as blocking water flow channels. These factors allowed the fire to spread easily and quickly, while some of 
them made it difficult to control and fight the fire13,40.

Fire control was still difficult to carry out in remote regions and locations where underground fires occurred2. 
In addition, during the COVID-19 pandemic, which peaked in 2020, indigenous firefighters, approximately 
two-thirds of the firefighters working in the State of Mato Grosso do Sul, were unable to work during the pan-
demic. Firefighters have also had to follow safety protocols with social distancing, causing work overload41 and 
difficulty in fighting the fire.

This set of climatic, environmental, and human factors has been further intensified by unfavorable federal 
government decisions regarding environmental law enforcement procedures for illegal burning activities and 
shortcut of budget for fire combat and prevention, as reported by42,43. As well as the extinction of important 
agendas, such as the Climate Change Secretariat44.

Mann–Kendall test applied to the variables precipitation, fire foci, GPP, and CO2 flux showed an upward 
trend for GPP and CO2 flux. The year 2008 was pointed out as the trend point for a significant change in GPP, 
given that in the previous years, 2007 (21,832,001 cattle) and 2008 (22,365,219 cattle), the State of Mato Grosso 
do Sul recorded a decrease of up to 12% in its cattle herd, compared to the peak year 2003 (2,498,3821 cattle)45. 
As the number of cattle decreases, there is less grass intake, consequently increasing the GPP of the pastures24,46, 
as well as reducing the demand for new areas for livestock farming and preserving native vegetation. 47 point 
out that the high density of cattle and changes in land use influence burning patterns, and also observed a 30% 
reduction in the photosynthetic productivity of vegetation. In 2011, a significant trend was detected for the CO2 

Table 1.   P-value of the Mann–Kendall and Pettit tests at 5% significance for the time series from 2001 to 2022 
applied to the variables GPP, rainfall, CO2 flux, and fire foci in the States of Mato Grosso and Mato Grosso do 
Sul.

Test

MT MS

GPP Precipitation CO2 Flux Fire foci GPP Rainfall CO2 Flux Fire foci

Mann–Kendall 0.00 0.57 0.02 0.34 0.00 0.78 0.00 0.74

Petitt 0.00 0.25 0.00 0.67 0.00 0.29 0.00 1.0

Point of change 2008 – 2011 2008 – 2011 –
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flux, which was affected by strong and moderate La Niña events48. During ENSO (El Niño Southern Oscillation) 
events, fire flows are one of the main factors in carbon-based gas emissions and growth rates49,50. Thus, the influ-
ence of climatic phenomena on the dynamics of fires in the Pantanal biome is recognized51.

The areas identified here as having a high probability of environmental fires are mostly in the municipalities 
of Cáceres and Poconé, in the State of MT, and Corumbá, in the State of MS. Corumbá is the municipality with 
the largest area in Mato Grosso do Sul (64,432.450 ha), has the second largest GDP in the biome and the third 

Figure 5.   A. Principal component analysis for the years 2001–2022 of the variables GPP, precipitation, CO2 
flux, and fire foci in the States of Mato Grosso and Mato Grosso do Sul. B. Principal component analysis of the 
∆NBR index classification for the entire Brazilian Pantanal between 2001 a 2022. Package used of R to create the 
figure was “ggfortify” (v0.4.16, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​ggfor​tify/​index.​html).

https://cran.r-project.org/web/packages/ggfortify/index.html
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Figure 6.   Pearson’s correlation analysis for the variables rainfall, CO2 flux, GPP and fire foci within the States 
of Mato Grosso and Mato Grosso do Sul, in the Pantanal biome. Package used of R to create the figure was 
“GGally” (v2.1.2, https://​cran.r-​proje​ct.​org/​web/​packa​ges/​GGally/​index.​html).

Table 2.   P-values of the Mann–Kendall and Pettit tests of the time series of ΔNBR class variables (ERH, ERL, 
UN, LS, MLS, MHS, HS) in the Brazilian Pantanal biome.

ΔNBR Classes

Test ERH ERL UN LS MLS SHS HS

Mann–Kendall − 0.12 − 0.15 − 0.42 0.20 0.17 0.39 0.36

Petitt 0.25 0.37 0.81 0.13 0.13 0.13 0.15

Ponto de mudança – – – – – – –

Figure 7.   Boxplot for the ΔNBR index classes: Enhanced regrowth high, Enhanced regrowth low, Unburned, 
Low severity, Moderate-low severity, Moderate-high severity, and High severity for the entire Pantanal biome. 
Package used of R to create the line and boxplot graphs were “ggplot2” (v3.2.1, https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​ggplo​t2/​index.​html).

https://cran.r-project.org/web/packages/GGally/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
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largest economy in Mato Grosso do Sul, with one of the largest populations (96,268 inhabitants) in the Pantanal52. 
Cáceres is considered the main Pantanal municipality in the State of Mato Grosso and has the largest cattle herd 
in the State, with 1,161,605 cattle, as well as the second largest number of farm properties dedicated to livestock 
farming and the third largest GDP of the Pantanal municipalities (IBGE, 2020; IBGE, 2021). The municipality 
of Poconé is the gateway to the Pantanal in MT, with several tourist establishments around the Transpantaneira 
Highway (Zelito Dorileo Highway). Besides tourism, other economic activities stand out, such as livestock 

Figure 8.   Classification of the ΔNBR index, using the product for the Brazilian Pantanal biome, between 
the years 2001–2022. To prepare image was used the QGIS available through the Google Earth Engine 
platform (Google, https://​earth​engine.​google.​com/) through the dataset available at ee.Image (“MODIS/061/
MOD14A1”).

https://earthengine.google.com/
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farming, with 526,275 head of cattle, mining, and agriculture45,53 According to the Platform54 in the last four 
harvest years, there has been a 150% growth in soybean areas in Cáceres and an 86.19% growth in Poconé, and 
in the 2022/2023 harvest year, a cultivated area of 16,804 ha in Cáceres and 10,602 ha in Poconé was identified. 
Along with soybean, sugarcane also stands out as one of the biome’s major crops, which was allowed to be planted 
in Pantanal in 2019 by then-president Jair Messias Bolsonaro, under protest from the scientific community due 
to the risk of fires occurring34,55.

Given the above, we can expect a recurrence of fires in these municipalities if there isn’t appropriate planning 
aimed at mitigating fires and restoring the fire regime in the Pantanal biome in overall terms. For better efficiency 
in fire planning and management, it is necessary to monitor active fires, detect fire foci, and especially map the 
potential danger56, because mapping risk areas makes it possible to localise risk elements and the communities 
most prone to fires, making it essential for land managers, firefighters and fire brigades to plan emergency meas-
ures to deal with fires in real-time57. This is an important factor because, as a rule, investments in fire management 
and control tend to contain fires58.

Although in July 2020 the national government decreed a fire moratorium, which banned the use of fire for 
four months during the dry season, especially in the Amazon and Pantanal biomes, it did not guarantee that in 
2020 the Pantanal biome would face its worst fire in decades59. Lack of consolidated environmental legislation 
covering the entire biome60, the low budgets of agencies such as IBAMA and the lack of inspection and monitor-
ing due to the limited number of inspectors reinforce the concept of impunity and responsibility of offenders13.

The Pantanal needs its own policy plan that covers its entire territory and together with the States of Mato 
Grosso and Mato Grosso do Sul. Therefore, in addition to climatic factors, the legislative instruments should 
consider issues such as: controlling and reducing fuel loads, providing structures, facilities, and technology to 
help access hard-to-reach native areas, and improving water access and technology for fighting underground 
fires. Furthermore, changes in the landscape (altered and/or abandoned areas with high fuel loads) must be 
considered, as well as the social and economic issues of the Pantanal population61.

Aiming to reduce and prevent the occurrence of fires in the Pantanal biome, federal government agen-
cies established the Action Plan for Integrated Fire Management in the Pantanal Biome (MIF), which seeks to 
associate firefighting with the needs of traditional fire use and the ecological and socio-economic aspects of the 
biome62. However, to establish Integrated Fire Management (IFM) in these areas, joint investment and action 
by state governments is essential, since they are in charge of most environmental regulation and inspection on 
private land43.

Another important issue is reducing the use of fire as an agricultural practice. Besides the ban, it is necessary 
for these farmers, especially the small and traditional ones, to have access to the technologies available to replace 

Figure 9.   Risk areas for the entire Brazilian Pantanal biome, mapped using the means of the MLS, MHS, and 
HS classes of the ∆NBR index. To prepare image was used the QGIS available through the Google Earth Engine 
platform (Google, https://​earth​engine.​google.​com/) through the dataset available at ee.Image (“MODIS/061/
MOD14A1”).

https://earthengine.google.com/
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these practices. To this end, the government needs to make financial resources available for financing and rural 
credit for expenditure on goods and services to replace the use of fire, with payment terms that small producers 
and family farmers can afford.

It is also necessary to invest in the creation of fire brigades, equipment, and the training of a specialized 
workforce to combat and deal with fires. In this regard, mapping risk areas is vital to allocate sites for fire bri-
gades, giving priority to those with the highest risks, such as Poconé, Cáceres, and Corumbá. Furthermore, the 
adoption of practices such as preventive controlled burning, already provided by the New Forest Code (Law 
No. 12.651/2012), carried out by firefighters or competent bodies before the dry season63 in fire-prone areas, is 
crucial for reducing the fuel and hence avoiding major disasters in the future.

Catastrophic fires in 2020 are directly correlated with the climatic factors precipitation34,39, GPP, and CO2 flux. 
The high rainfall accumulated in 2018 led to an increased GPP29, which was subsequently transformed into dry 
matter with the drought of 2019, which fueled the fires of 2020 and consequently increased CO2 emissions. The 
∆NBR index classification identified severely burned areas in all years across the Pantanal biome, with the highest 
proportion in 2019 and 2020, mainly in the regions of Cáceres, Poconé, both in the State of MT, and Corumbá 
in MS. In some cases, the ∆nbr classification has some limitations due to the distinction between vegetation or 
non-fire-related images with variations in water bodies and continuous changes in vegetation64,65. Moreover, it 
is essential to analyse the temporal variations of carbon emissions and fires in order to design effective strategies 
to mitigate both fires and carbon emissions66.

This study shows that it is possible to predict new catastrophes. In a scenario for drawing up an environmental 
plan to mitigate fires in the Pantanal biome, it is necessary to define the following issues: (i) establishing priority 
areas for the implementation of fire-fighting infrastructure; (ii) mapping areas with high potential for organic 
matter in order to monitor these areas; (iii) investment in funding, technology, and approaches to replace fire as 
an agricultural practice. Changes in the biome landscape, coupled with climate change, demand greater attention 
and sensitivity from Brazilian governments, as well as new approaches to fighting fires to guarantee the biome’s 
environmental safety.

Methods
Study area
The study area comprises the Brazilian Pantanal biome (Fig. 10), located in the central region of the South 
American continent, in the Alto Paraguay river basin, between the geographical coordinates 22° 0′ 0" S and 55° 
0′ 0’’ W, covering an area of 138,183 km2 across the States of Mato Grosso do Sul (65%) and Mato Grosso (35%)67. 
According to the Köppen-Geiger classification, the Pantanal’s climate is Aw, a tropical climate with a rainy season 
in summer and a dry winter68. Annual rainfall is highest in the plateau areas, north-northeast (2000 mm) and 
south (1800 mm), and lowest in the central Pantanal (900 mm)69.

Fire foci data
Fire foci data were calculated using the MODIS MCD14DL sensor (TERRA/AQUA). We used collection 6—Near 
real-time (NRT) MODIS thermal anomalies/fire locations- processed by NASA’s Land, Atmosphere. The thermal 
anomalies/active fire represent the 1 km pixel center that is flagged by the MODIS MOD14/MYD14 algorithm70.

The final database consisted of a database from 2001 to 2022 containing fire_archive_M6 = Thermal Anoma-
lies/Fire Locations of MODIS standard quality processed by the University of Maryland with a three-month 
delay and distributed by the FIRMS platform. The time period for fire foci was defined as from the first day of 
the year to the last day of each year (January 1st to December 31st), which is the time series for the entire area 
of the Brazilian Pantanal biome.

Precipitation frequency analysis using CHIRPS data
The Google Earth Engine platform was used to extract the precipitation values from the CHIRPS (Climate Haz-
ards Group InfraRed Precipitation with Station data) dataset using JavaScript code programming. The dataset 
provides daily precipitation values in mm/day with pixels of 5.566 km71. The images were cropped for the study 
area and exported in ".tif " format for processing in the software, using Qgis 3.28 software, and correlated with 
other data. Furthermore, the sum of monthly and annual precipitation from 2001 to 2022 was extracted for the 
entire Brazilian Pantanal biome.

Estimating carbon sequestration efficiency
CO2 flux
Data from the MODIS sensor orbited by the TERRA and AQUA satellites was used to monitor CO2 flux, using 
orbitally corrected reflectance images with a maximum of 20% clouds in each pixel, using the Google Earth 
Engine platform, by accessing the MODO9A1 product to obtain the entire time series, using the same meth-
odology used by72. The dynamics of carbon sequestration in the Pantanal biome were evaluated over the years 
of the time series. For this purpose, the CO2 flux index model was used73,74. The purpose of this model is to 
measure the efficiency of the carbon sequestration process by vegetation, i.e., the photosynthetic rate during the 
photosynthesis process. The Photosynthetic Vegetation Index—PRI will be calculated (Eq. 1)75. The green and 
blue spectral bands were used to produce this index. The PRI estimates the carotenoid pigments in the foliage. 
These pigments, in turn, indicate the rate of carbon dioxide storage in the leaves74

(1)PRI =
A− Ve

A+ Ve
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A, blue range reflectance; Ve, green range reflectance.
However, the PRI results need to be rescaled, resulting in positive values. For this purpose, it is necessary to 

generate the sPRI (Eq. 2)76.

Thus, the CO2 flux index model (µmol m−2 s−1) will be the result of the multiplication between NDVI and sPRI, 
in which there is a relationship between the PRI index, which indicates light-use efficiency in photosynthesis, 

(2)sPRI =
(PRI + 1)

2

Figure 10.   Study area comprising the Pantanal biome, delimited by the States of Mato Grosso and Mato Grosso 
do Sul. The figure shows the fire foci using the MODIS Thermal Anomalies/Fire Locations products, and the 
ΔNBR index classes using the MODIS/MOD13Q1 products. To prepare image was used the QGIS available 
through the Google Earth Engine platform (Google, https://​earth​engine.​google.​com/) through the dataset 
available at ee.Image (“MODIS/061/MOD14A1”).

https://earthengine.google.com/
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with NDVI, which indicates the vigor of photosynthetically active vegetation, in which it may be able to capture 
absorptions from carbon sequestration. Thus, the best correlation is given in Eq. (3)73,74,77.

Gross primary production (GPP)
MOD17A2 Gross Primary Production product is a cumulative composite of GPP values based on the efficient 
radiation use by vegetation (ε). By this logic, primary production is related to the photosynthetically active 
radiation absorbed (Eq. 4).

A major challenge in using these models is obtaining the light-use efficiency “ε” over large areas due to its 
dependence on environmental factors and the vegetation itself78. One of the solutions consists of relating “ε” 
according to its maximum value (εmax) by adding more environmental contributions synthesized by the mini-
mum air temperature (Tminscalar) and the state of water in the vegetation (Eq. 5).

In this study, MODIS GPP version 6.1 was used together with the Google Earth Engine platform. Pixel values 
with reference to the digital numbers of the MODIS image were converted into biophysical values (kg C m−2) at 
scale 0.000179 GPP values were transformed to 8-day average values measured in kg C m−2 d−1 (Eq. 6).

Fire severity assessment
Differenced normalized burn rate (ΔNBR)
Burned area severity or ΔNBR can be defined as the difference between the pre-fire NBR and the post-fire NBR. 
A high ΔNBR value indicates severe fire damage and a negative ΔNBR indicates a high rate of vegetation growth 
after the burn has occurred.

Burn severity was mapped using the NBR-based bi-temporal index (ΔNBR). Fire severity metrics are based on 
the normalized burning rate (NBR, Eq. 7)80, which include the delta normalized burn rate (ΔNBR, Eq. 8)81. The 
values can be obtained by applying the shortwave (SWIR) and near-infrared (NIR) lengths, as areas damaged by 
fires usually have high reflectance values in the SWIR range and low values in the NIR range. Conversely, healthy 
vegetation is identified with high reflectance values in the NIR range and low values in the SWIR range82, since 
the NIR band is sensitive to the chlorophyll content in vegetation and the SIWR band is suitable for identifying 
moisture content in vegetation and soil83. Consequently, the differentiation between burning areas and healthy 
vegetation can be determined by the high values in the NIR or SWIR spectral regions84

The process of classifying the severity of vegetation fires using the ΔNBR index was carried out on a pixel-
by-pixel basis using MODIS/MOD13Q1 images. The images were acquired in the period before and after the 
fire season (May to November) in the Pantanal during the time series from 2001 to 2022, using the Google 
Earth Engine platform. The ΔNBR index class values according to85 where a high ΔNBR value indicates severe 
burning and negative values indicate a high rate of re-sprouting and growth after fires (Table 3), according to85.

Determining risk areas
In order to determine the risk areas, which are areas with a higher probability of environmental fires, the MLS, 
MSH and HS classes of the ∆NBR classification were separated for each year of the time series, and then the 
average was made for the study period, indicating the frequent fire sites in the Pantanal biome.

Initially, the boxplot graph was constructed to show the behavior of the ΔNBR index classes evaluated over 
the time series using the GGPLOT2 package86, on the R software. Subsequently, Mann–Kendall’s test at 5% 
probability level was used to identify trends over the time series (2001–2022) for each variable (Gross Primary 
Production, precipitation, and CO2 flux) and the ΔNBR classes87,88. Finally, the data was submitted to the Pettitt 
test89 at 5% probability, which identifies the point at which there is a sudden change in the mean of a time series. 
For both tests, the analyses were carried out using the Rbio software90.

Pearson’s correlations (r) between fire foci, rainfall, GPP, and CO2 flux were estimated and represented by 
a correlation and scatter plot. The analyses were carried out using the Rbio90 and R using the ggplot2 package. 
Afterward, data were subjected to principal component analysis (PCA) to assess the relationship between the 
variables, locations, and the years of study, as well as between the severity classes of the ΔNBR index and the 
years of study.

PCA is a multivariate statistical analysis that converts an original dataset (X1, X2, …, Xp) into another same-
sized dataset (Y1, Y2, …, Yp), reducing the data volume with minimal loss of information. Principal components 

(3)CO2FLUX = 13.63− (66.207 · (NDVI · sPRI)

(4)GPP = ε · PA · FPAR

(5)ε = εmax · Tminscalar · VPDscalar

(6)GPP
(

kgCm−2 d−1
)

=
GPP ∗ 0.001

8

(7)NBR =
(NIR − SWIR)

(NIR + SWIR)

(8)�NBR = NBRPRE_FIRE − NBRPOST_FIRE
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come from the linear combination of the original variables, which are independent of each other, retaining a 
maximum of information31.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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