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A hybrid optimization approach 
for intelligent manufacturing 
in plastic injection molding 
by using artificial neural network 
and genetic algorithm
Mohamed EL Ghadoui 1*, Ahmed Mouchtachi 1 & Redouane Majdoul 2

This study presents a novel hybrid optimization approach for intelligent manufacturing in plastic 
injection molding (PIM). It focuses on globally optimizing process parameters to ensure high-quality 
products while reducing cycle time, material waste, and energy consumption. The method combines 
a backpropagation neural network (BPNN) with a genetic algorithm (GA) and employs a multi-
objective optimization model based on design of experiments (DoE). A BP artificial neural network 
captures the relationship between optimization goals and process parameters. Leveraging the genetic 
algorithm, it effectively optimizes process parameters for achieving global optimization goals. The 
case study involves a polypropylene product, considering dimensional deviation, weight, cycle time, 
and energy consumption during the PIM cycle. Design variables include melt temperature, injection 
velocity, injection pressure, commutation position, holding pressure, holding time, and cooling time. 
The results demonstrate that this approach efficiently adjusts process parameters to meet quality 
standards, significantly reducing raw material consumption (2%), cycle time (12%), and energy 
consumption (16%). This offers substantial benefits for companies in highly competitive markets 
demanding swift adoption of smart production methods.

Process injection molding PIM
Plastic injection molding stands as a ubiquitous and indispensable technique in the production of plastic parts, 
wielding its influence across an array of industries such as automotive, electronics, medical, sports and recreation, 
construction, and consumer goods. The Handbook of Plastic Materials by Charles A. Harper1 meticulously delin-
eates this versatile manufacturing process, whereby both thermoplastic and thermoset materials are transformed 
into an array of products, each tailored to distinct end applications. As this age-old method perseveres in the 
modern industrial landscape, the quest for superior quality, efficiency, and sustainability has become paramount.

Challenges in plastic injection molding
The main principle of injection molding (Fig. 1) revolves around the utilization of high pressure to shape molten 
plastic material. This molten material is derived from subjecting plastic to heat through the orchestration of 
rotating screws and heater bands, following which it is precisely injected into temperature-controlled molds, 
filling the cavities within. The process does not end here; it extends to the imposition of holding pressure to 
solidify the plastic, sealing injection gates, and concludes with the ejection of the finished part, setting the stage 
for the next cycle of production. In the realm of industries, it serves, quality in the injection molding process is 
predicated upon three vital facets:
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1.	 Product weight consistency: it necessitates adherence to stringent tolerance limits for maintaining product 
integrity and performance. Deviations beyond acceptable boundaries can potentially result in performance 
issues or assembly complications.

2.	 Product size and dimension precision: accuracy, stability, deviation, and tolerance collectively contribute 
to achieving the desired dimensions for molded parts. Strict conformity to specifications ensures seamless 
integration within the intended application

3.	 Defect minimization: an array of defects, from warping and flash to sink marks and air traps, poses a threat 
to both aesthetics and functionality. Addressing these issues is crucial for upholding customer expectations 
and product performance.

Customer satisfaction hinges on the fulfillment of these quality requirements. However, in the face of intensi-
fied competition, escalating raw material costs, and rising energy expenditures, manufacturers are under increas-
ing pressure to optimize their production processes. This optimization must navigate a delicate balance between 
sustaining quality while concurrently reducing production time, conserving raw materials, and optimizing energy 
consumption. Striking this equilibrium holds the key to bolstering competitiveness, enhancing profitability, and 
delivering cost-effective products to the market.

Energy consumption and process complexity
It is important to acknowledge that plastic injection molding is energy-intensive, primarily due to the high-
pressure prerequisites during the injection and holding phases. These phases demand substantial mold clamping 
force, and the plasticization phase necessitates significant heating power to effectively melt the plastic material, 
culminating in substantial energy consumption. Moreover, the complexity of the injection molding process is 
further compounded by the multitude of machine setting parameters that must be configured precisely. Achieving 
optimal adjustments is an intricate endeavor, especially when dependent on traditional trial-and-error methods. 
This approach often results in significant time, raw material, and energy wastage during the process setup and 
implementation.

The imperative for new techniques
To address these challenges, it is imperative to explore novel techniques that promise holistic optimization for 
both customer satisfaction and producer profitability. The goal is to infuse intelligence, sustainability, and profit-
ability into the manufacturing process. By incorporating advanced optimization algorithms and smart process 
control systems, the injection molding process can be streamlined, eliminating inefficiencies, reducing energy 
consumption, and optimizing raw material usage. This approach ensures the fulfillment of customer quality 
requirements while concurrently augmenting the overall sustainability and profitability of the production process 
to ensure companies perinity in a competitive and unstable market.

Literature review
Research work in the field of plastic injection molding has continued to appear in order to solve the problems 
linked to this process, which is considered to be very important and complicated due to its variety in terms of 
the product shapes and sizes obtained, the materials used, the requirements requested, the industrial sector of 
applications served. The effective optimization of the injection molding process has been and still remains the 
most sought after objective and the major concern of researchers and industrialists in new context of industry 
4.02. To achieve this goal, different approaches and methods have been used by researchers through traditional 
tools3 and advanced methods using artificial intelligence.

However, A large number of research studies have sought to optimize the injection molding process by 
employing hybrid solutions, which combine Artificial Neural Networks (ANN) with various optimization algo-
rithms such as Genetic Algorithms (GA)4–10, Non-dominated Sorting Genetic Algorithm II (NSGA-II)11, Particle 
Swarm Optimization (PSO)12, Simulated Annealing Algorithm (SAA)13, and Self-Organizing Maps (SOM)14.

Moayyedian et al.15 conducted a study to identify the most influential parameters among filling time, cool-
ing time, pressure-holding time, and melt temperature in addressing three common defects in injection mold-
ing: short shot, shrinkage, and warpage. They employed the Taguchi method and combined it with an ANN 
and optimization algorithms. Results emphasized that filling time and pressure-holding time were the most 
crucial parameters affecting end-product quality. Guo et al.16 harnessed training data from finite element (FE) 

Figure 1.    Stages description in injection cycle.
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simulations to construct prediction models for warpage of microcellular foaming material. Their study compared 
three methods: BP neural network, GABP neural network, and PSOBP neural network. PSOBP was found to 
be the most precise prediction model for warpage. Optimization through genetic algorithms led to a significant 
reduction in warpage. Bensignth et al.12 investigated the injection molding of a bi-aspheric lens using PMMA 
material, aiming to minimize volumetric shrinkage for optical quality. They employed a hybrid ANN-PSO 
technique to predict optimal process parameters and achieved an optical power of 27.73 Diopter, significantly 
reducing spherical aberrations. Tsai and Luo5 integrated ANN and GA to create a reverse injection molding 
model for optical lens shape accuracy. Significant factors affecting the desired accuracy were determined, lead-
ing to a successful combination of ANN and GA that improved lens shape accuracy. Chen et al.6 introduced 
an optimization system combining the Taguchi method, analysis of variance, signal-to-noise ratio, BPNN, and 
genetic algorithms to enhance plastic injection molding (PIM). The system not only met quality specifications 
but also improved the stability of the PIM process.

For work devoted to the study and optimization of energy consumption in the injection molding process, 
Mianehrow et Abbasian17 followed the specific energy consumption profile of six hydraulic injection molding 
machines to assess the effect of different machine and process parameters and to find energy saving opportuni-
ties. Their results showed that throughput and total cycle time have the greatest impact on the specific energy 
consumption of the process. This effect becomes more significant as the peak power of the machine is greater.

Huszar et al.18 proposed a sustainable injection molding based on good choice of material and gate location 
to reduce warpage and injection pressure. The proposed method studied firstly the impact of four gate locations 
and four different materials on desired targets by using simulation software. Secondly the results obtained have 
been experimentally tested in part produced in the fiber-filled PP with a gate location judiciously chosen giving 
a successful reduction of warpage and injection pressure and then allow to reduce the production waste and 
energy consumption for defect-free sustainable manufacturing.

Yin et al.7 took into consideration in their optimization study the minimization of energy consumption by 
reducing the parameters that consume more energy by integrating it into the optimization constraints of the 
algorithm used. The main remark is that this energy optimization is not quantifiable to judge its importance.

Importance of smart production
The literature review reveals that most optimization studies in injection molding focus on exploring the influ-
ence of process parameters on part quality. Researchers have obtained satisfactory results by employing hybrid 
techniques to optimize both single and multiple objectives of the desired product quality to satisfy customer 
requirements. However, there is a lack of attention given to the implications on production cost, including 
production time, energy consumption, and raw material usage. Considering the intense competition between 
companies and the rising costs of raw materials and energy, it becomes imperative to address these aspects.

Intelligent manufacturing emerges as the key solution to tackle this challenge by providing optimal process 
parameter values for global optimization and sustainable production. By integrating design of experiments 
and a smart hybrid technique combining artificial neural networks (ANN) and genetic algorithms (GA), this 
paper aims to achieve multi-objectives modeling for global optimization to satisfy both customers and produc-
ers. Although this technique has been previously explored by researchers for the optimization of the injection 
molding process, its use has been restricted to compliance with the quality requirements requested by customers 
without worrying about the impacts on production. The major contribution of this work consists of demon-
strating the effectiveness of the use of this hybrid method in a context of global multi-objective optimization 
combining quality and production requirements that are often contradictory and then requires the search for 
optimal solutions. ensuring a reasonable compromise. A case study was retained as technical support to apply 
the method and verify its effectiveness for an overall optimization of four objectives illustrating both quality and 
production requirements. A design of experiments was executed based on seven most important adjustment 
parameters according to experts in the field and previous work. The results obtained will be tabulated to build a 
training dataset for the artificial neural network to develop the most representative model of the case study. This 
model will be combined after validation with a genetic algorithm to find an optimal solution of the adjustment 
parameters for global optimization of all the objectives retained.

Optimization method and experimental setup.
Plastic part and material
The injected part used as a support for this study and represented in Fig. 2a is related to agriculture sector. The 
mold (Fig. 2b) is a tool with a single cavity and sprue as a feed system. The cooling system consisted of cooling 
channels to maintain the required mold temperature. Hydraulic injection molding machine (MIR MPO 50 T 
Fig. 2c) having technical characteristics presented in Table 1, was used in this study for molding of plastic part.

Polypropylene copolymer of grade 49MK45 procured from SABIC has been used for this study. The proper-
ties of the material are given in Table 2.

Experimental design
Inputs variables
The input variables in this study are chosen based on literature of previous studies, feedback and experimental 
knowledge from experts and engineers. The input process parameters of injection molding are found to be melt 
temperature, injection velocity, injection pressure, cooling time, holding time, position of commutation and 
holding pressure. The range of each process input variable in addition to the levels used in this study are given 
in Table 3.
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Figure 2.   Part (a), mold (b) and machine (c).

Table 1.   Technical data of injection molding machine.

Properties Unit Value

Screw diameter mm 34

Screw rapport L/D mm 20

Shot size cm3 136

Injection weight (PS) g 120

Injection pressure hydraulic Bar 140

Injection speed cm3/s 70

Toggle stroke mm 360

Space between tie bars mm × mm 275 × 275

Min–Max. mold height mm 160–520

Clamping force KN 500

Energy absorption (average) KWh 8

Table 2.   Properties of polypropylene material.

Properties Unit Value (1) ASTM method

Melt flow rate @ 230°C & 2.16 kg load g/10 min 21 D 1238

Density @ 23°C g/cm3 0.905 D 792

Vicat softening point °C 151 D 1525B

Heat deflection temperature @ 455 kPa °C 105 D 648

Processing conditions

Barrel temperature range: °C 200–280

Mold shrinkage % 1.2–2.5

Mold temperature °C 15–65

Table 3.   Injection molding input process parameters and their range and levels.

N Variable name Variable symbol Range Unit Level 1 Level 2 Level 3

1 Melt temperature Tmelt 220–240 °C 220 230 240

2 Injection velocity Vinj 30–70 % 30 50 70

3 Injection pressure (hydraulic) Pinj 40–80 Bars 40 60 80

4 Cooling time tcool 20–40 Seconds 20 25 30

5 Holding time th 1–10 Seconds 1 5 10

6 Commutation position PC 10–15 mm 10 12 15

7 Holding pressure (hydraulic) Ph 10–25 Bars 10 20 25
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Outputs variables
The output parameters of injection molding are dimensional deviation, weight, production cycle time and energy 
consumed. The required output parameters of the injection molding of the plastic part used in this study are 
given in Table 4.

These input–output parameters are used for modeling the part injection molding process by using Artificial 
Neural Network. The training data of the network are obtained by running an experimental design based on an 
orthogonal table (L27)3. The input variables can be introduced and adjusted within the range as given in Table 3. 
Output parameters were measured and replicated five times by using instruments mentioned above in Table 4. 
The molded samples of part were tested for their dimensional quality after 24 h.

Design of experiment results
The results of input–output of the part molded in the injection molding experiment are given in Table 5. They 
are employed in the next paragraphs for the analyzing, modeling, and optimization.

Taguchi design analysis
Impact factors
Response table for S/N ratio is used in Minitab software to give the rank for each factor based on the Delta value 
which is the difference between the highest and lowest average response values. The results in Table 6 presented 
above give the Rank that indicate the relative effect of each factor on the response. For product weight, the main 
impact factor is the holding time which the effect is considerably larger than all other factors. For the cycle time, 
it is logically impacted by temporal factors which are the holding and the cooling times. Regarding the dimen-
sional deviation used as a product quality index, all factors retained in this study have a considerable influence 
on this objective with a greater effect for holding time, position of commutation and cooling time, compared 
to the other remaining factors. The energy consumption is affected by the temporal factors and then presents a 
correlation with cycle time.

The main effects plots (S/N ratio) are used to show how each factor affects the responses characteristics as 
we ca see in Fig. 4. In addition, the analysis of thus graphs shows the direction of variation of the objectives 
depending on the factors studied. In this context, the factors allowing the improvement of the quality objective, 
by a reduction in the dimensional gap mentioned above, must be increased. consequently, the cycle time being 
lengthened, the energy consumption increases as well as the weight of the part. The search for effective methods 
and techniques, allowing the obtaining of an optimal solution ensuring the requested quality by reducing cycle 
time and saving energy and material consumption, is a primary requirement for producers.

Optimal configuration for dimensional deviation using S/N ratio
In this section the signal-to-noise ratio (S/N ratio) is used to identify the levels of control factor settings that 
minimize the main quality index required by costumer which is the dimensional deviation. The optimal param-
eters configuration giving in Table 7 is then choosing in level for each factor when S/N ratio is maximal as shown 

Table 4.   Required output parameters and measuring instruments used.

Optimizing objectives Unit Required values Measuring instruments

1 Dimension and deviation mm 32 ± 0.02 Digital caliper 0.01mm (Fig. 3a)

2 Weight Grams To minimize Precise Electronic Scale 0.1mg (Fig. 3b)

3 Cycle time Seconds To minimize Machine of injection timer

4 Energy consumed in cycle time (consumed per 
piece) Kwh To minimize Power network meter Lovato electric DMG 800 

(Fig. 3c)

Figure 3.   Measuring instruments: digital caliper (a), precise electronic scale (b) power network meter (c).
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in mains effect plot of S/N ratio above. This optimal configuration does not appear in the experimental design 
carried out but it can be replaced by test 21 which is almost identical with a difference in melt temperature value 
which is a factor with limited effect (Rank 6) on the response as shown response table above.

ANN model
Architecture neural network
Matlab 2022a software and Neural Network toolbox were used to develop the desired model of the part injec-
tion molding process. The number of input layer neurons is seven, the number of neurons in the output layer 
is four corresponding to targets followed. To avoid overfitting issue3,19, the architecture of ANN to use has been 
simplified to one hidden layer in the goal to increase its ability for generalization20 mainly because of the use of 
limited amount of data. The choice of the number of neurons in this layer is based on a practice rule that consists 
to retain a value less than twice the number of input variables12. The optimal value is obtained after tuning hyper-
parameters step and it is finally set to 13. The activation function of hidden layer neurons was tan-sigmoidal and 
for output layer is a pure line functions. Three learning algorithms have been used which are Levenberg–Mar-
quardt (LM), Bayesian regularization (BR) and scaled conjugate gradient (SCG). LM was especially developed 
for faster convergence in backpropagation algorithms. Essentially, BR, that naturally incorporates regularization, 
has an objective function that includes a residual sum of squares and the sum of squared weights to minimize 
estimation errors and to achieve a good generalized model21. SCG is an efficient optimization algorithm primarily 
applied in training neural networks. Therefore, the developed multilayer Neural Network is (7-13-4) as shown 
in Fig. 5 on representation graph (Fig. 5a) and in Matlab neural network tool (Fig. 5b).

ANN performances evaluation.
The developed ANN was trained with all experimental data consisting 27 sets, (100% of total dataset) to keep 
the orthogonality characteristic of table used to ensure the good accuracy of the model. Additional experiments 
data consisting of 5 sets were used for model testing. The performance of the developed ANN was evaluated 
through coefficient of determination (R2), mean squared error (MSE), root mean squared error (RMSE) and 
relative percent deviation (RPD) as given below.

R2: Regression R values measure the correlation between outputs and targets. An R2 value of 1 means a close 
relationship, 0 a random relationship.

Table 5.   Experimental data Input–output parameters for ANN modeling.

Run

Input parameters Output parameters

Tmelt Vinj Pinj tcool Th Pc Ph Weight Cycle time Dimensional deviation Energy consumed

1 220 30 40 20 1 10 10 34.26 31.58 0.134 0.064

2 220 30 40 25 5 12 20 35.31 40.58 0.042 0.084

3 220 30 40 30 10 15 25 36.41 50.58 0.074 0.105

4 220 50 50 20 1 10 20 34.08 30.58 0.138 0.060

5 220 50 50 25 5 12 25 35.26 39.58 0.016 0.079

6 220 50 50 30 10 15 10 36.02 49.58 0.066 0.102

7 220 70 80 20 1 10 25 33.98 30.11 0.148 0.062

8 220 70 80 25 5 12 10 34.90 39.11 0.030 0.081

9 220 70 80 30 10 15 20 35.88 49.11 0.058 0.101

10 230 30 50 20 5 15 10 35.07 35.53 0.076 0.076

11 230 30 50 25 10 10 20 35.85 45.53 0.044 0.096

12 230 30 50 30 1 12 25 34.06 41.53 0.048 0.087

13 230 50 80 20 5 15 20 34.89 34.51 0.090 0.074

14 230 50 80 25 10 10 25 35.90 44.51 0.030 0.093

15 230 50 80 30 1 12 10 33.86 40.51 0.050 0.081

16 230 70 40 20 5 15 25 35.01 34.18 0.046 0.071

17 230 70 40 25 10 10 10 35.71 44.18 0.026 0.091

18 230 70 40 30 1 12 20 33.79 40.18 0.038 0.083

19 240 30 80 20 10 12 10 35.67 40.40 0.024 0.083

20 240 30 80 25 1 15 20 33.89 36.54 0.110 0.074

21 240 30 80 30 5 10 25 34.86 45.57 0.008 0.094

22 240 50 40 20 10 12 20 35.53 39.48 0.066 0.086

23 240 50 40 25 1 15 25 33.87 35.48 0.130 0.073

24 240 50 40 30 5 10 10 34.60 44.48 0.032 0.092

25 240 70 50 20 10 12 25 35.63 39.09 0.102 0.079

26 240 70 50 25 1 15 10 33.56 35.09 0.204 0.073

27 240 70 50 30 5 10 20 34.54 44.09 0.062 0.090
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MSE: mean squared error is the average squared difference between outputs and targets. Lower values are 
better. Zero means no error.

RMSE: root mean squared error is the racine of the average squared difference between outputs and targets. 
Lower values are better. 

where n is the total number of data sets, yi is the ith actual data point value, ŷ  i is the ith predicted data point 
value and y is the mean of actual output values.

(1)R2 = 1− ((
∑(

yi − ŷi
)2
/
∑(

yi − y
)2
)

(2)Mse = (1/n) ∗
∑

(yi − ŷi)2

(3)RMSE =

√
((1/n) ∗

∑
(yi − ŷi)2

(4)RPD% : relative percent deviation RPD% = (100/n)((
∑

|(yi − ŷi)|/|yi|)

Table 6.   Responses table and main effects plots for S/N Ratio.
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Response Table for Signal to Noise Ratios
Smaller is better

Level Tmelt Vinj Pinj tcool Thold Pc Phold
1 -30.91 -30.89 -30.86 -30.86 -30.61 -30.85 -30.84

2 -30.86 -30.85 -30.85 -30.86 -30.87 -30.85 -30.84

3 -30.80 -30.82 -30.85 -30.85 -31.09 -30.87 -30.88

Delta 0.11 0.07 0.02 0.01 0.48 0.02 0.04

Rank 2 3 6 7 1 5 4
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Response Table for Signal to Noise Ratios
Smaller is better

Level Tmelt Vinj Pinj tcool Thold Pc Phold
1 -31.89 -32.15 -31.98 -30.85 -31.00 -31.93 -31.98

2 -32.01 -31.93 -31.97 -32.02 -31.94 -32.05 -31.97

3 -32.01 -31.84 -31.96 -33.05 -32.97 -31.93 -31.96

Delta 0.12 0.31 0.01 2.20 1.97 0.12 0.02

Rank 5 3 7 1 2 4 6
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Response Table for Signal to Noise Ratios
Smaller is better

Level Tmelt Vinj Pinj tcool Thold Pc Phold
1 24.01 26.33 25.08 21.90 20.31 26.28 25.30

2 26.68 25.04 23.38 25.99 28.88 27.84 23.65

3 24.72 24.05 26.96 27.53 26.23 21.30 26.47

Delta 2.67 2.29 3.59 5.62 8.58 6.54 2.82

Rank 6 7 4 3 1 2 5

E
n

er
g

y
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m

ed

Response Table for Signal to Noise Ratios
Smaller is better

Level Tmelt Vinj Pinj tcool Thold Pc Phold
1 21.91 21.52 21.68 22.82 22.80 21.83 21.74

2 21.60 21.80 21.77 21.70 21.73 21.67 21.70

3 21.69 21.89 21.75 20.68 20.68 21.71 21.77

Delta 0.30 0.37 0.09 2.14 2.12 0.16 0.07

Rank 4 3 6 1 2 5 7
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Training ANN multi‑responses model and comparison
The data and results of training the neural network to develop a multi-objectives model for process parameters 
optimization are given in Table 8 below. The comparison of the overall result between the three algorithms used 
is based on the MSE and the R2 cited above. As we can see on this table, the best model is model 2 which uses 
Bayesian regularization as a training algorithm.

Model responses evaluation in training data
In this paragraph the results of the performance of model 2 retained are given in detail for the four responses 
adopted in this study. They are plotted in Fig. 6 and tabulated in Table 9 according to the criteria of the MSE, 
MAE, R2 and RDP%. It is observed that the training results are very satisfactory to the point of fearing overfitting 
which requires to check the model on additional test data.

Model responses evaluation in testing data
Five additional experiments, giving in Table 10, have been conducted for the use in the testing accuracy of the 
model obtained after training step. Based on the same evaluation criteria, the results of this testing step for all 
objectives followed are illustrated on Table 11 and represented graphically in Fig. 6. As we can see, the model is 
accurate enough to be used for optimization by the genetic algorithm in the next paragraph in search of optimal 
process parameter values.

Results of output parameters analysis
In Fig. 7, the dimensional deviation is plotted against the mass of the part, while the energy consumption is 
represented by colored areas ranging from yellow to blue, indicating different levels of consumption. The cycle 
time is also indicated and labeled for each data point on the plot. From the graph, it is evident that improving 
the quality of the product by reducing dimensional deviation comes at a cost. This cost is reflected in increased 
mass, longer cycle times, and higher energy consumption. However, there are certain areas on the graph that 
indicate potential actions for achieving a global optimization of the objectives.

This analysis highlights the complex and often contradictory relationship between customer product quality 
and the parameters that need to be optimized from a producer’s perspective. It is not feasible to achieve this 
global optimization manually through setters alone. Therefore, the developed ANN model, combined with the 
use of GA as a hybrid technique, becomes crucial. This combination allows for a compromise to be made to 
globally optimize the injection molding process parameters for the product. By integrating the ANN-GA hybrid 
technique, the injection molding process can strike a balance between meeting customer quality requirements 
and optimizing the parameters that affect production costs such as cycle time and energy consumption. This 

(a) ANN Architecture
(b) ANN Graph in Matlab 

toolbox

Figure 4.    Multilayer ANN for process mapping of part injection molding.

Table 7.   Optimal configuration for dimensional deviation using S/N ratio.

Tmelt Vinj Pinj tcool th Pc Ph Weight Cycle time Dim dev Energy consumed

Optimal configuration
S/N Ratio (run N 21) 240 30 80 30 5 12 25 34.86 45.57 0.008 0.094
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approach enables a more comprehensive and effective optimization process, leading to enhanced efficiency, 
profitability, and sustainability in the production of injection-molded products.

Process parameters optimization using genetic algorithm
Mathematical formulation of optimization problem
The developed ANN can be coupled to GA for optimizing the injection molding process parameters. The multi-
objective optimization model can be stated as follows:

Find: Tmelt, Vinj, Pinj, tcool, th, PC, and Ph

Subjected to constraints:

(5)Minf (x) = {Dimensional deviation,Weight, cycle time and Energy consumed}

(6)220 ≤ Tmelt ≤ 240

(7)30 ≤ Sinj ≤ 70

(8)40 ≤ Pinj ≤ 80
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(a) Actual and predicted output (b) Prediction error (c) Regression plot

Figure 5.    Results plots of ANN model developed for process mapping of part injection molding in training 
data.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:21817  | https://doi.org/10.1038/s41598-023-48679-0

www.nature.com/scientificreports/

Table 8.   Results comparison after training and testing of the three models.

Algorithm used Hidden nodes Data split

Training data Testing data

MSE R2 MSE R2

Model 1 Levenberg–Marquardt 13 100-0-0 2.626 e−8 1 0.374 0.999

Model 2 Bayesian regularization 13 100-0-0 8.641 e−8 1 0.033 1

Model 3 Scaled conjugate gradient 13 100-0-0 1.011 e−4 1 0.872 0.999
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(a) Actual and predicted output (b) Prediction error (c) Regression plot

Figure 6.   Results plots of ANN model developed for process mapping of part injection molding in testing data.

Table 9.   Prediction performance parameters of developed ANN for training data set.

Part output parameters R2 MSE RMSE RPD, %

Weight 0.985 0.019 0.140 0.16

Responses

Cycle time 1 1.14 e−17 3.75 e−9 8.03 e−9

Dimensional deviation 0.999 3.89 e−9 6.24 e−5 0.15

Energy consumed per cycle 0.996 1.25 e−6 0.0011 0.79
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The implementation of problem optimization is carried out in toolbox optimization in Matlab 2022a envi-
ronment. The goal is to find optimal process parameters of part injection molding process. In this stage, the 
developed ANN model retained (7-13-4) is transformed to Matlab function and introduced as a fitness function 
with number of variables and bounds as shown in Fig. 8.

Parameters of genetic algorithm
The main set parameters of multi-objective genetic algorithm used are:

•	 Population size of 200,
•	 Mutation probability is 0.35,
•	 Crossover probability is 0.8
•	 Maximum generation number of 100.

Optimization results
The optimal configuration of process parameters and their corresponding predicted outputs parameters given by 
genetic algorithm are tabulated in Table 12. It should be noted that the execution of the optimization is repeated 
several times, and the mean of the values has been retained for each parameter.

Experimental results evaluation and discussion
To evaluate the precision of the developed model and verify the effectiveness of the global optimization approach, 
the optimal configuration obtained from the genetic algorithm was implemented in an experimental evaluation 
using an injection machine. The first objective, assessing the accuracy of the model, involved comparing the 
output parameter values proposed by the genetic algorithm with the results obtained through experimentation. 
Table 13 illustrates the comparison, revealing a high level of accuracy in the model with a margin of error less 
than 2.5%. The second objective, evaluating the effectiveness of the method, involved comparing the optimal 
configuration results obtained from the genetic algorithm with the results obtained from the analysis of signal-
to-noise ratio. In this comparison, the results of the configuration from the plan of experiments (Run N 21) were 
utilized. The effectiveness of the hybrid ANN-GA method in the global optimization approach was demonstrated 
through the results presented in Table 14. The results clearly indicate that the hybrid method effectively optimized 
the injection molding process. The dimensional quality required by the customer (± 0.02) was achieved, while 
simultaneously achieving a 16% reduction in energy consumption, a 2% reduction in raw material usage, and a 
12% reduction in production cycle time. These findings highlight the significant improvements in sustainability 
and cost-effectiveness achieved through the application of the ANN-GA hybrid approach. Overall, the experi-
mental evaluation confirmed the precision of the developed model and demonstrated the effectiveness of the 

(9)20 ≤ tcool ≤ 30

(10)1 ≤ th ≤ 10

(11)10 ≤ Cp ≤ 15

(12)10 ≤ Ph ≤ 20

Table 10.   Additional testing data.

Run

Input parameters Output parameters

Tmelt Vinj Pinj tcool Th Pc Ph Weight Cycle time Dimensional deviation Energy consumed

1 240 70 80 30 10 15 20 35.64 49.15 0.046 0.106

2 240 50 50 25 5 12 15 34.69 39.47 0.060 0.086

3 240 25 40 20 2 10 10 34.16 32.77 0.224 0.071

4 240 50 40 25 1 15 20 33.74 35.48 0.1401 0.078

5 240 70 60 25 1 15 10 33.610 35.06 0.180 0.074

Table 11.   Prediction performance parameters of the developed ANN for testing data set.

Part output parameters R2 MSE RMSE RPD%

Weight 0.998 0.0028 0.053 0.14

Cycle time 0999 0.0318 0.178 0.36

Dimensional deviation 0.940 0.0005 0.024 29.7

Energy consumed per cycle 0.983 3.58e−5 0.006 6.65
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Figure 7.   Analysis plot of the relationships between the four objectives monitored.

Figure 8.   Matlab tool interface of GA for multiobjective optimization.

Table 12.   GA predicted optimum process and output parameters for injection molding process.

Run number

GA optimization process input parameters

Tmelt Vinj Pinj tcool th Pc Ph Weight Cycle time Deviation Energy per cycle

Mean 226 61 76 25 5 10 17 34.81 39.58 0.018 0.082

Table 13.   Comparison Predicted and Experimental GA optimum process and output parameters.

Configuration Tmelt Vinj Pinj tcool th Pc Ph Weight Cycle time Dim dev Energy consumed

DoE (Set n°21) 240 30 80 30 5 10 25 34.86 45.57 0.008 0.094

Proposed by GA (Exp) 226 61 76 25 5 10 17 34.19 40.54 0.018 0.081

Gain % − 2% − 12.4% − 16%
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proposed global optimization method. The combination of ANN and GA proved to be a valuable approach in 
optimizing the injection molding process parameters to meet customer quality requirements while simultane-
ously improving energy efficiency, raw material utilization, and production cycle time.

To demonstrate the economic efficiency of the proposed technique combining ANN-GA, the production 
time, consumption of raw material, and energy for an order of 100,000 products (approximately equivalent to a 
monthly production) are presented in Table 15 and Fig. 9. The results serve as evidence of the economic benefits 
achieved through the implementation of the proposed technique. These results highlight the potential for cost 
optimization, improved production efficiency, and enhanced sustainability, all of which are crucial factors for 
manufacturers striving for profitability and competitiveness in the market. These results are particularly relevant 
for producers dealing with low-mass products that are injected using relatively small machines with a capacity 
of 50 tons. The table and figure provide a clear overview of the economic implications of implementing the opti-
mized process parameters. By utilizing the ANN-GA approach, significant improvements in economic efficiency 
can be observed. The production time is reduced, leading to faster order fulfillment and increased productivity. 
Additionally, there is a notable reduction in the consumption of raw materials, resulting in cost savings and 
improved resource utilization. The energy consumption is also decreased, contributing to both cost savings and 
environmental sustainability. Overall, the combination of ANN-GA proves to be a valuable tool for achieving 
economic efficiency in the injection molding process. The results demonstrate the potential for cost reduction 
and resource optimization, making it an attractive approach for producers in various industries, especially those 
dealing with small-scale machines and low-mass products.

Conclusion
This study proposes an efficient global optimization approach for process parameters in injection molding using 
design of experiments (DoE), artificial neural networks (ANN), and genetic algorithms (GA). The aim is to 
produce a polypropylene plastic part in the industrial sector within the framework of intelligent manufacturing 
required by Industry 4.0. The design parameters selected are melt temperature, injection velocity, injection pres-
sure, holding time, holding pressure, commutation position, and cooling time. The desired objectives include 
product weight, production cycle time, dimensional deviation, and energy consumption. The research begins by 
designing and conducting experiments to gather data for training and testing an artificial neural network model. 
This model serves as a multi-objective predictive tool for product quality and production parameters. Subse-
quently, a genetic algorithm (GA) is employed to determine the optimal configuration of the output parameters 
that satisfy the desired responses. The obtained results are then experimentally validated to assess the accuracy 

Table 14.   Comparison DoE (Set N° 21) and experimental GA optimum process parameters.

N Tmelt Vinj Pinj tcool th Pc Ph Weight Cycle time Dim dev Energy consumed

GA proposed 226 61 76 25 5 10 17 34.81 39.58 0.0180 0.082

GA tested in exp 226 61 76 25 5 10 17 34.79 39.34 0.0185 0.081

Margin of error 0.1% 2.3% 2.5% 1.5%

Table 15.   Comparison experimental GA optimum output parameters according to objective required.

Energy Kwh Raw material kg Production time in hour

1 Consumption by using DoE optimal configuration (set n21) 9400 3486 1267

2 Consumption by using Genetic Algorithm optimal configuration 8100 3419 1128

Gain 1300 67 139

9,400

3486

1267

8,100

3419

1128

Energy Kwh

Raw Material Kg

Produc�on �me in hour

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Consump�on by Gene�c Algorithm configura�on Consump�on by DoE configura�on (set n21)

Figure 9.   Consumption comparison graph for an order of 100,000 products.
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of the developed model, with a margin of error less than 2.5%. Furthermore, a comparison is made between the 
results of the experimental plan and those achieved through the proposed method. This comparison demon-
strates the effectiveness of the approach, with notable gains observed in production time (12% reduction), raw 
material usage (2% reduction), and energy consumption (16% reduction). Additionally, the study suggests that 
the optimization method utilized can have a positive impact on other quality aspects of the injection molding 
process. Furthermore, it highlights the potential applicability of this approach in other industrial processes to 
address multi-objective problems and achieve smart, sustainable, and profitable production. In conclusion, this 
research contributes to the field of intelligent manufacturing by offering an efficient optimization method for 
injection molding processes. By combining DoE, ANN, and GA, it enables the attainment of optimal process 
parameters while considering multiple objectives and ensuring sustainable and profitable production. Finally, in 
future research studies, several improvements can be made to the proposed context of global optimization and 
notably its use on other parts and other plastic materials with more objectives and considering other parameters 
of the process. This will make it possible to detect the limits of the proposed method and thus to find solutions to 
overcome them or even to adopt other optimization techniques which will allow better generalization and thus 
effective control of the process and its use for parts intended for various industrial sectors.

Data availability
All data used in this study are included in this published article.
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