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Dynamical analysis for the motion 
of a 2DOF spring pendulum 
on a Lissajous curve
Asmaa Amer 1, T. S. Amer 2* & H. F. El‑Kafly 3

This study examines the motion of a spring pendulum with two degrees-of-freedom (DOF) in a plane 
as a vibrating system, in which its pivot point is constrained to move along a Lissajous curve. In light 
of the system’s coordinates, the governing equations of motion (EOM) are obtained utilizing the 
equations of Lagrange’s. The novelty of this work is to use the approach of multiple scales (AMS), as 
a traditional method, to obtain novel approximate solutions (AS) of the EOM with a higher degree 
of approximation. These solutions have been compared with the numerical ones that have been 
obtained using the fourth-order Runge–Kutta algorithm (4RKA) to reveal the accuracy of the analytic 
solutions. According to the requirements of solvability, the emergent resonance cases are grouped 
and the modulation equations (ME) are established. Therefore, the solutions at the steady-state case 
are confirmed. The stability/instability regions are inspected using Routh–Hurwitz criteria (RHC), 
and examined in accordance with the steady-state solutions. The achieved outcomes, resonance 
responses, and stability areas are demonstrated and graphically displayed, to evaluate the positive 
effects of different values of the physical parameters on the behavior of the examined system. 
Investigating zones of stability/instability reveals that the system’s behavior is stable for a significant 
portion of its parameters. A better knowledge of the vibrational movements that are closely related 
to resonance is crucial in many engineering applications because it enables the avoidance of on-going 
exposure to potentially harmful occurrences.

Undoubtedly, the act of inducing motion in dynamic systems, particularly those involving vibrations, plays a 
significant role in addressing various challenges encountered by researchers in the field of applied mechanics. 
This phenomenon can be replicated in certain machines, tools, mechanisms, or architectural structures through 
the application of external forces. The motion of big cars on highways and railroads, as well as vibrations brought 
on by earthquakes and the proximity of other machines, can also create similar excitations in machine supports. 
Many studies, including1–3, provide numerous examples of these excitations caused by rough rods, transverse 
waves, and sharp contact between the wheels of railroad trains and the track.

In Ref.1, it is investigated how a spring pendulum (SP) moves in relation to its two controllable factors, which 
are the energy and the frequencies of the spring and pendulum. Additionally, the authors investigated the phe-
nomenon, specifically the back-and-forth movement of the spring and pendulum. By treating a long spring as 
a physical pendulum and formulating the mass in terms of the spring constant and various spring lengths, the 
estimation of the mass is considered necessary in Ref.2 to develop the resonance. For Reynolds number more 
than 104 , damped oscillations of SP model with a variable continuously diminishing mass are studied in Ref.3, 
in which the damping parameters are influenced by the mass loss rate.

In Refs.4–9 the dynamical behavior of a few various vibrational pendulum models connected with energy 
harvesting devices is examined as one of the best and most effective examples of converting mechanical energy 
into electric energy. The study conducted in Ref.4 investigates the vibrations of a two-degree-of-freedom spherical 
pendulum subjected to horizontal Lissajous excitation. By employing a mathematical model, the outcomes of 
numerical simulations are presented through visually appealing multi-colored maps, highlighting the behavior 
of the largest Lyapunov exponent. In a recent publication5, a groundbreaking design is presented, which encom-
passes a novel and sophisticated model of a double variable length cable pendulum. This model is accompanied 
by a meticulously designed experimental setup that incorporates elastic suspension and a counterweight mass 
for enhanced performance and accuracy. The investigation focuses on understanding the intricate dynamics that 
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arise from the influence of varying lengths on the frequency and amplitude of vibrations. The study conducted 
in Ref.6 explores the interplay between parametric excitation and self-excited vibration within discontinuous 
systems. Through the use of a separate electromagnetic harvesting device, the pendulum’s structure is altered in 
Ref.7, where harvesting is dependent on the magnet in the coil oscillating. It is noted that the harvester’s effective-
ness at both energy gathering and vibration reduction has increased. In Refs.8,9, 3DOF harvesting models have 
been examined. The model in Ref.8 is composed of two linked components: a nonlinear damping SP combined 
with an energy harvesting device and a nonlinear Duffing oscillator, while the other one in Ref.9 is formed up of 
two connected parts: the first is coupled to a piezoelectric transducer, which transforms stresses and oscillations 
into electrical power, whereas the second is a nonlinear damping SP.

A semi-analytical approach was used in Ref.10 to study the periodic movements of a periodically driven 
nonlinear SP, and the relevant stability and bifurcation analysis of these movements. After providing a consistent 
magnetic field in one direction, the motion of a SP is assessed in Ref.11. The AS, resembling Foucault’s pendulum, 
are also obtained when the heavy pendulum ball and delicate spring are taken into account.

The bifurcation phenomena at its state of equilibrium are discovered after examining how the magnetic field 
affects the stability of the SP. The implicit mapping approach is used in Ref.12 to calculate semi-analytically the 
entire bifurcation dynamics of period-3 motions to chaos. The harmonic amplitudes that change with excita-
tion amplitudes to examine the complexity of periodic motion have been obtained. For the purpose of reducing 
vertical disturbances, a rotating pendulum absorber is suggested in Ref.13. By changing the rotating speed, the 
pendulum absorber’s characteristic frequency may be dynamically modified across a large range. The longitudinal 
and transverse absorbers that are linked with a SP are examined in Refs.14–17. The AMS18 is used to obtain the 
essential AS of the EOM, where the resonance situations are categorized and examined.

To evaluate the impact of the approximations of higher-order on the chaotic processes of a multi-DOF 
dynamical system with weak nonlinearity, Ref.19 examines a harmonically stimulated SP in a circular trajectory 
with internal resonance. A parametric and externally excited 2-DOF weakly nonlinearly system is investigated 
in Ref.20. There is a noticeable energy transfer between modes of vibration, where the selected resonance instance 
and the resonance conditions have been analysed and determined. The authors of Refs.21,22 build on the behavior 
of kinematically nonlinear excited SP, where its pivot point travels along an elliptic route. Simultaneous reso-
nances have been studied in view of the exposed resonances circumstances.

In Ref.23, two different approaches have been used to resolve the motion of the nonlinear SP problem. Accord-
ing to the asymptotic analysis, three-time scales are utilized to get the AS with a respectable small error. In Ref.24, 
a generic model of a nonlinear damped excited SP is examined, in which its pivot point has been constrained to 
move along an ellipse trajectory with a stationary angular velocity. The AS are obtained up to the third correc-
tion. In Ref.25, the quadratic polynomial approximation was used to create an approximate controlling system 
with trigonometric nonlinearities. The presented unique approach ensures that the trigonometric functions are 
approximated with adequate precision not only around a specified point but also throughout the entire predeter-
mined interval, contrary to the approximation accomplished using Taylor series. Thus, the suggested approxima-
tion is considered an approach that ensures better predictions for resonance responses in nonlinear mechanical 
systems. An approximation differential system is used to analyze the pendulum damper, which is modeled as a 
severely nonlinear auto-parametric system with 2DOF. As a foundation for the in-depth analytical analysis, the 
nature of the numerical solutions (NS) in the resonance state is examined. The resonant solution’s stationary 
and non-stationary properties are described in Ref.26. In Ref.27, the asymmetrical damping of a pendulum and 
its nonlinear properties, have been represented mathematically. Three distinct forms of the resonance domain 
were studied, and it was discovered that the excitation amplitude and the pendulum’s dynamic characteristics 
had a substantial impact on each type’s attributes.

In Ref.28, a few unusual states that can occur when a ball is moving in a sphere-shaped cavity acting as a 
passively tuned mass damper for thin engineered structures have been illustrated. Three non-holonomic restric-
tions are placed under horizontal additive kinematic excitation in a 6DOF system. The controlling differential 
system is determined using the Appell–Gibbs method29. In Ref.30, two viscous dampers and two linked nonlinear 
springs in series are used to analyze the forced planar vibrations of an attached particle at a supported point. The 
third-order correction law is proposed as the constitutive connection for the elastic forces of each spring. Three 
terms of Taylor series are used to simulate the resulting geometric nonlinearity from the pendulum’s transverse 
motion. In Refs.31,32, the frequency responses of a 2DOF nonlinear dynamical model that simulates the motion 
of a damped SP in an inviscid fluid flow are examined and discussed.

This work’s main objective is to investigate the motion of a 2DOF non-linearly damped SP system. It is 
assumed that two harmonically generated forces act in both the transverse and longitudinal directions, as well as 
a harmonic external moment at the pivot that restricts the pendulum motion to being on a Lissajous curve. The 
regulating EOM are derived applying Lagrange’s equations from the second type. For a higher level of accuracy, 
the EOM are analytically solved using AMS. The accuracy of the analytical solutions is determined by compar-
ing them to the numerical ones that were derived using the 4RKA. In regard to the removal of secular factors, 
the solvability criteria and the ME are found. In order to confirm that the fixed points at steady-state solutions 
are stable or not, the RHC are applied. The non-linear stability analysis is used to expose various regions of 
stability or instability. A graphical examination of numerous plots associated with separate time-history curves, 
resonances, and stability zones is used to show how the system behaves. In many engineering applications, a 
deeper understanding of the vibrational motions that are closely associated with resonance is essential because 
it reduces the possibility of being continually exposed to potentially damaging events.
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Formulation of the dynamical system
The major objective of the present section is to derive the governing EOM of the examined dynamical system. 
This system consists of a non-linear damped SP with a massless normal length l0 and stiffness k and k1 . The 
suspension point O1 of this pendulum is constrained to move on a route of a Lissajous curve in an anticlockwise 
direction, in which it moves independently and harmonically in two orthogonal directions, while the other 
point is connected with pendulum mass m and oscillates in a plane. It is taken into account that point O , two 
orthogonal axes, OX and OY  , that are pointed, respectively, vertically and horizontally, are considered, see Fig. 1.

The coordinates (x, y) describing the kinematic motion of the point O1 are x = Rx cos�x t and y = Ry sin�y t , 
where Rx ,Ry ,�x , and �y represent known parameters. The planar motion of the investigated system is considered 
under the action of two perpendicular harmonic forces F1(t) = F1 cos�1t and F2(t) = F2 cos�2t in the radial 
and transverse directions of the spring, respectively, in addition to an anticlockwise moment M(t) = M0 cos�0t 
at O1 . Here, F1, F2,M0 and �1,�2,�0 are amplitudes and frequencies of these forces and moment. Let J(t) rep-
resents the elongation spring after time t  , and Cj (j = 1, 2) are the viscous damping coefficients for longitudinal 
vibration and the swing one. These coefficients prevent the system from reaching a critical case in both vibration 
directions.

The following expression provides a foundation for formulating the system’s Lagrangian

where g  denotes the acceleration of gravity, � denotes the swing’s angle, l = l0 + Jr , Jr = mg
/

k denotes the 
spring’s static elongation, and dots are the differentiation regards t  . Equation (1) can subsequently be used to 
derive the governing EOM using the second type of Lagrange’s equations below

where q stands for the system’s generalized coordinates and Qq represents a non-conservative generalized force 
that may be expressed as follows

(1)

L =
1

2
m [R2

x�
2
x sin

2 �x t + R2
y�

2
y cos

2 �y t] +
1

2
m[J̇2 + (l + J)2�2]

+mJ̇[Ry�y sin� cos�y t − Rx�x cos� sin�x t]
+m(l + J)�̇ [Ry�y cos� cos�y t + Rx�x sin� sin�x t]

−
1

2
k(J + Jr)

2 −
1

4
k1(J + Jr)

4 +mg[Rx cos�x t + (l + J) cos�],

(2)
d

dt

(

∂L

∂ q̇

)

−
∂L

∂q
= Qq; q(= J ,�),

Figure 1.   Dynamical sketch of the system.
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Consider the below dimensionless parameters

Based on the above Eqs. (1)–(5), one can obtain the desired dimensionless form of the EOM as follows

where the dot denote the derivatives regarding τ . The initial circumstances that constitute with the above EOM 
may be stated as follows pertaining

The proposed method
In the current portion, the ASM can be used to achieve the solutions of the EOM (6) and (7) analytically, catego-
rize the resonance situations, and get at the ME as well as the requirements of solvability. Therefore, we start by 
looking at the system’s vibrations in close proximity to its static equilibrium point33. Consequently, it is possible 
to approximate the trigonometric functions according to the following expressions

Then, using a tiny parameter called 0 < ε << 1 , we may represent the damping coefficients cj (j = 1, 2) , 
forces’ amplitudes fj , moment’s amplitude m0 , and the parameters rx , ry ,α as follows

In a similar vein, we suppose that the vibrations’ amplitudes ℜ and � are of order ε . Then, one can write

The expressions for the functions ℜ̃ and �̃ according to the AMS18 can be represented as follows

It is important to note that τn = εnτ (n = 0, 1, 2) expresses new time scales that are reliant on τ , where τ0 
is rapid time scale whereas τ1 and τ2 are the slow ones. Additionally, due to their tiny size, terms of O(ε2) and 
higher orders have not been taken into account. To deal with the EOM (6) and (7) and the supposed solutions 
(11) and (12), we need to transform the time derivatives in (5) to be in relation to the time scales τn , as follows

(3)QJ = F1 cos�1 t − C1 J̇ ,

(4)Q� = (l + J)F2 cos�2 t +M0 cos�0 t − C2�̇ .

(5)

τ = ω1t, ℜ =
J

l
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(6)
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Substituting (8) through (13) into (6) and (7) and equating coefficients of various powers of ε with zero to 
obtain the below sets of partial differential equations (DEs).

Regarding order (ε)

Regarding order (ε2)

Regarding order (ε3)

The prior sets include six successively solvable second-order non-linear partial DEs, which emphasize the sig-
nificance of the solutions of the first set (14). As a result, these equations’ generic solutions take the below forms

where i =
√
−1 , Dj (j = 1, 2) are unknown dependent complex functions on τj and Dj are their complex 

conjugate.
Substituting the (17) and (18) into the second set of partial DEs (15) and removing the produced secular 

terms to obtain

Consequently, the second-order approximation can be expressed as follows.

where the symbol c.c. refers to the aforementioned terms’ complex conjugate.
To calculate the next requirements of solvability, substitute (17)–(21) into the third set of partial DEs (16) 

and then delete the apparent secular terms.
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Consequently, the third-order approximation may be written as follows

The circumstances of eliminating secular terms (19), (22), and (23) can be used to calculate the functions 
Dj (j = 1, 2) . One may readily find the asymptotic AS ℜ and � up to the third approximation according to the 
substitution of solutions [(11), (12)], [(17), (18)], [(20), (21)], and [(24), (25)] into (10).

Now, it’s important to highlight that the obtained AS remain acceptable when their dominators depart from 
zero34. However, resonant scenarios emerge when these dominators get closer to zero. As a result, one can cat-
egorise these scenarios as follows.

•	 The fundamental external resonance takes place at p1 = 1,p2 = ω, and p0 = ω.
•	 The internal resonance takes place at px(= 0, 1, 2ω), py = ω, and ω (= 1, ±0.5).
•	 The combined resonances takes place at py − ω = ±1 and py + ω = 1.

It should be emphasized that if any of the preceding resonance scenarios occur, the behavior of the researched 
system would be difficult. Therefore, it would be necessary to alter the employed approach.

To address this issue, we will look into two fundamental external resonances that occur at the same time.

These relationships demonstrate how closely p1 to 1 and p2 to ω . To achieve this purpose, it is important to 
provide dimensionless values σj (j = 1, 2) that are known by detuning parameters (which specify the separation 
between the strict resonance and vibrations) as follows

In light of this, we can express σj according to the use of ε as

To obtain the following solvability requirements for the second and third-orders equations, substitute (27) 
and (28) into (15) and (16), and then eliminate terms that yield secular ones.

A closer look at the aforementioned solvability requirements reveals that they combine to generate a system 
of four nonlinear partial DEs involving functions Dj (j = 1, 2) . In addition, these functions are exclusively 
dependent on the slow time scale τ2 , as explored in the first two requirements in (29). Hence, we provide Dj in 
the polar form shown below
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(26)p1 ≈ 1, p2 ≈ ω.
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r + 6ω2(ω2−1)

4ω2−1
D2D2]

}

,

∂D2

∂τ2
= i

4

{

− f̃2
ω
eiσ̃2τ2 + 2D2[ic̃2 + ω(ω2+2)

2ω+1
D1D1 + ω(3ω2+1)(8ω2+1)

2(4ω2−1)
D2D2]

}

.
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where ψj (j = 1, 2) and ãj are real functions that describe the phases and amplitudes of the solutions ℜ̃ and �̃.
The modelling procedures mentioned above show that the first-order derivatives of Dj can be expressed as 

follows

In the context of (31), one can transform the partial DEs in (29) into ordinary DEs. Introducing (10), (13), 
(30), and (31), as well as the next adjusted phases

into (29), distinguishing between real and imaginary portions to obtain the below autonomous system of four 
first-order ordinary DEs with regard to aj and θj

It is obvious that the aforementioned system of Eqs. (33)–(36) characterizes the ME for the two resonances 
that are being analysed concurrently. This system has been solved numerically to obtain the solutions aj(τ ) and 
θj(τ ) , which are graphed in portions of Figs. 2, 3, 4 and 5 according to the following data of the used parameters

(30)Dj =
ãj(τ2)

2
eiψj(τ2), aj = εãj ,

(31)∂Dj/∂τ = ε2∂Dj/∂τ2.

(32)θj(τ2) = σ̃j τ2 − ψj(τ2); (j = 1, 2),

(33)
da1

dτ
=

1

2
(f1 sin θ1 − c1a1),

(34)
dθ1

dτ
=

1

2

[

f1

a1
cos θ1 + 2σ1 − 3αℜ2

r +
3ω2(1− ω2)

2(4ω2 − 1)
a22

]

,

(35)
da2

dτ
=

1

2

(

f2

ω
sin θ2 − c2 a2

)

,

(36)
dθ2

dτ
=

1

16

{

8
f2

ωa2
cos θ2 + 16σ2 −

ω

(4ω2 − 1)
[2(ω2 + 2)(1− 2ω)a21 + (3ω2 + 1)(8ω2 + 1)a22]

}

.

Rx = 0.3, Ry = 0.2, g = 9.8, l = 0.8, m = 3.5, �0 = 2, �1 = 0.4, �2 = 2.4,

�x = 0.4, �y = 0.5, C1 = 1, C2 = 0.8, F1 = 2, F2 = 5, M0 = 0.5, ε = 0.0001,

k = 90, k1 = 30, p1 = 1+ σ1, p2 = ω + σ2, c1(= 0.05, 0.07, 0.09),

c2(= 0.07, 0.09, 0.12), ω1(= 5.07, 5.18, 5.29), ω2(= 2.98, 3.21, 3.5).

Figure 2.   The temporal history of a1 versus τ : (a) when c1(= 0.05, 0.07, 0.09), (b) when c2(= 0.07, 0.09, 0.12), 
(c) when ω1(= 5.07, 5.18, 5.29), (d) when ω2(= 2.98, 3.21, 3.5).
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Curves of these figures are calculated when the damping parameter c1(= 0.05, 0.07, 0.09), 
c2(= 0.07, 0.09, 0.12), and the frequencies ω1(= 5.07, 5.18, 5.29), ω2(= 2.98, 3.21, 3.5) have various values, 
as seen in potions (a), (b) and (c), (d) of these figures, respectively. These curves behave in a decaying manner, 
and they reach the stage of full stability at the end of the first fifth of the studied time interval when the afore-
mentioned values are taken into account. It is noted that a1 has been impacted by the change of the values of c1 
and ω2 , as drawn, respectively, in Figs. 2a,d, 4a,d. In the same context, the temporal history of the amplitude a2 
is influenced by the change of the values c2 and ω2 , as seen, respectively, in Figs. 3b,d, 5b,d. A closer look at the 
other parts of Figs. 2, 3, 4 and 5, one can observe that they haven’t any variation with the change of cj and ωj . 
The reason for the change or non-change is due to the mathematical composition of the equations of system 
(33)–(36), as the first and third equations are dependent on c1 and ω2 , respectively. Whereas they do not explicitly 

Figure 3.   The behavior of a2(τ ) : (a) when c1(= 0.05, 0.07, 0.09), (b) when c2(= 0.07, 0.09, 0.12), (c) when 
ω1(= 5.07, 5.18, 5.29), (d) when ω2(= 2.98, 3.21, 3.5). 

Figure 4.   The variation of θ1(τ ) during the time interval [0, 1000]: (a) when c1(= 0.05, 0.07, 0.09), (b) when 
c2(= 0.07, 0.09, 0.12), (c) when ω1(= 5.07, 5.18, 5.29), (d) when ω2(= 2.98, 3.21, 3.5). 
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depend on the variable c2 and ω1 . Similarly, the second and fourth equations of the same system is independent 
on c1 and ω1 , in which they are depend on c2 and ω2.

The projections of the plotted curves in Figs. 2, 3, 4 and 5 in the planes θ1a1 and θ2a2 are drawn in portions 
of Figs. 6 and 7. The behaviors of these curves have the form of spiral curves that are directed towards one point, 
which means that the functions described by these curves are stable. This conclusion is consistent with the 

Figure 5.   The variation of θ2 via τ : (a) when c1(= 0.05, 0.07, 0.09), (b) when c2(= 0.07, 0.09, 0.12), (c) when 
ω1(= 5.07, 5.18, 5.29), (d) when ω2(= 2.98, 3.21, 3.5).

Figure 6.   The curves in the plane θ1a1 at: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), (d) ω2(= 2.98, 3.21, 3.5).
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above discussion of Figs. 2, 3, 4 and 5 and with the equations of system (33)–(36). It must be emphasized that 
the changes that occurred in the curves drawn in Figs. 2, 3, 4 and 5 correspond to similar changes in Figs. 6 and 
7 at the same values of the different parameters, whose effect on the behaviors of the waves has been studied.

Figures 8 and 9 present, respectively, the achieved analytical solutions ℜ(τ ) and �(τ) to highlight the temporal 
behavior of these solutions while taking into account the prior values of the system’s parameters. This behavior 
has the form of quasi-periodic waves. It must be mentioned that these have been impacted more by the various 

Figure 7.   The curves in the plane θ2a2 at: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), (d) ω2(= 2.98, 3.21, 3.5).

Figure 8.   The behavior of the spring’s elongation ℜ(τ ) at: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), 
(c) ω1(= 5.07, 5.18, 5.29), (d) ω2(= 2.98, 3.21, 3.5).



11

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21430  | https://doi.org/10.1038/s41598-023-48523-5

www.nature.com/scientificreports/

values of the frequencies ω1 and ω2 than the damping parameters c1 and c2 . The accuracy of the analytical solu-
tions is evaluated by comparing them to the numerical ones of the original EOM that were produced using 
4RKA according to the plotted curves in Fig. 10 at c1 = 0.05, c2 = 0.07, ω1 = 5.07, and ω2 = 3.5 . The comparison 
demonstrates excellent agreement between both solutions.

Solutions at the scenario of steady‑state
The purpose of the current section is to investigate the steady-state oscillations of the considered dynamical sys-
tem. In essence, temporary processes will cease to exist under the impact of damping, and the steady-state oscil-
lations will then be generated35–38. Therefore, we regard the left-hand side of the system of ME (33)–(36) as zero. 
As a consequence, the equations of this system have been transformed into the algebraic equations shown below

(37)c1a1 − f1 sin θ1 = 0,

(38)
f1

a1
cos θ1 + 2σ1 − 3αℜ2

r +
3ω2(1− ω2)

2(4ω2 − 1)
a22 = 0,

(39)ωc2a2 − f2 sin θ2 = 0,

(40)8
f2

ωa2
cos θ2 + 16σ2 −

ω

(4ω2 − 1)
[2(ω2 + 2)(1− 2ω)a21 + (3ω2 + 1)(8ω2 + 1)a22] = 0.

Figure 9.   The behavior of the rotation angle �(τ) at: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), (d) ω2(= 2.98, 3.21, 3.5).

Figure 10.   The comparison between the AS and NS at c1 = 0.05, c2 = 0.07, ω1 = 5.07, and ω2 = 3.5 for the: (a) 
solution ℜ(τ ) , and (b) solution �(τ).
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After removing the adjusted phases θj (j = 1, 2) from the system of Eqs. (37)–(40), the next nonlinear alge-
braic equations regarding the parameters of detuning σj and adjusted amplitudes aj are obtained.

One of the most important aspects of steady-state oscillations is to analyse the stability. To analyse such a 
scenario, the system’s behavior will be evaluated in a relatively close neighbourhood area to the locations of fixed 
points. To accomplish this purpose, we consider the next substitutions in (33)–(36)

where aj0 (j = 1, 2) and θj0 denote the solutions at the steady-state, while aj1 and θj1 denote relatively minor 
disturbances in comparison to aj0 and θj0 . Consequently, after linearization, one gets

Remembering that aj1 and θj1 are defined, respectively, above as unknown perturbed functions of ampli-
tudes and phases in the preceding system. Then we are able to outline their solutions as a linear superposition 
of qse�τ (s = 1, 2, 3, 4) , where qs represent constants and � expresses the eigenvalue of these functions. If the 
solutions aj0 and θj0 are stable asymptotically, then the real components of the roots of the yielded characteristic 
equation of the system (43)–(46) must be negative

where

(41)
f 21 = a21

{

c21 +
[

2σ1 − 3αℜ2
r +

3ω2(1−ω2)

2(4ω2−1)
a22

]2
}

,

f 22 = ω2a22

{

c22 +
[

2σ2 − ω(ω2+2)
4(2ω+1)

a21 −
ω(3ω2+1)(8ω2+1)

8(4ω2−1)
a22

]2
}

.

(42)
a1 = a10 + a11, θ1 = θ10 + θ11,

a2 = a20 + a21, θ2 = θ20 + θ21,

(43)
da11

dτ
=

1

2
(f1 θ11 cos θ10 − c1a11),

(44)a10
dθ11

dτ
=

1

4

[

2a11(2σ1 − 3αℜ2
r )+

3ω2(1− ω2)

(4ω2 − 1)
a20(a11a20 + 2a10a21)− 2f1θ11 sin θ10

]

,

(45)
da21

dτ
=

1

2

(

f2

ω
θ21 cos θ20 − c2a21

)

,

(46)

a20
dθ21

dτ
=

1

16

{

a21

[

16σ2 −
3ω(3ω2 + 1)(8ω2 + 1)

(4ω2 − 1)
a220

]

−
2ω(ω2 + 2)

(2ω + 1)
a10(a10a21 + 2a20a11)−

8f2

ω
θ21 sin θ20

}

.

(47)�
4 + Ŵ1�

3 + Ŵ2�
2 + Ŵ3�+ Ŵ4 = 0,

Ŵ1 =
1

2

(

c1 + c2 +
f1 sin θ10

a10
+

f2 sin θ20

ωa20

)

,

Ŵ2 =
1

32 ω (4ω2 − 1)a10a20
{8(4ω2 − 1)f2 sin θ20[a10(c1 + c2)+ f1 sin θ10]

+ 4ωa20{2(4ω2 − 1)a10 c1c2 + f1[3ω2(ω2 − 1) cos θ10 a
2
20

+ 2(4ω2 − 1)[(c1 + c2) sin θ10 + (3αℜ2
r − 2σ1) cos θ10]]}

+ a10 f2 cos θ20[2ω(2ω − 1)(ω2 + 2)a210 + 3ω(3ω2 + 1)(8ω2 + 1)a220

+ 16σ2(1− 4ω2)]},

Ŵ3 =
1

64ω(4ω2 − 1)a10 a20
{4f2 sin θ20{2(4ω2 − 1)a10c1c2 + f1[3ω2(ω2 − 1)a220 cos θ10

+ 2(4ω2 − 1)[(c1 + c2) sin θ10 + (3αℜ2
r − 2σ1) cos θ10]]} + 4 c2 a20f1{3a220ω3(ω2 − 1) cos θ10

+ 2ω(4ω2 − 1)[c1 sin θ10 + (3αℜ2
r − 2σ1) cos θ10]} + f2 cos θ20(a10c1

+ f1 sin θ10)[2ω(2ω − 1)(ω2 + 2)a210 + 3ω(3ω2 + 1)(8ω2 + 1)a220 + 16σ2(1− 4ω2) ]},

(48)

Ŵ4 =
f1f2

256ω(1− 4ω2)2(2ω2 − 1)a10a20
{−2ω(2ω − 1)(ω2 + 2) cos θ20a

2
10[3ω2

× (14ω4 − 17ω2 + 3)a220 cos θ10 − 2(8ω4 − 6ω2 + 1)[c1 sin θ10 + (3αℜ2
r − 2σ1) cos θ10]]

+ (2ω2 − 1){[3ω2(ω2 − 1)a220 cos θ10 + 2(4ω2 − 1)[c1 sin θ10 + (3αℜ2
r − 2σ1) cos θ10]]

× [3ω(24ω4 + 11ω2 + 1)a220 cos θ20 + 8(4ω2 − 1)[c2 sin θ20 − 2σ2 cos θ20]]}}.
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To determine the requisite stability criteria for the solutions in a certain steady state, the following RHC18 
can be used

The stability analysis
This section explores the stability of the examined system using the non-linear stability approach of Routh–Hur-
witz. It must be remembered that the system under consideration consists of a moving, nonlinear, damped 
spring pendulum in a Lissajous route, which is influenced by an external harmonic moment M(t) as well as two 
perpendicular forces F1(t) and F2(t) . The requirements of stability are applied alongside the simulation of the 
system’s non-linear evolution. A number of variables, such as damping coefficients cj (j = 1, 2) , frequencies ωj , 
and detuning parameters σj , have been discovered to have a vital influence in the stability criteria.

The stability diagrams of the system of Eqs. (33)–(36) are obtained by performing certain actions with dif-
ferent parameters of the system. The variation of adjusted amplitudes aj with time is plotted for different para-
metrical zones, and its characteristics are presented using phase plane paths.

Figures 11 and 12 have been drawn, respectively, in planes σ1a1 and σ1a2 to represent the frequency response 
curves (FRC) when cj and ωj have different values in addition to the value of the detuning parameter σ2 which 
is computed according to the relation σ2 = p2 − ω . In more details, curves of Figs. 11a and 12a summarise 
the effect of the different values of c1(= 0.05, 0.07, 0.09), on the generated curves. Examining of these figures 
reveal that each curve contains only one critical fixed point over the whole domain as tabulated in Table 1. The 
stability and instability zones are discovered in the ranges σ1 < 0.065 , and 0.065 ≤ σ1 , respectively. It is critical 
to note that the solid curves represent the range of stable fixed points, whereas the dashed lines depict the range 
of unstable fixed points.

According to the positive impact of the various values of the other damping parameter c2(= 0.07, 0.09, 0.12), 
Figs. 11b and 12b are drawn to display the FRC at these values. As aforementioned, one critical fixed point is 
observed for each curve, in which stable and instable fixed points at c2 = 0.07 are generated, respectively, in the 
ranges  σ1 < 0.065 and 0.065 ≤ σ1 . Whereas, at c2(= 0.09, 0.12) one finds other regions of stability and instability 
at the ranges σ1 ≤ 0.066 and 0.066 < σ1 . The drawn FRC in Figs. 11c and 12c show the good influence of vari-
ous values of the frequency ω1(= 5.07, 5.18, 5.29) on the behavior of the stability and instability areas, in which 
there exists a single fixed point for each curve. It is observed that the areas of stability are found in the ranges 
σ1 ≤ 0.065, σ1 ≤ 0.056, and σ1 ≤ 0.048 , while the instability areas of the fixed points are generated in the range 
0.065 < σ1, 0.056 ≤ σ1, and 0.048 ≤ σ1 . Other stability and instability regions have been plotted at different values 
of ω2(= 2.98, 3.21, 3.5) as seen in Figs. 11d and 12d. The stable fixed points are found in the ranges σ1 ≤ 0.046, 
σ1 ≤ 0.058, and σ1 ≤ 0.065, while the unstable ones occurs in the ranges 0.046 < σ1, 0.058 < σ1, and 0.065 < σ1.

According to the value of the detuning parameter σ1 , which is calculated using the relation σ1 = p1 − 1 , 
Figs. 13 and 14 have been drawn, respectively, to depict the FRC in planes σ2a1 and σ2a2 when cj (j = 1, 2) and 
ωj have various values. The range of stable fixed points is shown by the solid lines, while the range of unstable 

(49)Ŵ1 > 0, Ŵ3(Ŵ1Ŵ2 − Ŵ3)− Ŵ4Ŵ
2
1 > 0

Ŵ1Ŵ2 − Ŵ3 > 0, Ŵ4 > 0.

Figure 11.   The FRC in the plane σ1a1 at: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), and (d) ω2(= 2.98, 3.21, 3.5). 
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ones is shown by the dashed lines. These figures illustrate that each curve contains critical and peak fixed points, 
which are tabulated in Tables 2 and 3.

The curves in Figs. 13a and 14a point out the effect of the damping parameter c1 at different values 
c1(= 0.05, 0.07, 0.09) . These figures illustrate that each curve contains three critical fixed points over the whole 
domain. The stability zones are identified in the ranges σ2 < 0.28 , and 0.38 ≤ σ2 < 0.41 . Whereas, the instability 
zones are found in the ranges 0.28 ≤ σ2 < 0.38 , and 0.41 ≤ σ2 . On the other hand, Figs. 13b and 14b show the 
FRC for various values of the damping parameter c2(= 0.07, 0.09, 0.12) . Three critical fixed points are observed 
in the graphed curves at c2(= 0.07, 0.12) . The stability zones at c2 = 0.07 are found in the ranges σ2 < 0.28 and 
0.38 ≤ σ2 < 0.41 . While, the instability zones at c2 = 0.07 are found in the ranges 0.28 ≤ σ2 < 0.38 and 0.41 ≤ σ2 . 
At c2 = 0.12, the ranges σ2 < 0.17 and 0.2 ≤ σ2 < 0.27 indicate the stability zones, whereas 0.17 ≤ σ2 < 0.2 and 
0.2 ≤ σ2 express the instability ones. In addition, at c2 = 0.09 the stability ranges are σ2 < 0.16,0.21 ≤ σ2 < 0.28, 
and 0.38 ≤ σ2 < 0.41 . As well as, the instability ranges are 0.16 ≤ σ2 < 0.21, 0.28 ≤ σ2 < 0.38, and 0.41 ≤ σ2 . 
That is, each curve at c2 = 0.09 contains five critical fixed points over the whole domain. Figures 13c and 14c 
show the effect of various values of the frequency ω1(= 5.07, 5.18, 5.29) on the behavior of the stability and 
instability areas, in which there are three fixed points for each curve. It is observed that the areas of stability are 
generated at ω1 = 5.07 in the ranges σ2 < 0.28 and 0.38 ≤ σ2 < 0.41 while at ω1 = 5.18, they will be σ2 < 0.28 
and 0.37 ≤ σ2 < 0.41 , whereas the stability regions at at ω1 = 5.29 are σ2 < 0.28 and 0.37 ≤ σ2 < 0.4 . On the 
other hand, their related instability areas at ω1 = 5.07, at ω1 = 5.18, and ω1 = 5.29 , are discovered in the ranges 
(σ2 < 0.38, 0.41 ≤ σ2 ≤ 0.5), (0.28 ≤ σ2 < 0.37, 0.41 ≤ σ2), and  (0.28 ≤ σ2 < 0.37, 0.4 ≤ σ2) , respectively. 
The stability and instability zones at different values of ω2(= 2.98, 3.21, 3.5) are portrayed in Figs. 13d and 14d. 
At ω2 = 2.98, the stable fixed points are found in the ranges σ2 < 0.19, 0.21 ≤ σ2 < 0.31, and 0.35 ≤ σ2 < 0.39, 

Figure 12.   The FRC in the plane σ1a2 at: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), and (d) ω2(= 2.98, 3.21, 3.5). 

Table 1.   Critical and peak fixed points for the curves of Figs. 11 and 12 when σ2 = p2 − ω.

Figure Critical points Peaks points σ2 = p2 − ω

Figure 11a (0.065, 0.493), (0.065, 0.379), (0.065, 0.308) – σ2 = −0.2169

Figure 11b (0.065, 0.493), (0.066, 0.4928) – σ2 = −0.2169

Figure 11c (0.065, 0.493), (0.056, 0.482), (0.048, 0.4722) – σ2(= −0.2169, −0.2122, 0.2078)

Figure 11d (0.065, 0.493), (0.058, 0.415), (0.046, 0.358) – σ2(= −0.2169, −0.16, −0.1153)

Figure 12a (0.065, 0.192), (0.065, 0.2009) – σ2 = −0.2169

Figure 12b (0.065, 0.192), (0.066, 0.1909), (0.066, 0.189) – σ2 = −0.2169

Figure 12c (0.065, 0.192), (0.056, 0.1923), (0.048, 0.1922) – σ2(= −0.2169, −0.2122, 0.2078)

Figure 12d (0.065, 0.192), (0.058, 0.2236), (0.046, 0.2492) – σ2(= −0.2169, −0.16, −0.1153)
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while the unstable ones occurs in the ranges 0.19 ≤ σ2 < 0.21, 0.31 ≤ σ2 < 0.35, and 0.39 ≤ σ2 . At ω2 = 3.21, 
the stability regions are found in the ranges σ2 < 0.19, 0.21 ≤ σ2 < 0.29, and 0.36 ≤ σ2 < 0.39, while the unsta-
ble ones are observed in the ranges 0.19 ≤ σ2 < 0.21, 0.29 ≤ σ2 < 0.36, and 0.39 ≤ σ2 . Finally, at ω2 = 3.5, the 
stability areas are found in the ranges σ2 < 0.28, and 0.38 ≤ σ2 < 0.41, while the unstable ones are given in the 
ranges 0.28 ≤ σ2 < 0.38 and 0.41 ≤ σ2.

Figure 13.   The FRC in the plane σ2a1 at: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), and (d) ω2(= 2.98, 3.21, 3.5). 

Figure 14.   The FRC in the plane σ2a2 at: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), and (d) ω2(= 2.98, 3.21, 3.5). 
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Non‑linear analysis
The purpose of this section is to clarify the properties of the non-linear amplitudes of the system of Eqs. (33)–(36) 
and look into its stability. Consequently, we take into account the below transformation39,40

where Uj and Vj are, respectively, the amplitudes’ real and imaginary components.
Separating the distinct parts that yield from the substitution of (50) into (33)–(36) to obtain

where

(50)Dj = [Uj(τ2)+ i Vj(τ2)] eiσ̃jτ2 (j = 1, 2),

(51)
dv1

dτ
= −

f1

4
−

c1v1

2
+ u1

[

3

2
αℜ2

r − σ1 +
3ω2(ω2 − 1)(u22 + v22)

4ω2 − 1

]

,

(52)
du1

dτ
= −

1

2
c1u1 + v1

[

σ1 −
3

2
αℜ2

r −
3ω2(ω2 − 1)(u22 + v22)

4ω2 − 1

]

,

(53)

dv2

dτ
= −

1

4ω
f2 −

1

2
c2 v2 + u2

{

−σ2 +
ω

4(4ω2 − 1)

[

2(2ω − 1)(ω2 + 2)(u21 + v21)− (3ω2 + 1)(8ω2 + 1)(u22 + v22)
]

}

,

(54)

du2

dτ
= −

1

2
c2 u2 + v2

{

σ2 −
ω

4(4ω2 − 1)

[

2(2ω − 1)(ω2 + 2)(u21 + v21)+ (3ω2 + 1)(8ω2 + 1)(u22 + v22)
]

}

,

Uj = ε uj , Vj = ε vj .

Table 2.   Critical and peak fixed points for the curves of Fig. 13 when σ1 = p1 − 1.

Figure Critical points Peaks points σ1 = p1 − 1

Figure 13a (0.28, 0.0285), (0.38, 0.0412), (0.41, 0.0283)
(0.2007, 0.03502), (0.2109, 0.03016), (0.2711, 0.03279), (0.3698, 
0.02837), (0.3903, 0.03759), (0.4016, 0.03794), (0.3709, 0.02827), 
(0.3898, 0.03756)

σ1 = −0.4204

Figure 13b (0.28, 0.0285), (0.38, 0.04128), (0.41, 0.0283), (0.16, 0.0223), (0.21, 
0.0305), (0.17, 0.0255), (0.2, 0.0302), (0.27, 0.02858)

(0.2007, 0.03502), (0.2109, 0.03016), (0.2711, 0.03279), (0.3698, 
0.02837), (0.3903, 0.03759), (0.4016, 0.03794), (0.1513,0.03352), 
(0.1815, 0.0301), (0.2008, 0.0297), (0.3699, 0.02838), (0.1601, 
0.02373), (0.2606, 0.03326), (0.3707, 0.02833), (0.3804, 0.03913), 
(0.4107, 0.02826)

σ1 = −0.4204

Figure 13c (0.28, 0.02856), (0.38, 0.04128), (0.41, 0.0283), (0.37, 0.0434), (0.4, 
0.0284)

(0.2007, 0.03502), (0.2109, 0.03016), (0.2711, 0.03279), (0.3698, 
0.02837), (0.3903, 0.03759), (0.4016, 0.03794), (0.3895, 0.03935), 
(0.1904, 0.03713), (0.2701, 0.3446), (0.3799, 0.04077)

σ1(= −0.4204, −0.4077,

−0.3952)

Figure 13d
(0.28, 0.0285), (0.38, 0.0412), (0.41, 0.0283), (0.19, 0.02816), (0.21, 
0.02966), (0.29, 0.02697), (0.36, 0.0484), (0.39, 0.0267), (0.19, 
0.04226), (0.31, 0.02625), (0.35, 0.066)

(0.2007, 0.03502), (0.2109, 0.03016), (0.2711, 0.03279), (0.3698, 
0.02837), (0.3903, 0.03759), (0.4016, 0.03794), (0.1805, 0.03649), 
(0.2806, 0.03412), (0.3518, 0.02672), (0.3707, 0.04031), (0.36, 
0.06836), (0.3804, 0.04929)

σ1(= −0.4204, −0.3684,

−0.3204)

Table 3.   Critical and peaks fixed points for the curves of Fig. 14 when σ1 = p1 − 1.

Figure Critical points Peaks points σ1 = p1 − 1

Figure 14a (0.28, 0.1922), (0.38, 0.874), (0.41, 0.1248) (0.2018, 0.6877), (0.2107, 0.4039), (0.2692, 0.5833), (0.3708, 0.1396), 
(0.3912, 0.7758), (0.4013, 0.7889) σ1 = −0.4204

Figure 14b (0.28, 0.1922), (0.38, 0.874), (0.41, 0.1248), (0.16, 0.331638), (0.21, 
0.43259), (0.17, 0.352582), (0.2, 0.412032), (0.27, 0.19655)

(0.2018, 0.6877), (0.2107, 0.4039), (0.2692, 0.5833), (0.3708, 0.1396), 
(0.3912, 0.7758), (0.4013, 0.7889), (0.1509, 0.6214), (0.2005, 0.3638), 
(0.2704, 0.5986), (0.1601, − 0.3443), (0.3817, 0.8191), (0.4006, 
0.8377), (0.4112, 0.1225)

σ1 = −0.4204

Figure 14c (0.28, 0.1922), (0.38, 0.874), (0.41, 0.1248), (0.37, 0.858698), (0.4, 
0.122753)

(0.2018, 0.6877), (0.2107, 0.4039), (0.2692, 0.5833), (0.3708, 0.1396), 
(0.3912, 0.7758), (0.4013, 0.7889), (0.19, 0.6715), (0.1997, 0.3525), 
(0.2711, 0.5831), (0.3597, 0.1385), (0.3695, 0.8565), (0.3803, 0.8675), 
(0.1406, 0.6064), (0.1501, − 0.6175), (0.1595, 0.6318), (0.1899, 
0.6642), (0.2013, 0.3524), (0.3606, 0.1376), (0.3814, 0.7519), (0.3909, 
0.7635)

σ1(= −0.4204, −0.4077,

−0.3952)

Figure 14d
(0.28, 0.1922), (0.38, 0.874), (0.41, 0.1248), (0.19, 0.327095), (0.21, 
0.400484), (0.29, 0.168595), (0.36, 0.821827), (0.39, 0.120887), 
(0.19, − 0.59488), (0.31, 0.1454), (0.35, 0.742534)

(0.2018, 0.6877), (0.2107, 0.4039), (0.2692, 0.5833), (0.3708, 0.1396), 
(0.3912, 0.7758), (0.4013, 0.7889), (0.1802, 0.6387), (0.2806, 0.5799), 
(0.3505, 0.1346), (0.3708, 0.7136), (0.3809, 0.7271), (0.05086, 
0.4416), (0.05956, − 0.4534), (0.06935,0.4658), (0.1814, 0.5847), (0.3, 
0.558), (0.3402, 0.1311), (0.3609, 0.752), (0.3718, 0.06453), (0.3816, 
0.6574)

σ1(= −0.4204, −0.3684,

−0.3204)



17

Vol.:(0123456789)

Scientific Reports |        (2023) 13:21430  | https://doi.org/10.1038/s41598-023-48523-5

www.nature.com/scientificreports/

The modified amplitudes have been justified over an entire period of time in distinct parametric zones based 
on the previously mentioned data of the used parameters, in which their properties may be displayed in the 
curves of phase plane, as shown in Figs. 13, 14, 15, 16, 17 and 18.

Figures 15, 16, 17 and 18 show how the new modified amplitudes uj and vj change over time τ according to 
the numerical solutions for the system of Eqs. (51)–(54) when cj and ωj have different values. Decay waves have 
been graphed in light of these values until they become nearly motionless at the end of the time period. It is 
noted that these curves behave in a stable manner, which can be asserted when the projections of these curves 
are plotted in a suitable phase plane. Therefore, curves in Figs. 19 and 20 have been drawn to explore how the 
projections of  uj and vj are plotted in the planes ujvj when the aforementioned values of cj and ωj are considered. 
The behavior of the resulting curves shows spiral patterns oriented to one point for each curve, indicating that 
this behavior is steady and free of chaos.

Figure 15.   The modified amplitude u1 via time τ when: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), and (d) ω2(= 2.98, 3.21, 3.5).

Figure 16.   The modified amplitude u2 via time τ when: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), and (d) ω2(= 2.98, 3.21, 3.5).
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Conclusion
This work has focused on analysing the planar movement of a spring pendulum with two degrees of freedom 
that undergoes vibrations, in which its pivot point is confined to move along a trajectory that resembles a Lis-
sajous curve. By utilizing the system’s coordinates, the EOM for the system have been successfully derived using 
Lagrange’s equations. The AMS technique has been utilized to obtain highly refined solutions for this system, 

Figure 17.   The modified amplitude v1 via time τ when: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), and (d) ω2(= 2.98, 3.21, 3.5).

Figure 18.   The modified amplitude v2 via time τ when: (a) c1(= 0.05, 0.07, 0.09), (b) c2(= 0.07, 0.09, 0.12), (c) 
ω1(= 5.07, 5.18, 5.29), and (d) ω2(= 2.98, 3.21, 3.5).
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surpassing previous approximations. These solutions have been contrasted with the obtained NS through the 
4RKA method to reveal the exceptional precision achieved with the employed perturbation approach. The clas-
sification of resonance situations and the development of ME have been accomplished, taking into account the 
solvability constraints. Therefore, the solutions for steady-state scenarios have been verified. The RHC has been 
utilized to evaluate and plot both stable and unstable regions. The obtained outcomes, including FRC and sta-
bility zones, are displayed and visually depicted to evaluate the beneficial impact of various physical parameter 
values on the behavior of the analysed system. Upon scrutinizing the stability and instability zones, it becomes 
evident that the behavior of the system remains stable for a significant portion of its parameters. Furthermore, 
the nonlinear stability analysis of the adjusted amplitudes has been examined to reveal their stationary behavior.

Figure 19.   The projection of amplitudes’ paths u1 and v1 in plane u1v1 when: (a) c1(= 0.05, 0.07, 0.09), (b) 
c2(= 0.07, 0.09, 0.12), (c) ω1(= 5.07, 5.18, 5.29), and (d) ω2(= 2.98, 3.21, 3.5).
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Data availability
All data generated or analysed during this study are included in this published article.
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