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A three‑dimensional model 
with two‑body interactions 
for endothelial cells in angiogenesis
Kazuma Sakai 1, Tatsuya Hayashi 2,3*, Yusuke Sakai 4, Jun Mada 5, Kazuo Tonami 4, 
Yasunobu Uchijima 4, Hiroki Kurihara 4 & Tetsuji Tokihiro 1,6*

We introduce a three-dimensional mathematical model for the dynamics of vascular endothelial cells 
during sprouting angiogenesis. Angiogenesis is the biological process by which new blood vessels 
form from existing ones. It has been the subject of numerous theoretical models. These models have 
successfully replicated various aspects of angiogenesis. Recent studies using particle-based models 
have highlighted the significant influence of cell shape on network formation, with elongated cells 
contributing to the formation of branching structures. While most mathematical models are two-
dimensional, we aim to investigate whether ellipsoids also form branch-like structures and how their 
shape affects the pattern. In our model, the shape of a vascular endothelial cell is represented as a 
spheroid, and a discrete dynamical system is constructed based on the simple assumption of two-
body interactions. Numerical simulations demonstrate that our model reproduces the patterns of 
elongation and branching observed in the early stages of angiogenesis. We show that the pattern 
formation of the cell population is strongly dependent on the cell shape. Finally, we demonstrate that 
our current mathematical model reproduces the cell behaviours, specifically cell-mixing, observed in 
sprouts.

Angiogenesis, a biological phenomenon in which new vascular networks are constructed from existing blood 
vessels, plays a significant role in development, wound healing, menstruation, and pregnancy1. It is also impli-
cated in the progression of pathological conditions such as malignant tumours and retinopathy2. Consequently, 
understanding the mechanisms of angiogenesis has become a crucial topic in modern medicine.

The general process of angiogenesis unfolds as follows. When cells surrounding an existing blood vessel 
become hypoxic or inflamed, they secrete vascular endothelial growth factor (VEGF) among other factors. This 
triggers the degradation of the underlying basement membrane, enabling endothelial cells to form new sprouts. 
Over time, these sprouts are lumenized, culminating in the formation of mature blood vessels. Particularly in the 
early stages of angiogenesis, endothelial cells exhibit complex behaviours such as overtaking each other, making 
U-turns, and intermixing, which are referred to as ’cell-mixing’3,4. Understanding endothelial cell behaviour dur-
ing sprouting, such as ’cell-mixing’, is of considerable theoretical and experimental interest. It is also interesting 
to explore which properties of endothelial cells are associated with the vascular network.

Angiogenesis and vasculogenesis, the latter of wihch refers to the de novo formation of endothelial cells from 
mesodermal precursors, have inspired numerous mathematical models that focus on the formation of the initial 
embryonic vascular network5–7. For example, a mechanical model is based on the hypothesis that the extracellular 
matrix (ECM) is reorganised and the cellular networks are formed as a result of the traction forces exerted by the 
cells on the matrix and the elasticity of the matrix8. Cell movement is assumed to mimic a random walk with a 
bias towards areas of maximum strain, and cell locomotion is modelled as a diffusive movement with diffusion 
dependent on the local strain. According to these hypotheses, the model is described by nonlinear partial dif-
ferential equations (PDEs). Another important factor in cell movement is the effect of chemoattraction. Before 
mesenchymal movement is activated, cells undergo a faster amoeboid-type migration driven by chemical factors 
such as Vascular Endothelial Growth Factor (VEGF). Mathematical models are proposed in which the cells are 
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accelerated by gradients of chemoattractants released by the cells, diffuse and degrade in finite time9,10. They are 
described by PDEs for the fields of cell density (mass conservation law and the momentum balance equation) 
and chemotactic factor concentration (reaction diffusion equation).

Cell-based models have also been proposed for vascular network construction. Since cadherin-mediated 
cell-cell adhesion causes cell rearrangements that are analogous to the surface tension-driven dynamics of immis-
cible liquid droplets, Cellular Potts Models (CPM) are often used to represent cells as liquid droplets, whose 
area and perimeter are limited by mechanisms similar to surface tension and elastic compressibility12,13. Using 
CPM, it is shown that local inhibition of chemotaxis-induced pseudopod extensions by VE-cadherin induces 
the self-organization of endothelial cells into vascular-like networks14; including active cell motility with several 
assumptions such as each cell is capable of autonomous biased random motion, the directional bias is set by 
an internal polarity vector, statistical properties of the random streaming behaviour of endothelial monolayer 
cultures is studied15. By considering a set of rules for cell behaviour, including chemotaxis, haptotaxis, hapto-
kinesis, and ECM-guided proliferation, a model with CPA and PDE for chemoattractant fields reproduces the 
formation of sprouts and branching vascular trees16. As another framework for cell shape, particle-based models, 
in which cells are represented by ellipses on a plane, have shown that ellipses with a large aspect ratio tend to 
form network patterns17,18.

In our previous research, we introduced a discrete dynamical model to describe the behaviour of endothelial 
cells during angiogenesis, based on results from in vitro studies3,11. Unlike the above models using PDEs and 
CPMs, we emphasised the importance of two-body interactions between cells and the deterministic movements 
caused by these interactions. Although the model did not include stochastic movements, chemoattractants, or 
the effects of ECM, we confirmed that deterministic interactions between two endothelial cells can lead to dif-
ferent outcomes, including cell-mixing, elongation, and branching. In this study, we extend our proposed two-
dimensional model to ellipsoids in three dimensions to provide a basis for discussing lumen structures. When 
discussing cellular movements, such as cell-mixing within sprouts or network formation in the early stages of 
angiogenesis, it is reasonable to assume a two-dimensional system. However, we argue that a two-dimensional 
model falls short when considering three-dimensional structures, such as lumen formation20. Therefore, math-
ematical models that describe the movement of endothelial cells in a three-dimensional space are needed. Three-
dimensional models related to angiogenesis have also been studied from several perspectives. An off-lattice, 
agent-based model has been developed for simulating vasculogenesis, with a focus on the formation of new 
blood vessels by endothelial progenitor cells21. The model categorises two types of endothelial cells as vessel ele-
ments within the network and tip cells located at the ends of vessels. It encompasses an array of forces, including 
mechanical and chemotactic forces, along with a distinctive ’persistence force’ for tip cells. Mathematical models, 
which use partial differential equations to link angiogenesis and three-dimensional tumour growth, have been 
proposed as a means of simulating tumour progression to enable chemotherapy evaluation22,23. In contrast to 
these models of angiogenesis, our mathematical framework offers a unique perspective and provides a different 
set of insights into the phenomenon.

In this paper, we introduce a dynamic system model that approximates endothelial cells as ellipsoids in a 
three-dimensional space. This model serves as an extension of our earlier two-dimensional framework, incor-
porating rotational effects resulting from two-body interactions and cell-cell contacts. Furthermore, we integrate 
new driving forces and rotational effects, transitioning from the longitudinal direction to the velocity direction, 
which have been shown to be crucial in the dynamics of two interacting cells24. Although our model is defined 
in a three-dimensional domain, it shares conceptual similarities with the model proposed by Palachanis et al.17, 
particularly in the approximation of cells as ellipsoids and the inclusion of both attractive and repulsive forces. 
The key difference with our model is that in Palachanis et al. the cell rotation rule is based on a Monte Carlo 
algorithm, whereas in the current model we have replaced this with rotational velocity. Numerical simulations 
confirm that the morphology of the cell population generated by our model depends on the shapes of the 
ellipsoids. We examine the underlying factors contributing to this dependency and identify model parameters 
that significantly impact the resultant patterns. To substantiate the robustness of our model, we explore the 
parameter range that yields configurations closely resembling vascular endothelial cell patterns. Finally, we 
performed three-dimensional culture experiments mimicking in vivo angiogenesis, which showed cell mixing 
phenomenon as observed in our previous two-dimensional experiments and models, validating our model for 
three-dimensional angiogenesis.

Methods
Contact of ellipsoids
Let us consider the method to determine if two ellipsoids, representing cells in our model, are in collision. We 
assume that two ellipsoids are in contact if a point on the surface of one ellipsoid lies within the volume of the 
other ellipsoid. A point xti (φ, θ) ∈ R

3 on an ellipsoid corresponding to the ith cell (cell-i) at time t is represented 
by the following parametric equation:

where rti ∈ R
3 is the position of cell-i at time t ∈ Z≥0 , Rt

i ∈ SO(3) is the rotation matrix, and ar , br , cr are posi-
tive real numbers ( cr ≤ br ≤ ar ). For K , L ∈ N , sampling points are generated by dividing the two angles given 
in equation (1) as φ = φk = πk/K , θ = θl = 2π l/L (k ∈ {0, 1, . . . ,K}, l ∈ {0, 1, . . . , L− 1}) (Fig. 1). When 
sampling points xti (φk , θl) on the ellipsoid of cell-i are inside the ellipsoid of cell-j, the following inequality holds:

(1)x
t
i (φ, θ) = r

t
i + Rt
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where Btj (x) := (At
j )
T (x − r

t
j ) . If the sampling points xti (φk , θl) of cell-i and cell-j satisfy inequality (Eq. 2) at 

time t, we say that “cell-i and cell-j are in contact”. In general, it is not easy to determine whether two ellipsoids 
interact with each other by solving two ellipsoid equations. However, it is relatively straightforward to confirm 
whether a point is inside an ellipsoid.

Discrete mathematical model for endothelial cells in three dimensions
In this section, we describe a three-dimensional mathematical model of vascular endothelial cell dynamics. For 
simplicity, we represent each cell as a spheroid (a rotational ellipsoid) with the semi-major axis ar and the semi-
minor axis br = cr (Fig. 2a). The state of cell-i at time t is characterised by three parameters: the centre of the 
spheroid rti ∈ R

3 , the velocity vti ∈ R
3 , and the direction of the major axis (Fig. 2b). Since we consider a spheroid, 

its direction is determined from the direction of only one axis. The three-dimensional model of dynamics of 
cell-i is given as follows: 

 where γ1 (0 < γ1 < 1) denotes the friction coefficient, F t
i,j represents the two-body interaction between cell-i 

and cell- j( = i) , and etx,i ∈ R
3 is the unit vector that indeicates the direction of the major axis of the spheroid. 

Equations (3a) and (3b) are the discretised versions of Newton’s equations of motion, and Eq. (3c) is the equa-
tion of rotation.

Following our previous work19,25, we incorporate the two-body interaction F t
i,j , which consists of a repulsive 

force due to the excluded volume effect and an attractive force resulting from the contact of pseudopods between 
cells. Let F t

r,i,j and F t
a,i,j represent the repulsive and the attractive forces between cell-i and cell-j, respectively 

(Fig. 2c, d). The interaction F t
i,j is expressed as follows:

The repulsive force F t
r,i,j is given by

where fr > 0 denotes the strength of the repulsion (Fig. 2 (c)). When the two spheroids are not in contact, 
F
t
r,i,j = 0 . The attractive force F t

a,i,j is given by
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Figure 1.   Sampling points for K = 4 and L = 8 . (a) An ellipsoid with semi-axes ar , br and cr . The axes ex , ey 
and ez denote the major, middle and minor axis, respectively. The circles on the blue filled semi-ellipse represent 
the sampling points xti (φk , θ0) ( k = 0, 1, 2, 3, 4 ). (b) The cross-section of (a) in the ey-ez plane. The points on the 
ellipse represent the sampling points xti (φ2, θl) ( l = 0, 1, 2, . . . , 7).
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where fa > 0 denotes the strength of the attraction, and Ra represents the radius of the interaction domain of 
cell-i (Fig. 2d). We assume fr > fa > 0 due to the excluded volume effect. In Eq. (3b), Dt

i represents the driving 
force. This force propels the cells in a certain direction and is defined as follows:

where d is a positive constant (Fig. 2e). This force represents the effect of enhanced motility when cell-i is not 
stationary and is interacting with another cell.
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Figure 2.   Schematic diagram of the proposed model. (a) A cell is represented as a spheroid with the semi-
major axis ar and the semi-minor axis br . (b) The external force acts on the center rti , and the velocity vti does not 
necessarily coincide with the direction of the major-axis etx,i . (c–e) Forces acting on a cell: (c) repulsive force, (d) 
attractive force, (e) driving force. (f–h) Rotational forces. (f) Rotation toward the moving direction. The vector 
e
t
x,i is rotated by χ t

i  around nti . The vector nti is perpendicular to both vt+1
i  and etx,i . The angle χ t

i  is determined by 
Eq. (10). (g) Rotation due to cell-to-cell contact when K = 4 and L = 8 . The black point is a contact point on 
the l-th semi ellipse filled in blue. The axis ety,i is perpendicular to both etx,i and etz,i . The vector etx,i is rotated by 
ψ t
i,k around nti,l . The angle ψ t

i,k is determined by Eq. (14). (h) The cross-section of (g) in the ety,i - etz,i plane.



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:20549  | https://doi.org/10.1038/s41598-023-47911-1

www.nature.com/scientificreports/

Equation (3c) indicates that the vector et+1
x,i  is determined by the rotation matrix Rt

i ∈ SO(3) . We consider two 
effects on the rotation: the rotation due to cell-to-cell contact and the rotation toward the direction of movement. 
Let Pti  and Qt

i ∈ SO(3) be the rotation matrices for cell-to-cell contact and the direction of movement, respectively. 
The rotation matrix Rt

i ∈ SO(3) is given by

For the rotation matrix Qt
i  , we adopt the following form:

where γ2 > 0 denotes the strength of rotation, ξ ti  denotes the angle between etx,i and vt+1
i  , and I3 denotes the unit 

matrix of order 3 (Fig. 2f). For n = (nx ny nz)
T ∈ R

3 , S(n) is defined by

When vt+1
i �= 0 , the matrix Qt

i  rotates a vector by the angle χ t
i  around the unit vector nti . If the sign of χ t

i  is posi-
tive (negative), Qt

i  rotates a vector in the anticlockwise (clockwise) direction about the rotation axis nti . Then, 
the matrix Pti  , which represents the rotation caused by cell-to-cell contact, is determined by k, l (Fig. 2g, h). For 
each l, the rotation axis nti, l is defined as follows:

where etz,i is the unit vector from the center rti to the point corresponding to (φ, θ) = (π/2,π/2) . For each k, the 
rotation angle ψ t

i, k is defined as follows.

where fp > 0 denotes the strength of the rotation due to cell-to-cell contact. For sampling points (φk , θl) on the 
spheroid of cell-i that are inside that of cell-j, we obtain the matrix Pti  by multiplying the matrix exp[ψ t

i, k S(n
t
i, l)] as

Note that rotations in three dimensions are generally non-commutative. However, since the parameters for 
rotation, γ2 and fp , are set to 10−3 to 10−2 in our simulation, we assume that the effect of the order of rotation is 
very small.

Settings in numerical simulation
We characterise the shape of a spheroid using oblateness, defined as χ := 1− br/ar . We assume that each 
spheroid is scaled such that arb2r = 1 , ensuring a constant volume. Consequently, we have ar = (1− f )−2/3 and 
br = (1− f )−1/3 . The baseline parameters in our simulations are K = 10 , L = 8 , Ra = 1.25ar , γ1 = 0.1 , fr = 0.02 , 
fa = 0.001 , d = 0.002 , fp = 0.001 , γ2 = 0.01 . Comparing with observations in the experiments3, we estimate 
that one time step is approximately two minutes and the unit length is about 40 µm.

We conduct two types of numerical simulations, Simulation A and Simulation B, to investigate the effect 
of cell shape on pattern formation. Let Nt be the number of cells at time t. In Simulation A, we start no cells at 
t = 0 , and a single cell is introduced at the origin every 10 time steps (i.e., Nt = ⌈t/10⌉ ). The initial velocity of 
an introduced cell is zero, and its major axis direction is randomly selected. In Simulation B, we start Nt = 2500 
cells are randomly distributed within a cube area at t = 0 , and no additional cells are introduced. Their initial 
velocities are zero, and directions of their major axes are randomly set.

To evaluate patterns and alignment, box-counting dimension and a local order parameter are used. The 
method for estimating the box-counting dimension is described in the Supplementary Information under “Esti-
mation of the box-counting dimension”. Local alignment of elongated cells has been shown to play a crucial role 
in network formation17,26. To quantify this alignment, we adopted the following local order parameter:
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where σi(ε) ∈ [0,π) denotes the angle formed between etx,i and the average direction of the long axis of cell-j in 
the ε-neighborhood of cell-i, etx,i :=

∑

j �=i;�rtj−r
t
i�<ε e

t
x,j . The absolute value of the cosine is adopted to equate 

cells facing in opposite directions. This order parameter Õ(ε) takes the value of 1 for perfectly aligned spheroids 
and 0.5 for spheroids with random orientation.

3D cell culture
MS-1 cells were trypsinized and mixed with 1.5 mg/mL collagen matrix (Cellmatrix Type I-A, Nitta Gelatin) 
at a concentration of 2.2× 104 cells/200 µ L. The mixture was inoculated at the φ14mm cavity of glass plates 
(D11130H, Matsunami) and placed in a CO2 incubator for 1 h to let the gel solidate. Then 2 mL of DMEM sup-
plemented with 10% fetal bovine serum (Nissui) and 1/20,000 volume of Syto-16 Green Fluorescent Nucleic 
Acid Stain (Thermo) was added to the plate. After one day, the plates were placed in a confocal laser scanning 
microscope (FV-10i, Olympus) and time-lapse fluorescence and phase-contrast images were obtained every five 
minutes over 8 h with 10 × 0.4 NA air objective lens.

Cell tracking
The images obtained every five minutes were stacked in movies (7 flops per second) and movement of the cells 
were analyzed by manually tracking nuclear positions stained by Syto-16 using the manual tracking plug-in 
equipped in the software ImageJ2 version 2.14.0/1.54 f.

Results and discussion
Cell shape is instrumental in formation of branch‑like structures
The shape of cells, specifically their oblateness χ , significantly influences pattern formation, as observed in both 
Simulation A and Simulation B. As depicted in Fig. 3, the time evolution from t = 0 to t = 25, 000 in Simulation 
A demonstrates this effect. Round cells ( χ = 0.3 ) tend to aggregate (Fig. 3a), whereas elongated cells ( χ = 0.7 ) 
align by t = 5000 and form a network structure by t = 25, 000 (Fig. 3b). More elongated cells ( χ = 0.9 ) aggregate 

Figure 3.   Snapshots of time evolution in Simulation A: (a) χ = 0.3 , (b) χ = 0.7 , (c) χ = 0.9.
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until t = 15, 000 , after which branches grow from the cluster (Fig. 3c). Considering that a single cell is added 
every ten time steps, a total of 2500 cells are distributed by t = 25, 000.

Figure 4 shows the results of Simulation B for oblateness values of χ = 0.3, 0.7, 0.9 . For an oblateness of 
χ = 0.3 , cells aggregate near the center by t = 5000 , forming a large cluster without changing their positions. 
In contrast, elongated cells ( χ = 0.7 ) form branch-like structures by t = 5000 . These branches then undergo 
repeated elongation and bending. For cells with a higher oblateness of χ = 0.9 , clusters form up to t = 10, 000 . 
After t = 15, 000 , branches begin to grow from several clusters, while some cells continue to aggregate.

To assess the differences in pattern formation with respect to oblateness shown in Figs. 3 and 4, we compute 
the box-counting dimension. The box-counting dimension provides a measure of the complexity of the patterns 
formed by the cells, with lower values indicating simpler, more linear patterns and higher values indicating 
more complex, plane-filling patterns. Figure 5 shows the box-counting dimension computed for Simulation 
A and Simulation B at t = 25, 000 . Oblateness is varied from χ = 0.0 to χ = 0.9 in 0.1 increments. Numerical 
simulation is performed 10 times for each oblateness. For both Simulation A and B, the box-counting dimension 
decreases monotonically from χ = 0.0 to χ = 0.8 and slightly increases at χ = 0.9 . Notably, for χ = 0.5 ∼ 0.8 , 
the box-counting dimension is close to 1.0. This result suggests one of the characteristics of the branch-like pat-
tern shown in Figs. 3b and 4b. Since the box-counting dimensions for each oblateness are almost the same in the 
two simulations, Fig. 5 suggests that oblateness is crucial to the difference in pattern formation.

Figure 6 displays the time evolution of the order parameter for χ = 0.3 , 0.7, and 0.9 in Simulation A. The 
results are presented for four radii ε : ε = 5 to examine the orientation in the immediate vicinity of the cell, 
ε = 10, 20 to inspect the local orientation, and ε → ∞ to investigate the global orientation. In the case of ε → ∞ , 
the order parameter is calculated for all cells at that time. For χ = 0.3 , the order parameter remains low at all 
times, both locally and globally. Conversely, the order parameter for χ = 0.7 reaches a high peak before t = 5000 
both locally and globally, and then decays over time. Comparing with Fig. 3b, the branch structure is relatively 
linear at t = 5000 , while bending and bifurcation of the branches are observed afterward. For χ = 0.9 , the 
order parameter in the vicinity of the cells ( ε = 5 ) remains stable after t = 5000 . For ε = 10, 20 , which includes 
more distant cells, the order parameter initially decreases, then tends to increase monotonically over time. For 

Figure 4.   Snapshots of time evolution in Simulation B: (a) χ = 0.3 , (b) χ = 0.7 , (c) χ = 0.9.
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Figure 5.   Box-counting dimension for Simulation A and B. The mean and 95% 
confidence interval are plotted after 10 iterations for each of oblateness from 
χ = 0.0 to χ = 0.9 in 0.1 increments. The parameters other than oblateness were 
K = 10, L = 8, arb

2
r = 1,Ra = 1.25ar , γ1 = 0.1, fr = 0.02, fa = 0.001, d = 0.002, fp = 0.001, γ2 = 0.01 for both 

simulations.

Figure 6.   Temporal evolution of the order parameter for oblateness χ = 0.3 , 0.7 and 0.9 in Simulation A: (a) 
ε = 5 , (b) ε = 10 , (c) ε = 20 , (d) ε → ∞ . These plots show the average over 10 numerical runs and the bands 
show their 95% confidence intervals.
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ε → ∞ , it initially decreases and remains relatively stable around t = 5000 , but the fluctuation increases around 
t = 20, 000 . As shown in Fig. 3c, the branch starts elongating outward from the centre exactly around t = 20, 000 , 
so the magnitude of this fluctuation is likely related to the number of cells in the elongating branch and the degree 
of freedom in the branch direction.

We investigate the order parameter in Simulation B, as shown in Fig. 7. The results for χ = 0.3 and 0.7 are 
almost identical to those in Fig. 6. However, the results for χ = 0.9 show slight differences. For instance, in the 
case of ε = 10 and 20, Fig. 6 shows that the order parameter decreases and then increases, while Fig.7 shows that 
it remains almost constant at a low value.

The analysis presented in Figs. 6 and 7 indicates that the orientation of cells is more aligned around the oblate-
ness χ = 0.7 than in other cases. This difference in orientation leads to the variation in pattern formation shown 
in Figs. 3 and 4, particularly at χ = 0.7 , where dendritic patterns resembling vascular structures are formed.

In our investigation of the effects of dimensionality on the order parameter, we compare the results of our 
three-dimensional model with those of a modified two-dimensional version. Specifically, we carry out simula-
tions similar to Simulation B (Fig. S4). The findings are mostly similar between both dimensions. However, the 
order parameter between the models shows different behaviour when ε → ∞ . For example, the simulation 
in the three-dimensional model at χ = 0.7 displays an early-stage peak that is absent in the two-dimensional 
counterpart (refer to Fig. 7d and Fig. S4d). In the three-dimensional setting, initially positioned ellipsoids form 
one-dimensional structures with adjacent ellipsoids around t = 1250 to t = 3750 in Fig. S5, before they transition 
to a three-dimensional arrangement. This observation suggests an initial peak in the order parameter. Conversely, 
the two-dimensional model does not exhibit this early peak because the sprouts expand in all directions (Fig. S6).

In order to confirm the robustness of our proposed mathematical model, we examine the box-counting 
dimension when varying several parameters. We fix the oblateness at χ = 0.7 and vary the parameters in the 
equations of motion, as well as the sampling point parameters K and L with respect to the ellipsoid. The ratio 
of the parameters related to repulsion and attraction is defined as � := fa/fr , and we investigate its relationship 
with the driving force d. For appropriate values of � , no significant changes in the box-counting dimension are 
observed for d = 0.000 , 0.002, and 0.004 (Fig. S7a–c). The box-counting dimension remains largely unchanged 
for several combinations of the rotation parameters fp and γ2 (Fig. S7d). In regard to the ellipsoid sampling 
point parameters K and L, we found that the box-counting dimension also does not vary significantly, as shown 
in Fig. S7e. Therefore, the current mathematical model is robust to these parameters with respect to the box-
counting dimension.

Figure 7.   Temporal evolution of the order parameter for oblateness χ = 0.3 , 0.7 and 0.9 in Simulation B: (a) 
ε = 5 , (b) ε = 10 , (c) ε = 20 , (d) ε → ∞ . Each plot represents the average order parameter over 10 numerical 
runs, with the bands indicating their 95% confidence intervals.
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Biological validation of the current model
To assess the biological validity of the current model, we investigated cell behaviours within the simulation, 
particularly focusing on the formation of branch network structures. As seen in our previous two-dimensional 
models18,19, the current three-dimensional model successfully simulates sprouting angiogenesis with appropri-
ate cell density along the branches (Fig. 8a, b). Additionally, we observed “cell mixing” phenomenon, which is 
characterized by endothelial cell behaviours involving forward and backward migration with frequent passing 
each other3,4 (Fig. 8c). To confirm the prevalence of this phenomenon in a three-dimensional cell environment, 
we conducted in vitro three-dimensional cultures of MS-1 cells, an immortalized endothelial cell line derived 
from murine pancreatic islet microvessels27. This culture system successfully reproduced angiogenic tube forma-
tion in collagen gel (Fig. 8d). Sequential nuclear tracking using the fluorescent dye Syto-16 revealed frequent cell 
mixing within the developing branches (Fig. 8e-g, Supplemental Movie S1). Collectively, these results support 
the validity of our current model for simulating three-dimensional angiogenic morphogenesis.

Concluding remarks
We have presented a three-dimensional mathematical model of angiogenesis, extending our previous models18,19. 
In this model, each cell is approximated by a spheroid, and we have demonstrated that the shape of a spheroid 
significantly influences pattern formation. Branch-like patterns emerge when the oblateness is approximately 
0.7. Elongated spheroids ( χ = 0.7 ) can generate network structures under two different simulation conditions. 
We obtained qualitatively similar results when the parameters of interaction were varied, suggesting that these 
results are intrinsic features of our model. The proposed model successfully reproduces the pattern of elongation 
and branching observed in the initial stage of angiogenesis. We believe that this model can be further developed 
to simulate not only the initial stage of angiogenesis but also the formation of lumen structures.

Data availability
 The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request. Customised scripts are available from https://​github.​com/​Roast​edGre​enTea​aa/​
scrip​ts-​angio​genes​is_​3D.

Received: 13 June 2023; Accepted: 20 November 2023

Figure 8.   Comparison of the mathematical model with experimental observations. (a,b) Representative image 
of the simulation forming a branching network structure. The boxed branch in (a) is magnified in (b), where 
the right image is a longitudinal view of the left in the direction of the orange arrow. (c) Time evolution of cell 
positions in the branch in (b). Each line with different colour represents individual cell trajectory projected 
onto the blue arrow in (b). (d–g) Time-lapse images of endothelial cells during branch formation in three-
dimensional culture. Phase-contrast (d) and fluorescent nuclear track (e,f) images are shown. Note that the 
positions of cells marked with different colours are changing within the branch. Scale bars, 20 µm.

https://github.com/RoastedGreenTeaaa/scripts-angiogenesis_3D
https://github.com/RoastedGreenTeaaa/scripts-angiogenesis_3D
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