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A novel approach to estimate 
the weight of food items 
based on features extracted 
from an image using boosting 
algorithms
Fotios S. Konstantakopoulos 1,2, Eleni I. Georga 1,2 & Dimitrios I. Fotiadis 1,2*

Managing daily nutrition is a prominent concern among individuals in contemporary society. The 
advancement of dietary assessment systems and applications utilizing images has facilitated the 
effective management of individuals’ nutritional information and dietary habits over time. The 
determination of food weight or volume is a vital part in these systems for assessing food quantities 
and nutritional information. This study presents a novel methodology for evaluating the weight 
of food by utilizing extracted features from images and training them through advanced boosting 
regression algorithms. Α unique dataset of 23,052 annotated food images of Mediterranean cuisine, 
including 226 different dishes with a reference object placed next to the dish, was used to train the 
proposed pipeline. Then, using extracted features from the annotated images, such as food area, 
reference object area, food id, food category, and food weight, we built a dataframe with 24,996 
records. Finally, we trained the weight estimation model by applying cross validation, hyperparameter 
tuning, and boosting regression algorithms such as XGBoost, CatBoost, and LightGBM. Between 
the predicted and actual weight values for each food in the proposed dataset, the proposed model 
achieves a mean weight absolute error 3.93 g, a mean absolute percentage error 3.73% and a 
root mean square error 6.05 g for the 226 food items of the Mediterranean Greek Food database 
(MedGRFood), setting new perspectives in food image-based weight and nutrition estimate models 
and systems.

The management of an individual’s daily dietary intake is a significant concern that impacts both low- and high-
income nations. Inadequate dietary intake and unhealthy eating patterns have been identified as contributing 
factors to the development of malnutrition and a range of chronic diseases including obesity, diabetes, cancer, 
and cardiovascular diseases (CVDs)1. Malnutrition occurs when a person’s daily intake of energy and nutrients 
is abnormally low or excessively high. Undernutrition (wasting, stunting, and underweight), which is defined by 
a lack of energy and nutrients, and overnutrition, which is characterized by an excess of energy and nutrients, 
are the two main types of malnutrition. Undernutrition is a contributing factor in 45% of the deaths of children 
under five in countries with low or middle  income2. Malnutrition appears in one or more forms in every country, 
and it is one of the most significant challenges for both health and the economy worldwide. The National Center 
for Disease Control and Prevention estimates that 173 billion USD are spent on obesity-related medical care in 
the USA each  year3.

Today, the widespread adoption of Artificial Intelligence (AI), the Internet of Things (IoT), and computer 
vision has enabled users to make use of food applications for monitoring and recording their dietary  intake4. 
Recent studies have shown that AI-based applications are more popular among users compared to other record-
ing  methods5. Moreover, capturing food images through a smartphone provide the capability of continuous 
recording of health data in real time, as it offers the user a kind of interaction with the application, making it 
enjoyable to use. In contrast with traditional methods of calculating nutritional content, the widespread and 
increasing utilization of these applications has significantly accelerated their popularity. Nutritional assessment 
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applications, such as Snap-n-eat6 and Carbs and  Cals7, have been devised to automatically monitor, record, and 
compute an individual’s daily dietary consumption without requiring their active participation. Two key com-
ponents of these applications and systems include: (i) the dataset containing food images; and (ii) the subsystem 
responsible for estimating volume or weight of food.

The acquisition of food images and the development of a comprehensive database are associated with utmost 
importance in the context of nutrition assessment systems. This is due to their direct impact on the efficiency 
of artificial intelligence models and computer vision techniques employed in these systems. The way the images 
are taken directly depends on the methodology and techniques chosen to calculate the weight or quantity of the 
food. This process is known to be very demanding, often requiring a specific number of images, a specific meth-
odology for capturing them, in many cases, a controlled environment, a calibrated camera, and often dedicated 
cameras designed specifically to capture food images. Actually, the process of determining the quantity or weight 
of a food image presents an enormous challenge, even for professionals in the field of nutrition. For instance, in 
the field of volume estimation, stereo vision techniques need the use of a minimum of two food  images8, depth 
camera techniques require the usage of a specific device or sensor capable of accurately estimating the depth and 
distance of the captured  image9, whereas deep learning techniques require a database of depth food  images10.

Considering the challenges related to existing methods for calculating food quantities or weights from images, 
this study presents a novel dataset containing features extracted from annotated food images and a new approach 
for estimating food weight via the use of an advanced Machine Learning (ML) regression algorithm. In the 
present research, boosting regression algorithms were employed to determine the weight of a food image. The 
innovation of the proposed approach is the calculation of food weight through features extracted from a single 
image captured by a mobile phone camera. The weight was calculated based on various features extracted from 
annotated images, including the food weight, food area, reference object area, and other associated attributes. 
The annotations that have been extracted are utilized for the purpose of generating a dataframe that includes the 
features associated with the images. Next, a range of boosting regression models were developed and trained, 
achieving outstanding results that introduce novel insights into the field of food volume and weight estimation 
systems. Moreover, the recent study aims to address various challenges associated with image capture, image 
quantity, depth sensor utilization, and the constraints related to the types of food for which weight estimation is 
possible. Additionally, it can be integrated into dietary assessment systems and applications, thereby enhancing 
the precision of the food volume/weight estimation process. Finally, it is worth mentioning that the proposed 
model only needs one image in which the food it contains has previously been correctly segmented and classi-
fied to calculate its weight.

In summary, the main contributions of the current study include: (i) an annotated database of Mediterranean 
food images by weight, cuisine, food category and more, (ii) the creation of a dataset from features extracted 
from annotated food images, (iii) a unique optimization using the Optuna framework on well-known boosting 
algorithms trained on our generated dataset, (iv) an innovative approach that can calculate the weight of any 
food, regardless of its shape, texture, and form (liquid or solid), and (v) an approach that only needs just one 
image of the food and information extracted from its segmentation and recognition without additional terms 
and conditions.

Related work
The fundamental parts that constitute dietary applications and systems encompass two vital parts: (i) the food 
image dataset, which is an essential starting point for data analysis and model training, and (ii) the volume 
estimation subsystem, which provides a crucial part in accurately estimating the quantity or weight of food 
 items11. Figure 1 shows a vision-based nutritional assessment system and its main components. Its main parts 
include those related to and developed for this research, including the food image database and the food weight 
calculation subsystem. The food image dataset plays a crucial role in the development of a reliable dietary assess-
ment system and has a direct impact on the effectiveness of its subsystems. The characterization of a dataset can 
be determined based on two primary factors: the quantity of images and classes it encompasses, as well as the 
specific cuisine type it represents; the source from which the images are obtained; and the type of use for the 
image database (i.e., for segmentation, classification, or volume estimation tasks). The  Food524DB12 dataset is 
comprised of a total of 247,636 food images that encompass a wide range of international cuisine. These images 
are categorized into 524 distinct food classes and were obtained from various existing databases. On the other 
hand, the UECFoodPix-Complete13 dataset specifically focuses on Japanese cuisine. It consists of 10,000 food 
images that have been annotated and categorized into 102 food classes. This dataset is particularly well-suited 
for tasks related to image segmentation. Depending on the method used to determine the meal’s volume or 
weight, the image dataset for volume or weight estimate tasks may also include the depth map of the food images. 
Additionally, other details like food weight, camera features, or camera viewing angle are required to calculate 
the food  volume14.

In vision-based dietary assessment systems, the most challenging tasks are volume or weight and nutrient 
estimation. The challenges associated with estimating the amount of food through image analysis for nutritional 
assessment systems are primarily attributed to the controlled environment required for food image capture, the 
need for multiple images, the difficulty in estimating the volume of the food with weak textural features, and the 
variability in dataset creation methods across different studies. These factors contribute to the complexity of accu-
rately determining food quantities from images, as there are various interpretations and approaches employed 
by different systems in addressing this task. The categorization of current methods for estimating volume can 
be divided into five main  categories15: (i) approaches based on stereo vision  techniques16, (ii) approaches based 
on pre-build shape  templates17, (iii) approaches based on perspective  transformation18, (iv) approaches based 
on depth  cameras9, and (v) approaches based on deep  learning19. In general, each of the five approaches exhibits 
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technical characteristics that impose certain limitations on their applicability. These limitations include the 
requirement for multiple images, a limited number of shape templates, dependence on wearable devices (e.g., 
depth camera), and the challenges associated with generating a three-dimensional food point cloud.

Results
The boosting regression models were validated using the validation subset. We performed the runs 10 different 
times for each model, employing a randomized approach to choose the training and validation sets. The average 
results and a comparison of tenfold cross validation are shown in Table 1 for the training models (XGBoost, 
CatBoost, and LightGBM) developed in this study. The proposed model, using the XGBoost algorithm, achieves 
a  MWAEoverall of 3.93 g, a  MAPEoverall of 3.73% and a  RMSEoverall of 6.05 g per food item on the MedGRFood 
database. The model with the CatBoost algorithm achieves a  MWAEoverall of 16.15 g, a  MAPEoverall of 16.44% and 
a  RMSEoverall of 22.19 g, and the final model with the LightGBM algorithm a  MWAEoverall of 13.93 g, a  MAPEoverall 
of 12.94% and a  RMSEoverall of 21.26 g. The findings of this study are highly promising, since they present a novel 
approach to estimate the weight of food images that differs from the existing methods discussed in the relevant 
 literature15 (Table 2). The outperforming results demonstrated by the model utilizing the XGBoost algorithm 
in comparison to the other two models are most likely due to XGBoost’s ability to handle datasets with limited 
features as well as its improved ability to effectively optimize the hyperparameters. In Fig. 2, we show the MWAE, 
MAPE, and RMSE metrics for each run of the XGBoost regression model for the training and validation subset 
random splits. We notice that the best values in the evaluation indices are observed in the fifth time, while the 
worst values are observed in the sixth time. Figure 2 shows the superiority of the XGBoost algorithm in relation 
to the two other boosting algorithms employed. This is proven from the consistently superior performance of 
XGBoost, as its results above the average performance of the other algorithms. Furthermore, it confirms the 
very good overall outcomes achieved by the suggested pipeline on our generated dataset. Figure 3 presents the 
overall density distribution of the continuous actual and predicted values of the weight estimation models, 
where the superiority of the model based on the XGBoost algorithm is depicted (blue line). We observe that 
the distributions of actual and predicted values show more variation for foods weighing between 200 and 300 
g and for foods weighing more than 700 g. In contrast, it can be observed that there is a convergence between 
the predicted and actual values, resulting in a lower variance, for food items that have a low weight. Similarly, 
this convergence is also observed for food items that weigh more than 300 g. In Fig. 4, we present the actual and 
predicted weight values compared to each of the dataset features generated for the proposed model. We observe 
that the largest residuals are for food items belonging to the category with id six, eight and twelve (grain, vegetable 

Figure 1.  A dietary assessment system that includes the proposed methodology for estimating the weight of 
food.

Table 1.  Average results of the proposed boosting algorithms.

MWAEoverall (g) MAPEoverall (%) RMSEoverall (g)

XGBoost (proposed model) 3.93 3.73 6.05

CatBoost 16.15 16.44 22.19

LightGBM 13.93 12.94 21.26
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Table 2.  Presentation of food volume and weight approaches including the proposed study.

Study Approach Techniques Dataset Results

Liu et al.31 Single view image with a reference object
Combining faster R-CNN, Grabcut, 
Median filtering, and CNN algorithm, they 
proposed a framework for estimating food 
volume

5 kinds of foods Mean absolute error of each kind of food is 
less than 4.5%

Yang et al.32 Single-view RGB image
Estimates volume by computing the inner 
product of the modified MobileNetV2 
probability vector and the reference 
volume vector

50 Chinese foods 11.6–20.1% mean relative volumetric error 
on 174–540 food images

Yuan et al.33 Multi-view method 3D reconstruction from multi-view RGB 
images 6 food items 0.83–5.23% measurement volume error

Lo et al.19 Deep learning view synthesis using a single 
depth image

Make use of 3D point cloud comple-
tion method to achieve accurate volume 
estimation

11 food items 15.3% mean volume estimation error

Proposed study Single view image with a reference object
XGboost regression algorithm was 
employed to determine the weight of a 
food image, based on various features 
extracted from annotated food images

226 Mediterranean foods
Mean weight absolute error 4.05 g; mean 
absolute percentage error 4.08%; and root 
mean square error 7.21 g

Figure 2.  MWAE, MAPE, and RMSE metrics for each run of the XGBoost regression model.

Figure 3.  Density distribution of actual vs predicted values between the used boosting algorithms.
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and miscellaneous products). In these categories, there are foods in liquid form, such as soups, where the exact 
calculation of their weight is a very difficult task due to the depth of the dish that contains them. In contrast, it 
is worth noting that foods that do not fall into the previously mentioned categories show improved accuracy in 
predicted weight measurement due to their more distinct shapes. Furthermore, looking at the predicted versus 
actual values relative to the area of the food in pixels, we observe a larger price deviation for foods with a larger 
surface area, which is also confirmed by the image associated with the feature reference to food area. In our 
analysis, it is clear that images featuring significant food or reference areas exhibit a greater degree of variability 
in weight calculation. The observed trend can be attributed to the utilization of a wide viewing angle during 
image capture. As a consequence, a larger number of pixels from the food or reference card area are included, 
thereby resulting in predicted values with greater variance. By implementing a protocol of slightly constraining 
the shooting angle and distance during the process of capturing images, it is possible to assume that the observed 
deviations in weight value prediction could be reduced, potentially leading to improved outcomes. Finally, Fig. 5 
presents the distribution of MAPE across various food categories. We notice a large dispersion in vegetables, 
where there are foods with very little weight in which it is possible that there will be overlapping of their vari-
ous pieces during photography (i.e., raw glistrida, spinach salad, parsley), so we are also led to a weight value 
prediction with a large deviation.

Discussion
In the field of food image databases, the application of deep learning techniques for the purpose of food recogni-
tion tasks has been observed to produce databases that aim to include a large number of images for each food 
category. The existing databases have several limitations in terms of the number of food classes they include, 
which is dependent upon the dietary preferences and practices of the researchers who are constructing the data-
bases. The task of collecting food images and building food image databases has become less difficult nowadays, 
mainly due to the widespread practice of downloading and sharing images on social media platforms, which 
provides the ability to collect images from different sources. Nevertheless, the development of an extensive 
database that incorporates not only the nutritional information of food but also its constituent ingredients or 
weight remains a demanding task.

In this study, we presented an updated version of the MedGRFood database that includes more images and 
food categories with recorded food  weight11. The MedGRFood food image database focuses primarily on Medi-
terranean cuisine, thus limiting its application to a wider range of culinary traditions. However, the process of 
annotating images and creating a dataset containing the unique features extracted from each annotated image 
provides an innovative perspective on how to approach similar problems. The dataset generated in this study 
represents an innovative effort in the field, as it is the first to present this structure. The proposed dataset was 
generated through the resulting question, "How can the problem of estimating the weight or amount of food 
be approached as a regression problem?". The previously mentioned question inspired the identification of the 
following features: food area, food reference area, food name id, category name id, and weight, which act as 

Figure 4.  Predicted vs. actual values for food_name_id, category_name_id, food_area and reference_area 
features in the generated dataset using the XGBoost algorithm.
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benchmarks for the proposed dataset. This dataset has significant potential to advance current methodologies 
used for image-based food weight estimation.

The task of estimating volume represents major difficulties in the context of vision-based dietary assessment 
systems. The use of depth cameras in the field of scale and quantity calculation, as well as in capturing multiple 
images for 3D reconstruction of food, presents certain constraints that limit their extensive adoption. Moreover, 
it is crucial to note that the application of food estimation methodologies based in geometric patterns allows 
for the calculation of volume estimation only for a limited number of food items characterized by identifiable 
geometric formats. The application of deep learning methods in the domain of food volume estimation has 
attracted significant interest in recent years due to its promising results. However, it has been observed through 
relevant  literature14 that these techniques do not exhibit superior performance compared to the methodologies 
currently in use.

Table 2 presents the comparison of recent food volume or weight approaches with the proposed study. It is 
obvious that the proposed study is superior in terms of the number of foods for which their weight can be cal-
culated, in that it requires only one image without additional devices and without a specific acquisition method, 
and in that it can be applied to both solid and liquid foods without limitations about the shape of the plate or the 
type of reference object that it needs. This study’s innovative method for calculating food weight based on an 
annotated image is the reason for this distinction. The dataset that has been generated enables us to establish a 
correlation between the calculation of food weight and a regression problem, further allowing us to treat it as a 
food weight estimation problem rather than a food quantity estimation problem. To address this, we proceeded 
by building and training boosting regression algorithms. The outcomes obtained from the implemented model, 
utilizing the XGBoost algorithm, exhibit a notable advancement over the existing  methodologies14. The decision 
to exclusively consider algorithms from the boosting family was based on their potential efficiency in addressing 
regression problems and their ability to surpass the performance of traditional ML and deep learning algorithms. 
They exhibit the ability to deal with multiple categorical features, demonstrating superior outlier handling capa-
bilities compared to other algorithms. Additionally, boosting algorithms show reduced bias, mitigating the risk 
of overfitting, and they enable the optimization of regression models across a wide range of parameters. Also, 
although in the respective research studies they usually present the results of one metric, in our research we pre-
sented the results of all the metrics used in food volume or weight estimation tasks through images. In addition, 
although similar studies make a clear distinction and estimate the quantity of solid  foods16, the present study 
offers a holistic approach without any distinction. This novel approach offers a promising solution to address 
the basic challenge of accurately estimating food weights through images. The methodology proposed requires 
the inclusion of just one image, preferably captured from a view from above or with a low viewing angle, and 
demands the accurate segmentation and classification of the food items present on the plate. This process will 
provide useful information about the food itself, its category, and finally the area of pixels covered by the food 
and the reference object. The next steps of our research include evaluating the proposed system on an external 
food dataset, as boosting algorithms tend to underperform in a range of values different from the one, they were 
trained on. Also, building and training more complex models for food weight estimation utilizing Convolutional 
Neural Network (CNN) and Long Short-Term Memory (LSTM) models are among our priorities.

Figure 5.  MAPE distribution across food categories.
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Conclusions
In this study, the architecture and overall concept of a model for estimating the weight of food by extracting fea-
tures from annotated images were presented. The appropriate dataframe was created and the model is based on 
an augmented regression algorithm. The proposed methodology and model provide an innovative approach and 
solution to the problem of calculating food weight from images. By combining it with the database of nutrients 
and  macronutrients20 and integrating it into a dietary assessment system, it aims to support health professionals 
in identifying dietary risks and consumers in following a healthy and balanced diet. Both perspectives play a sig-
nificant role in the prevention of malnutrition, as well as several other diseases and conditions related to nutrition.

Methods
Food image dataset
The  MedGRFood21 image database was utilized in the current study for both training and evaluating the weight 
estimation model. The MedGRFood dataset is a recently introduced database of food images specifically focused 
on Mediterranean cuisine. It comprises a total of 51,840 images, each representing a distinct Mediterranean dish, 
and these images are categorized into 160 classes, making it suitable for various classification tasks. Additionally, 
the dataset includes an additional subset of 23,052 food images, categorized into 226 categories with at least 100 
images for each food. The entirety of the images have been systematically collected within a controlled environ-
ment, where a reference object (card or coin) has been placed next to the dish. This subset is particularly useful 
for tasks related to volume estimation and contains images of Mediterranean dishes, such as pastitsio, moussaka, 
seafood dishes, nuts, fruits, etc. (Fig. 6). Figure 7 shows the distribution of food items for each food category 
in the MedGRFood image database used in this study. In the context of this research work, it was necessary to 
systematically annotate the entire collection of 23,052 images within the selected subset. The annotations were 
accurately executed, focusing on several key aspects, including the categorization of the food, the specific name 

Figure 6.  Examples of food images from the MedGRFood dataset used in this research.

Figure 7.  Distribution of food items for each food category in the MedGRFood database.
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of the food item, the cuisine associated with the dish, the presence of any reference objects, and lastly, the weight 
of the food item in grams. The database includes a wide range of images for each food item, capturing different 
viewing angles and distances between the camera and the dish. The  CVAT22 annotation tool, an open-source tool, 
was utilized for the purpose of food image annotation. Figure 8 shows examples of CVAT-annotated images and 
the attributes imported. Then, the annotated images were exported in COCO  format23, generating a JSON file 
that, with appropriate processing, creates a two-dimensional data structure of dimensions 24,996 × 12 with the 
features of the images. The creation of the dataframe includes food items that consist of multiple pieces, resulting 
in a larger number of records compared to the total number of images available in the MedGRFood database. 
This dataframe comprises 24,996 records arranged as rows, each containing 12 different features represented as 
columns. Some of these features included are: the food name, food name id, category name, category name id, 
weight, food area in pixels, and the reference area in pixels, creating a unique dataset that includes food features 
which is suitable for training machine learning regression models. There is a direct connection between the fields 
food name and food name id, and the fields category name and category name id based on the Greek Composi-
tion dataset by the Hellenic Health  Foundation24. For example, the food name “pastitsio” has food name id 274 
and category name id 12. Table 3 shows the creation of the data structure of the annotated images exported in 
COCO format.

Data manipulation
The next step in the proposed methodology includes data manipulation, where the data is methodically organized 
to enhance its readability, design, or structure. The process of data manipulation plays a crucial role in optimizing 
the utilization of information by systematically organizing raw data into a structured format. This procedure is 
required for improving productivity, identifying and analyzing patterns and trends, among other benefits. Since 
a large part of the images have been captured with a card as the reference object and the rest with a 2-euro coin 
as the reference object, the first step is to convert the reference area field so that all records refer to the 2-euro 
coin for reference. Knowing that the ratio between the areas covered by a reference card (8.5 cm × 5.5 cm) and the 
2-euro coin is 8.9, we convert the records that have the reference object area of the card into a 2-euro coin. Next, 
we create a new field, the ratio of the reference area to the food area, which is unique for each type of food since 
it directly depends on the distance the image was taken and the perimeters of the areas of interest. Then, through 
the dataframe, a selection was made to exclude certain attributes, namely image id, food name, category name, 

Figure 8.  Annotated images using CVAT annotation tool with imported attributes.

Table 3.  Structure of the generated dataframe dataset.

Image id Food name Food name id Category name Category name id File name Width Height Food area Reference area Weight Cuisine

88 Boiled greens 222 Vegetables 8 2.jpg 600 800 25,370 1992 103 Greek

73 Dolmades 116 Grain 6 63.jpg 600 800 25,424 1919 204 Greek

35 Fava 217 Vegetables 8 68.jpg 600 800 30,123 2349 91 Greek

14 Ouellette 20 Egg 2 87.jpg 600 800 58,388 1476 235 Greek

93 Pork souvlaki 317 Meat 3 15.jpg 600 800 11,867 11,031 74 Greek

77 Tzatziki 293 Miscellaneous 12 74.jpg 600 800 37,590 1142 245 Greek

82 Feta 372 Milk 1 25.jpg 600 800 12,051 1478 99 Greek

8 Fried gopa 331 Seafood 4 39.jpg 600 800 18,641 5970 69 Greek

95 Hazelnut 323 Nuts 7 56.jpg 600 800 29,737 1238 87 Greek

49 Melon 393 Fruits 9 75.jpg 600 800 16,628 1445 120 Greek
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file name, height, width, and cuisine. Consequently, the resulting dataframe contains a total of 24,996 records 
and 6 columns. Figure 9 illustrates the features and their respective associations within the generated dataframe.

Boosting algorithms
Once the dataframe has been appropriately manipulated, a dataset that is suitable for machine learning regression 
techniques has been generated. The task of estimating weight can be defined as a regression problem, in particular 
for value forecasting. In this case, the requested value, indicated as y, represents the weight of the food and is con-
sidered the dependent variable, while the remaining features represent the independent variables. In the current 
study, the use of boosting machine learning algorithms was employed to calculate food weight. These algorithms 
were chosen due to their strong capabilities to solve regression problems, their ability to improve predictive 
accuracy, their capacity to handle diverse data types, and their flexibility in optimizing a range of loss functions. 
Boosting is a widely used ensemble learning technique in which a series of weaker learners are sequentially fit 
to a given dataset. This iterative process aims to improve the overall predictive performance of the ensemble 
by focusing on the instances that were previously misclassified. By iteratively adjusting the weights assigned to 
each instance, boosting effectively emphasizes the difficult-to-classify instances, allowing subsequent learners to 
focus on these challenging cases. This iterative nature of boosting enables the ensemble to learn from the mis-
takes made by previous learners, leading to a more accurate and robust final prediction. Each subsequent weak 
learner that is trained is designed with the objective minimize the errors that arise from the previous  learner25.

Extreme gradient boosting
The algorithm initially utilized for the computation of food weight was the Extreme Gradient  Boosting26 
(XGBoost) algorithm. XGBoost is an optimized implementation of gradient boosting (Table 4) that has received 
significant popularity and appreciation due to its efficiency and scalability. Also, XGBoost is a popular machine 
learning algorithm that presents a range of enhancements compared to the traditional gradient boosting tech-
nique. These advancements include the incorporation of regularization techniques, the ability to handle sparse 
data efficiently, the utilization of parallel computing for improved performance, and an outstanding accuracy 
that surpasses other machine learning algorithms in various predictive modeling cases. XGBoost works through 
an ensemble learning technique that utilizes the combination of multiple weak learners to construct a robust 
and powerful learner, and a training process that involves the construction of multiple decision trees. Finally, 

Figure 9.  Correlation table between the features of the generated dataframe.

Table 4.  Pseudo code of gradient boosting algorithm.

Gradient Boosting Algorithm
1. initialize model with a constant value:

( ) = ∑ ( , )= // L is the loss function,
// searching for the value γ that minimizes ∑ ( , )=

2. for = : // M is the number of trees we are creating, and m represents the index of each tree
3. compute residuals = − [

( , ( ))

( )
]

( )= − ( )
, = , , … , // calculation of residuals for 

each sample i
4. fit a regression tree to the targets giving terminal regions = , , … ,

// j is a terminal node (i.e., a leaf) in the tree and J represents the total number of leaves
5. compute = ∑ ( , − ( ) + ), = ,… ,∈ // where Fm is the prediction 

for each tree
//searching for that minimizes the loss function on each terminal node j

6. update the model:
( ) = − ( ) + ∑ ( ∈ )= // ν is learning rate ranging between 0 and 1

7. Output: ̂ ( ) = ( )
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each tree is trained on a subset of the data, and the predictions from each tree are combined to form the final 
prediction. The structure of the proposed XGBoost regression algorithm is shown as a decision tree in Fig. 10. 
The numbers in the ellipses represent the feature thresholds defined during the decision tree’s construction.

Categorical boosting
The next algorithm employed in our study was the Categorical  Boosting27 (CatBoost) algorithm. The CatBoost 
algorithm is a depth-wise gradient boosting technique that has been developed to address the challenges asso-
ciated with effectively handling categorical features. The approach employed in this algorithm involves the 
utilization of a hybrid technique, specifically gradient boosting, in conjunction with one-hot coding. The utiliza-
tion of this particular combination allows the efficient handling of categorical variables, consequently reducing 
the necessity for extensive preprocessing steps. The CatBoost algorithm incorporates a range of techniques to 
effectively address the issue of overfitting that can happen during the boosting process. The proposed approach 
incorporates regularization techniques, specifically "l2" and "l1" regularization, to prevent overfitting and enhance 
generalization. These regularization techniques are applied to the leaf values of the trees. Additionally, the method 
employs feature selection techniques (i.e., border count), which further contribute to the prevention of overfit-
ting and generalization.

Light gradient boosting machine
The final boosting algorithm we used was the Light Gradient Boosting  Machine28 (LightGBM). LightGBM is a 
distributed and efficient gradient-boosting framework (Table 4) that uses tree-based learning, that is designed to 
be highly efficient and scalable. The decision trees in LightGBM are constructed using a unique technique called 
"Leaf-wise" tree growth. In contrast to conventional depth-first approaches such as Depth-wise or Level-wise, 
where trees are expanded by dividing nodes at each level, LightGBM adopts a top-down approach by selecting the 
leaf nodes. The algorithm employs the strategy of selecting the leaf node with the highest delta loss for splitting. 
This approach leads to the generation of trees that are both more informative and deeper in structure. It is very 
fast in handling a large amount of data thus it is named as “light”. It introduces several innovative techniques, 
such as Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB), which enable it to 
handle large-scale data and high-dimensional feature spaces. Finally, LightGBM effectively addresses the issue 
of overfitting by integrating regularization techniques, specifically L1 and L2 regularization.

Hyperparameters tuning
Hyperparameters refer to the adjustable variables that are used to determine the learning process of a machine 
learning model. The users demonstrate the ultimate authority to determine how the model acquires knowledge 
about a particular association between input data and related predictions. The optimization of a model’s hyper-
parameters is a crucial step in addressing a particular problem, as it enables the development of an optimal model 
by identifying the most appropriate combinations of hyperparameters. The proposed model should have the 
ability to yield the best results by minimizing the loss function. To tune the hyperparameters of the proposed 
weight estimation models, we used the Optuna  framework29. Optuna offers a convenient and efficient way to 
incorporate various advanced optimization techniques for the purpose of rapidly and effectively optimizing 
hyperparameters. By default, Optuna employs a  Bayesian30 optimization algorithm (TPE). However, it offers 
the flexibility to seamlessly switch to alternative algorithms available within the Optuna framework. Figure 11 
presents the hyperparameter importance of the proposed CatBoost algorithm.

Training and evaluation
To train and evaluate the boosting algorithms, we split the data into training and validation subsets. For the vali-
dation subset, we randomly selected 10% of the records from each food after first shuffling the existing records 
for each of them. Thus, two sub-datasets are obtained from the existing dataset, the first containing 22,527 
records used for training and evaluation and the second with 2469 records used for validation. Model testing 
was performed on validation subset that were not considered during the training phase and, consequently, did 
not influence the feature selection process. To account for randomness, obtain reliable and stable results, and 

Figure 10.  A decision tree structure of the proposed XGBoost algorithm.
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ensure the robustness of our model evaluation, we performed the runs 10 different times with a random selec-
tion of the training and validation sets each time. Next, we performed a tenfold shuffle cross-validation (cv) on 
the training sub-dataset. Figure 12 shows the overall pipeline of the proposed weight calculation methodology 
during the training and validation steps. The primary objective of cross-validation is to assess the generalization 
performance of a machine learning model by evaluating its predictive capabilities on unknown data. Moreover, 
this technique is employed to identify potential issues such as overfitting or selection bias, as well as to provide 
valuable insights into the generalization capabilities of the model when applied to an independent dataset. In 
addition, early stopping techniques are employed to reduce the issue of overfitting in the training data. This is 
achieved by continuously evaluating the performance of the boosting models during the training process using 
a test dataset. If the performance on the test dataset doesn’t show any improvement after a certain number of 
training iterations, the training procedure is stopped. For the training sub-dataset in each cv fold, we created 
additional features separately for the train and test subsets in order to improve the performance of the boosting 

Figure 11.  Hyperparameter importance of the CatBoost algorithm.

Figure 12.  The proposed weight calculation pipeline during the training and validation steps.
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algorithms. These additional features are for each food item: the average weight, the average food area, the average 
reference area, the weight standard deviation, and the ratio of the average reference area to the average food area. 
Figure 13 shows the feature importance for the proposed XGBoost model. We observe that all features affect the 
training of the XGBoost algorithm almost the same, except the Reference_area feature, which clearly affects less.

As evaluation metrics for the proposed model, we used for each food item the Mean Weight Absolute 
Error—MWAE:

the Mean Absolute Percentage Error—MAPE:

and the Root Mean Square Error—RMSE:

where  Wpred is the predicted weight of food,  Wreal is the real weight, and n represents the corresponding records 
for each food item present in the generated dataset. In total, we estimate the weight of 226 different dishes from 
the MedGRFood image dataset, using the evaluation metrics:

and,

Implementation
The workflows were executed under the high-performance computing infrastructure (HCI) which has been 
explicitly designed for data intensive tasks as part of the PRECIOUS project. The HCI currently includes 576 
Intel(R) Xeon(R) Gold 5220R physical cores, 86000 CUDA cores, 4.6 TB RAM, and 0.5 PB raw storage. Also, we 
used the Python programming language to implement the dietary assessment system in the Anaconda environ-
ment, installing appropriate libraries for the implementation of the food weight estimation system.
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Figure 13.  Feature importance of the XGBoost algorithm.
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Data availability
The data that support the findings of this study are available from the MedDietAgent and GlucoseML consorti-
ums, but restrictions apply to the availability of these data, which were used under license for the current study 
and are not publicly available. Data are, however, available from the authors upon reasonable request and with 
the permission of the MedDietAgent and GlucoseML consortiums.
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