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Utilizing deep learning 
via the 3D U‑net neural network 
for the delineation of brain stroke 
lesions in MRI image
Parisa Soleimani 1,2* & Navid Farezi 1

The segmentation of acute stroke lesions plays a vital role in healthcare by assisting doctors in making 
prompt and well‑informed treatment choices. Although Magnetic Resonance Imaging (MRI) is a time‑
intensive procedure, it produces high‑fidelity images widely regarded as the most reliable diagnostic 
tool available. Employing deep learning techniques for automated stroke lesion segmentation can 
offer valuable insights into the precise location and extent of affected tissue, enabling medical 
professionals to effectively evaluate treatment risks and make informed assessments. In this research, 
a deep learning approach is introduced for segmenting acute and sub‑acute stroke lesions from MRI 
images. To enhance feature learning through brain hemisphere symmetry, pre‑processing techniques 
are applied to the data. To tackle the class imbalance challenge, we employed a strategy of using small 
patches with balanced sampling during training, along with a dynamically weighted loss function 
that incorporates f1‑score and IOU‑score (Intersection over Union). Furthermore, the 3D U‑Net 
architecture is used to generate predictions for complete patches, employing a high degree of overlap 
between patches to minimize the requirement for subsequent post‑processing steps. The 3D U‑Net 
model, utilizing ResnetV2 as the pre‑trained encoder for IOU‑score and Seresnext101 for f1‑score, 
stands as the leading state‑of‑the‑art (SOTA) model for segmentation tasks. However, recent research 
has introduced a novel model that surpasses these metrics and demonstrates superior performance 
compared to other backbone architectures. The f1‑score and IOU‑score were computed for various 
backbones, with Seresnext101 achieving the highest f1‑score and ResnetV2 performing the highest 
IOU‑score. These calculations were conducted using a threshold value of 0.5. This research proposes 
a valuable model based on transfer learning for the classification of brain diseases in MRI scans. The 
achieved f1‑score using the recommended classifiers demonstrates the effectiveness of the approach 
employed in this study. The findings indicate that Seresnext101 attains the highest f1‑score of 
0.94226, while ResnetV2 achieves the best IOU‑score of 0.88342, making it the preferred architecture 
for segmentation methods. Furthermore, the study presents experimental results of the 3D U‑Net 
model applied to brain stroke lesion segmentation, suggesting prospects for researchers interested in 
segmenting brain strokes and enhancing 3D U‑Net models.

Stroke has been identified by the World Health Organization (WHO) as the third leading cause of death and dis-
ability  worldwide1–3. The timely initiation of treatment has a significant impact on treatment  outcomes4. Stroke 
lesions can be divided into two distinct parts: the infarct core, consisting of irreversibly damaged tissue, and the 
penumbra, comprising at-risk tissue that can still be salvaged if blood flow is  restored5. The clinical identification 
and quantification of acute cores or penumbras are of utmost importance as they provide valuable insights into 
the potential extent of tissue that can be salvaged through alternative  therapies6. Consequently, neuroimaging 
studies play a critical role in addressing fundamental inquiries about the functioning of the nervous system and 
the brain. Furthermore, they are essential for understanding the structural or functional alterations associated 
with various neurological disorders or brain  lesions7.

Biomedical imaging plays a crucial role in diagnosing, prognosing, and treating a wide range of diseases, 
providing vital  information8. When assessing brain function, magnetic resonance imaging (MRI) is the preferred 
imaging  modality9–11. Due to its multi-spectral properties, MRI is favored by radiologists for diagnosing brain 
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diseases, offering a superior means of detecting and evaluating potentially salvageable tissues. The advancements 
in MRI technology have significantly contributed to our understanding of brain structure and  function12–14. 
Consequently, MRI is frequently employed to identify abnormalities in the posterior fossa, spinal cord, and 
other anatomical brain structures. Furthermore, MRI images are less susceptible to artifacts, providing an added 
 advantage15. Researchers are utilizing various imaging techniques in conjunction with artificial intelligence (AI) 
to study the brain, aiming to improve patient outcomes and streamline the time-consuming processes involved in 
detecting and segmenting brain anomalies, as well as interpreting and analyzing complex brain imaging  data16,17.

Over the past two decades, numerous deep learning (DL) neural network models, including convolutional 
neural networks (CNNs), have been developed and extensively utilized in classification applications to efficiently 
detect and segment organs and tissues, such as brain lesions, surpassing conventional  methods11,18,19. Among 
these models, the 3D U-Net is a widely used deep learning architecture specifically designed for volumetric 
image segmentation tasks, particularly in medical  imaging3,20. It’s an extension of the U-Net and comprises an 
encoder-decoder structure with skip connections. The encoder reduces the spatial dimensions and increases 
feature channels, while the decoder upsamples the features and merges them with skip connections. This helps 
preserve spatial info for accurate segmentation. It excels in medical image tasks, such as brain tumor, organ, 
and vascular segmentation, due to its ability to handle volumetric data and capture spatial context effectively.

In this article introduces a novel, deep fully convolutional neural network model designed for segmenting 
stroke lesions using MRI images. The proposed model employs a deep learning algorithm to focus on decrypting 
the lesion zone. Currently, state-of-the-art (SOTA) networks for dense segmentation utilize asymmetric encoder-
decoder architectures with short and long residual  links15. Additionally, the incorporation of symmetrical modal-
ity extension allows for the extraction of more reliable image characteristics by leveraging symmetry between 
the brain’s hemispheres. The suggested technique primarily utilizes a fully convolutional neural network for 
semantic image segmentation. This tool can be integrated into treatment decision workflows to quickly estimate 
the locations of lesion cores. The encoder component extracts features at various spatial resolutions through skip 
connections, which the decoder component uses to generate precise segmentation masks. Through concatena-
tion, the decoder blocks are effectively combined with the skip connections.

Methods and materials
Dataset and data processing
In this study, we utilized the dataset from the Sub-Acute Ischemic Stroke Lesion Segmentation (SISS) challenge, 
which is a subset of the larger Ischemic Stroke Lesion Segmentation (ISLES)  dataset21. This publicly available 
dataset comprises 24 patients, each with a collection of 250 original images and corresponding lesion images. 
Out of these 24 patients, 20 were randomly selected for training, providing a substantial volume of data. The 
Flair modality was employed for our analysis in this specific research. The original dataset consisted of MRI 
scans, where the 3D segmentation volumes had dimensions of 256 × 256 × 32 with a resolution of 1 × 1 × 1 mm. 
To implement a segmentation algorithm, we decided to preprocess the original data for our deep learning archi-
tecture, as depicted in Fig. 1. Furthermore, all 3D MRIs were transformed into 2D image segments along the 

Figure 1.  The 3D U-Net architecture consists of convolutional encoding and decoding units that take an image 
as input and create a segmentation feature map at each pixel class.



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19808  | https://doi.org/10.1038/s41598-023-47107-7

www.nature.com/scientificreports/

axial direction, as shown in Fig. 2. All 2D images were automatically refined to eliminate uninformative images 
lacking valuable data. This same process was applied to the ground truth data for stroke lesions. To evaluate 
the predictive accuracy of the model, we utilized the training data. Some patient slices had no available data, 
particularly at the upper and lower ends of the MRI segmentation. Consequently, these data-absent slices were 
excluded. We also resized the input images for ease of handling during upsampling and downsampling, removing 
unnecessary zero values. The dimensions of the input images now measure 64 × 128 × 3. For training and valida-
tion, custom data generators were established, using a batch size of 32 and an image input size of 64 × 128. This 
specific choice of batch size and input size was influenced by limitations in CPU memory. During the training 
phase, two distinct loss functions were integrated: binary cross-entropy (BCE) and Dice  loss22,23. The combina-
tion of these two loss functions resulted in more distinct boundaries and superior performance compared to 
using each loss function independently.

The model was trained for a total of 250 epochs, utilizing a pre-existing encoder. However, it was observed that 
the model began to exhibit signs of overfitting after surpassing the 250-epoch milestone. Notably, the F1-score 
in the Seresnext101 model and the IOU-score in the ResnetV2 model showed substantial improvements in their 
respective performance metrics.

Within medical images, contrast-limited adaptive histogram equalization (CLAHE) has demonstrated favora-
ble outcomes. This technique relies on partitioning the image into multiple non-overlapping regions of roughly 
equivalent  sizes20. The approach aims to enhance specific portions of the image while avoiding undue impact 
on areas with distinct contrast. The image undergoes improvement through segmentation into two or more 
non-overlapping segments, followed by separate equalization, and eventual reintegration using interpolation 
 methods24. Therefore, before inputting data into the network, CLAHE was applied to all input images. Figure 2 
illustrates a brain image featuring a stroke lesion, both before and after CLAHE application, alongside the cor-
responding ground truth.

Various methods for augmenting the 2D stroke images have been employed. These methods include rescal-
ing, horizontal flipping, rotation range, shear range, and zoom range, all aimed at generating a broader array of 
brain images. This augmentation process proves highly advantageous for enhancing the validation accuracy of 
the neural network. Following preprocessing, the data is shuffled, with 80 percent allocated for training and the 
remaining 20 percent reserved for validation.

Implementation details
Network training and testing were conducted using an Intel Core i7 CPU operating at 2.60 GHz, coupled with 
an NVIDIA GeForce GTX 3060 Ti GPU featuring 16 GB of RAM, alongside a system memory of 32 GB.

Standard encoder‑ decoder network architecture U‑net
Derived from the conventional convolutional neural network, U-Net emerged in 2022 and was initially tailored 
for processing biomedical images, as depicted in Fig. 1. While a typical convolutional neural network is geared 

Figure 2.  Extracted Results from U-Net (a,d) The MRI image of the brain, (b,e) image is either the Ground 
Truth (c,f) it is related that the power of estimating the lesion from the label which is (a–c) are for ResnetV2 and 
(d–f) are for seresnext101.
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towards image classification, taking an image as input and producing a singular label as output, the demands 
of biomedical contexts entail not only detecting the presence of a condition but also pinpointing the affected 
region. The 3D U-Net was developed to address this challenge. It accomplishes this by performing pixel-wise 
classification, aligning the input and output dimensions. At first glance, its structure resembles the letter "U." The 
design exhibits symmetry, comprising two primary segments: the left portion, referred to as the contracting path, 
utilizes standard convolutional procedures, while the right portion, the expansive path, employs transposed 2D 
convolutional layers. It’s noteworthy that each process consists of a pair of convolutional layers, and the channel 
count evolves from 1 to 32 due to the deepening convolution process. The downward-pointing red arrow signifies 
the max-pooling process, which reduces the image size by half. This sequence of operations is reiterated thrice 
more, leading to convergence at the lowest point of the architecture.

Expansive path
Within the expansive path, the objective is to restore the image to its initial dimensions. Employing transposed 
convolution, an upsampling technique, enlarges the image size by applying padding to the original image and 
executing a convolution operation. Following the transposed convolution, the image undergoes expansion from 
32 × 32 × 1024 to 64 × 64 × 512. Later, this resized image is fused with its corresponding image from the contract-
ing path, yielding an amalgamated image measuring 64 × 64 × 1024. The underlying rationale is to amalgamate 
insights from prior layers, enhancing the precision of predictions.

Two additional convolutional layers are introduced. As before, this sequence is iterated three more times. 
Consequently, the architecture reaches its apex, where the ultimate step involves reshaping the image to meet our 
prediction criteria. The terminal layer constitutes a convolutional layer featuring a sole filter with dimensions of 
1 × 1. It’s worth noting the absence of dense layers throughout the entire network.

Following the U-net framework guidelines, a thorough evaluation of various backbones used in the network’s 
encoder section was conducted. The attributes and performance metrics stemming from this evaluation are 
outlined in Table 1. Furthermore, the network proposed in this study underwent training for 250 epochs, employ-
ing a batch size of 32, a learning rate of 0.0001, and a threshold set at 0.5. This proposed network encompasses 
ResnetV2, ResNeXt, and others, each of which is detailed in Table 1 and Rows 1 through 5.

Optimizer
The neural network’s optimizer is an algorithm employed to modify the network’s weights and biases, aiming 
to minimize a loss function. The primary objective of optimization is to find the specific weights and biases 
configuration that results in the least loss. Various optimization approaches exist, including gradient descent, 
stochastic gradient descent, Adam, RMSprop, and Adagrad. To expedite convergence and optimize memory 
utilization, the Adam optimizer was used with a learning rate of 0.000125.

Evaluation metrics
Dice loss
The Dice loss serves as a loss function used within neural networks to quantify the resemblance between two sets 
of data. It finds widespread application in image segmentation assignments, where the objective is to categorize 
individual pixels in an image into specific classes. This coefficient assesses the degree of overlap between the two 
data sets, and the Dice loss is essentially the negation of this coefficient. Utilizing the Dice loss as a metric allows 
for assessing a neural network model’s effectiveness in handling image segmentation tasks. The formulation is 
provided  below26–28:

where A and B are sets of data points.

IOU
The Intersection over Union (IOU) quantifies the degree of overlap between two samples, and its formulation 
is as  follows29:

(1)2×
|A ∩ B|

|A| + |B|
,

Table 1.  Summary of performance of U-Net Architecture encoders.

Architecture Summary of performance Year of publication

VGG net Transforming convolutions with substantial dimensions into 3 × 3 convolutions (amplifying depth, 
diminishing parameters, heightening accuracy) 2014

ResNet V2 Incorporating shortcut connections within grid blocks (enabling greater depth potential; improved 
gradient flow post propagation) 2015

ResNext Establishing parallel pathways within the rosette block (enhancing precision) 2017

SeresNet Utilizes squeeze-and-excitation blocks to empower the network with the capability for adaptive 
recalibration of features per-channel basis 2018

Seresnext101 Applies squeeze-and-excitation blocks to assist the network in dynamically readjusting features at 
the level of individual channels 2022



5

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19808  | https://doi.org/10.1038/s41598-023-47107-7

www.nature.com/scientificreports/

where A and B are sets of data points.
f1-score: The f1-score is a measure of the accuracy of a model’s predictions and is defined by an equation.

Precision is the fraction of true positives out of all predicted positives, and recall is the fraction of true posi-
tives out of all actual  positives10,30.

Results
Output comparison
The U-Net with ResnetV2 serving as the pre-trained encoder is widely recognized as the state-of-the-art (SOTA) 
model for segmentation tasks. For the IOU-score, ResnetV2 is employed, while Seresnext101 is used for the 
f1-score. The newly proposed model showcased superior performance across all three metrics, as detailed in 
Table 2, underscoring its superiority over the other considered backbones. The f1-score and IOU-score met-
rics were computed across various backbones. From Table 2, it is evident that the best f1-score is attributed to 
Seresnext101, whereas the finest IOU-score is attributed to ResnetV2. The threshold value was set at 0.5. The 
evaluation of the confusion matrix data for both the test and train data of the ResnetV2 model, depicted in Fig. 2, 
highlights the IOU-score, loss, and f1-score trends across epochs for the model. These outcomes, presented in 
Fig. 3 and Table 2, summarize the achieved results.

(2)
|A ∩ B|

|A ∪ B|
,

(3)2×
Precision× Recall

Precision+ Recall
.

Table 2.  The scores obtained from the evaluation result for the deep ML-based pre-trained models.

Model-name Trainable params IOU-score f1 − score weights Loss Params(m)

Vgg 26,578,622 0.76034 0.78502 Imagenet 0.40569 13 M

ResnetV2 17,526,487 0.88342 0.64869 Imagenet 0.87562 9 M

Seresnet18 19,542,453 0.59249 0.7456 Imagenet 0.73456 22 M

Resnext 33,215,492 0.62813 0.86954 Imagenet 0.80664 21 M

Seresnext101 37,546,285 0.66105 0.94226 Imagenet 0.32654 19 M

Figure 3.  Confusion matrix for the test and train data of the (a) f1-score, (b) IOU-score and (c) loss for 
ResnetV2 and (d) f1-score, (e) Iou-score and (f) loss for seresnext101 curve versus epoch.
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For each model, a set of 6 random images was selected from the testing dataset. In each set, the image on 
the left displays the brain’s MRI scan, while the middle image represents either the Ground Truth or the lesion 
identified by the physician. The image on the right is linked to the ability to predict the lesion based on the 
predefined label.

Discussion
The objective of this study is to evaluate various backbone architectures within the U-Net neural network frame-
work for deep learning-based segmentation. Specifically, the study focuses on VGG, ResnetV2, Seresnet18, 
Resnext, and Seresnext101 backbones in their capability to predict stroke lesion diagnoses. The research utilized 
the Ischemic Stroke Lesions Segmentation Challenge (SISS) dataset, a subset of the Ischemic Stroke Lesions 
Segmentation (ISLES) dataset. This publicly accessible dataset comprises images from 24 patients, with each 
patient having 153 original images and images of lesions. Among these patients, 20 were randomly allocated for 
training, while the remaining four were designated for testing. Consequently, a substantial volume of data was 
generated. The SISS challenge provides access to 32 training cases from the dataset, which encompass four dif-
ferent MRI methods along with their corresponding ground truth annotations. For this study, the Flair modality 
was employed.

Among the various deep learning segmentation methods (VGG, ResnetV2, Seresnet18, Resnext50, and 
Seresnext101), ResnetV2 exhibited the most proficient performance in subject segmentation based on IOU 
outcomes, while Seresnext101 demonstrated superior segmentation outcomes based on the F1-score. The attained 
F1-score accuracies were 0.94226 and 0.88342, respectively.

Recent attention has been directed towards MRI-based medical image processing for brain segmentation 
research, driven by the growing need to efficiently and impartially analyze large volumes of medical data. Given 
the high mortality rate associated with brain diseases, early detection and intervention are crucial. However, the 
intricate nature of brain tissue makes manual diagnosis time-consuming and reliant on operators. Therefore, 
this study introduces a valuable model built on transfer learning to classify brain disorders in MRI scans. The 
achieved F1-scores using the proposed classifier substantiate the effectiveness of the approach presented in this 
investigation. Notably, Seresnext101 yielded the highest F1-score of 0.94226, and ResnetV2 recorded the top 
IOU-score of 0.88342. These results establish Seresnext101 and ResnetV2 as the most optimal architectures for 
segmentation methods.

Conclusion and future work
In conclusion and as a bridge to future work, this research embarked on the contemporary approach of utilizing 
the 3D U-Net model for predicting stroke lesions, serving as a modern diagnostic method. The core objective of 
this study was to identify the most effective predictive models for various diseases, with a particular focus on the 
prognosis of stroke lesions—a condition characterized by diverse definitions and causes. Our current exploration 
encompassed the evaluation of both traditional models and deep learning techniques for well-known diseases 
within our dataset, with the aim of distinguishing and comparing their predictive capabilities. In future, it intend 
to build upon these findings by addressing the following aspects, Expanding datasets to include a larger and more 
diverse set of medical images to enhance the generalizability of models. Implementing quality control measures 
to ensure consistent and accurate annotations, mitigating potential data quality and annotator variability issues. 
Exploring interpretability techniques for our deep learning models to make their predictions more transparent 
and clinically interpretable. Optimizing our models for computational efficiency to increase accessibility across 
various healthcare settings. By embracing these future directions, we aim to continue advancing the field of medi-
cal image analysis, contribute to more effective diagnostic methods, and ultimately improve patient outcomes. 
This research lays the foundation for an ongoing commitment to enhancing the practicality and effectiveness of 
our proposed methodology.

Data availability
Data are available from the corresponding author on request (https:// zenodo. org/ record/ 79608 56#. 
ZK5or- xBzmE).
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