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Bioinformatics analysis 
and machine learning approach 
applied to the identification 
of novel key genes involved 
in non‑alcoholic fatty liver disease
Elham Nazari 1,10, Ghazaleh Khalili‑Tanha 2,3,10, Alireza Asadnia 3, Ghazaleh Pourali 2, 
Mina Maftooh 2, Majid Khazaei 2, Mohammadreza Nasiri 4, Seyed Mahdi Hassanian 2,5, 
Majid Ghayour‑Mobarhan 2, Gordon A. Ferns 6, Mohammad Ali Kiani 7 & Amir Avan 2,8,9*

Non-alcoholic fatty liver disease (NAFLD) comprises a range of chronic liver diseases that result from 
the accumulation of excess triglycerides in the liver, and which, in its early phases, is categorized 
NAFLD, or hepato-steatosis with pure fatty liver. The mortality rate of non-alcoholic steatohepatitis 
(NASH) is more than NAFLD; therefore, diagnosing the disease in its early stages may decrease 
liver damage and increase the survival rate. In the current study, we screened the gene expression 
data of NAFLD patients and control samples from the public dataset GEO to detect DEGs. Then, the 
correlation betweenbetween the top selected DEGs and clinical data was evaluated. In the present 
study, two GEO datasets (GSE48452, GSE126848) were downloaded. The dysregulated expressed 
genes (DEGs) were identified by machine learning methods (Penalize regression models). Then, the 
shared DEGs between the two training datasets were validated using validation datasets. ROC-curve 
analysis was used to identify diagnostic markers. R software analyzed the interactions between DEGs, 
clinical data, and fatty liver. Ten novel genes, including ABCF1, SART3, APC5, NONO, KAT7, ZPR1, 
RABGAP1, SLC7A8, SPAG9, and KAT6A were found to have a differential expression between NAFLD 
and healthy individuals. Based on validation results and ROC analysis, NR4A2 and IGFBP1b were 
identified as diagnostic markers. These key genes may be predictive markers for the development of 
fatty liver. It is recommended that these key genes are assessed further as possible predictive markers 
during the development of fatty liver.

Non-alcoholic fatty liver disease (NAFLD) is a range of chronic liver diseases resulting from the accumulation of 
excess triglycerides in the liver1. NAFLD affects about 25–30% of the population globally and is associated with 
an increased risk of other diseases, including type 2 diabetes mellitus, atherosclerotic cardiovascular disease, and 
chronic kidney disease (CKD)2–5. The frequency of NAFLD is anticipated to increase from 83 million in 2015 
to 100 million by 20306. The main reasons are an unhealthy diet and a sedentary lifestyle7. The advanced type 
of fatty liver disease is non-alcoholic steatohepatitis8, with features that include: fibrosis, necrotic inflammation 
leading to cirrhosis, and hepatocellular carcinoma1,7,9,10. The morbidity and mortality rates of cirrhosis and 
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hepatocellular carcinoma are much greater than NAFLD11. Therefore, diagnosing and treating disease in the 
early stages might reduce the risk of liver damage and increase the survival rate12,13.

The gold standard for detecting NASH is liver biopsy, an invasive approach14. The other diagnostic tools 
,resonance imaging15, and computed tomography (CT) whichare high-cost and time-consuming methods that 
burden the healthcare system financially16,17. Additionally, recognizing the higher level of lipid content and 
inflammatory factors such as C-reactive protein (CRP), IL-6, IL-18, IL-1b, IL-8, and TNF-a signify chronic 
inflammation in NASH development18,19. Therefore low-cost, reliable, and non-invasive methods are required 
to identify specific diagnostic biomarkers in the early stage of NAFLD.

In the progression of NAFLD, the molecular pathways are altered, leading to differential expression genes 
(DEGs). In the new era of technology, Machine learning (ML) is a novel artificial intelligence that has been widely 
performed to screen DEGs in different diseases and discover new diagnostic and prognostic biomarkers. Artificial 
intelligence enables processing data sets using programmed algorithms in logical models for performance 
tasks20–22. ML has various advantages, including automation, Handling multi-dimensional data, nonlinearity, 
low fault, and wide applications23,24.

In the current investigation, we screened the gene expression data of NAFLD patients and control samples 
from the public dataset GEO (Gene Expression Omnibus) to detect DEGs. Then, the correlation between the 
top selected DEGs and clinical data was evaluated.

Methods and materials
Workflow
The RNASeq data of fatty liver patients and clinical features were downloaded from the GEO dataset (GSE126848 
and GSE48452). Filtering and normalization were performed as preprocessing, and the data quality was 
controlled using Principal Component Analysis (PCA). Before classification, feature selection was implemented 
using Relief-based algorithms to calculate the higher score for each feature. Then Penalize machine learning 
technique was used to detect the most important biomarkers. Eventually, the candidate genes were validated by 
other datasets.

Data source
In the present study, two datasets from GEO were downloaded. The first dataset included 33,297 array-based 
expression profiling of 73 samples which were grouped into C (control = 14), O (obese = 27), S (steatosis = 14), 
and N (NASH = 18), and the second dataset consisted of 19786 gene expression from normal individuals (n = 14), 
obese (n = 12), NAFLD (n = 15) and NASH (n = 16) patients. The two datasets were extracted from https://​www.​
ncbi.​nlm.​nih.​gov/​geo/​geo2r/?​acc=​GSE48​452 and https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE12​
6848, respectively. The two datasets also have clinical and demographic variables considered in the analysis.

Differential expression analysis (preprocessing)
Gene expression data were screened by filtering, and the zero expressions were eliminated; then, data were 
normalized with limma in R 4.1 software. The adjusted p < 0.05 and − 1.5 <|Log2FC (fold change) |< 1.5 were 
identified for subsequent analysis as significant genes. After that, Principal Component Analysis (PCA) which 
is a statistical procedure for visualizing whether the sample groups (control and patients) were separable and 
correlated was applied..

Identifying Important genes and correlation between clinical/demographic factors with fatty 
liver
The effect coefficient of all factors on the fatty liver was calculated using Regularization regressions (LASSO, () 
Ridge, and Elastic Net) models. These models will be described as follows. Before the modeling, Relief-based 
feature selection was implemented. Weight by Relief is applied to calculate the weights of the attributes in the 
polynomial dataset. Chi-square and One way-ANOVA also were used to evaluate the relationship between 
clinical variables and disease, and Kolmogorov–Smirnov was used for normality test distribution. The binary 
correlation of some variables was examined using a correlation matrix. R4.1.and EVIEWS12 software was utilized 
for analysis.

Regularization regression
In statistics and machine learning, Regularization regression is a type of regression analysis for variable selection 
and is used when train and test data are varying. To better manage many parameters or Multicollinearity between 
variables and reduce complexity, a “penalty” is added to cost function (Regularization) for the best fitting of 
training data. This reduce the variance of the test data, prevent over-fitting and enhance the prediction accuracy. 
Here are briefly introduced three Regularization regressions methods.

Least Absolute Shrinkage and Selection Operator (LASSO) regression
The term Lasso stands for “least absolute shrinkage and selection operator”. Lasso uses shrinkage by shrinking 
data values to a central point such as mean. In this model, the regularization method is based on the absolute 
value of loss function. As a result, the target function in "Lasso Regression" is written as follows

https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE48452
https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE48452
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126848
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE126848
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Ridge regression
In the Ridge regression, the Quadratic Loss Function is used. In such way, the amount of penalty is determined 
as the sum of squares of coefficients.

Thus, if we consider the regression model as follows:

The Ridge regression model is performed by minimizing the following function.

Note that argmin refers to values of ββ that minimize the desired function.
To estimate the regression parameters in the Ridge method, there is a constraint on the parameters which 

is written as follows.

This constraint specifies that the sum of the squares of the parameters must be less than a constant or 
threshold value. In this way, the method of estimating the parameters will be as follows. It is clear that a balance 
is established between the existence of ββ parameters and their zeroing in the constraint section, and the num 
ber of related parameters and variables is optimized.

The λλ parameter here is called the Penalty Regulation (Regularization Parameter).
Note that regularization is done only for parameters β1β1 to βnβn, and intercept of β0β0 is an exception in 

this regard. Estimation of the parameters of the Ridge regression model according to the mentioned constraint 
will be as follows.

Elastic Net regression
Elastic Net Regression, by combining lasso regression and Ridge regression, overcomes their disadvantages and is 
a reliable alternative to them. Thus, if you are faced with a model whose descriptive variables are correlated with 
each other, it is better to use Elastic Net regression. In this method, Loss Function and Quadratic Loss Function 
are applied to the model simultaneously. As a result, the target function in the elastic network regression will 
be written as follows.

Considering the multiple linear regression model, it can also be written as follows.

Note that, like the lasso regression and the Ridge regression, in the Elastic Net regression there is no 
assumption that the residual is normal. Also, the intercept is not involved in the regularization25,26.

Protein–protein interaction network
The online string tool (https://​www.​string-​db.​org/) was performed to analyze DEGs’ protein–protein interaction 
with a score of 0.4. Moreover, all the networks were depicted using R software.

GO pathway analysis
The enrichment GO analyses were performed to detect the molecular function of DEGs in NAFLD using Go 
package, nrichGO, and gseGO package.

Validation of biomarkers gene expression
The expression levels of candidate genes in patients were verified by using Gene Expression Omnibus (GEO) 
dataset (GSE89632 and GSE63067). The validation datasets consisted of data from patients with fatty liver, which 
were downloaded from this web tool, and the pre-processing was performed.
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Combine ROC curve
The receiver operating characteristic (ROC) curve was performed to evaluate the efficacy of the diagnostic 
model. Specificity, sensitivity, area under the ROC curve, positive predictive value, negative predictive value, and 
cut-off value were assessed for each gene and their combination. All the procedures were analyzed by package 
combioROC in R.

Results
Data description
Figure 1A shows the overall workflow. Tables 1 and 2 show the mean and standard deviation of the quantitative 
variables. The frequency and percentage of attributes in the study are also mentioned. The result of PCA indicated 
the discrimination between patients and healthy samples (Fig. 1B and C).

Weight by Relief
The weight of the variables of the two datasets can be seen in Fig. 2. The data show a significant correlation 
between DEGs and fatty liver.

Comparison of three methods for identifying important coefficients (GSE126848)
Three methods of Regularization regression, including LASSO, Ridge, and Elastic Net, were candidate to identify 
the effect coefficient of variables on fatty liver. Each of the color lines belongs to the coefficient of one variable, 
which with increasing Lambda parameter, the number of non-zero coefficients decreases, and the size of the 
coefficients becomes smaller and approaches zero. After fitting the model, with five k-fold cross-validation, the 
optimal value of the Lambda parameter was determined, and the results of the final model were reported. The 
model’s cross-validation results were plotted in a graph containing different values of Lambda versus Train/
Test error, which shows the Train/Test Error related fitted models in different Lambda sizes (Fig. S1). Among 
the three implemented methods with five k-fold cross-validation for evaluation, the Elastic Net method had the 
highest performance (Lambda at minimum error: 11.87, R2 = 0.999 and alpha = 0.5, l1 Norm = 1.31). The area 
under the curve was approximately 0.99 with a confidence interval (0.95,1). The Elastic Net is an extension of 
the lasso robust to extreme correlations among the predictors. The results of Elastic Net method for identifying 
important factors can be seen in Table 3.

Comparison of three methods for identifying important coefficients (GSE48452)
The three methods of Regularization regression were used to identify candidate genes that may be used to identify 
the effect coefficient of variables on fatty liver. Each of the colored lines represents the coefficient of one variable, 
which with increasing Lambda parameter, the number of non-zero coefficients decreases, and the size of the 
coefficients becomes smaller and approaches zero. After fitting the model, with five k-fold cross-validation, the 
optimal value of Lambda parameter was gained, and the results of the final model were reported. The results 
of cross-validation of the model were plotted in a graph containing different values of Lambda versus Train/
Test error, which shows the Train/Test Error related fitted models in different Lambda sizes (Fig. S2). Among 
the three implemented methods with five k-fold cross-validation for evaluation, the Elastic Net method had the 
highest performance (Lambda at minimum error: 0.00, R2 = 0.999 and alpha = 0.5, l1 Norm = 213.66). The area 
under the curve was approximately 0.99 with a confidence interval (0.95, 1). The Elastic Net is an extension of 
the lasso robust to extreme correlations among the predictors. The results of Elastic Net method for identifying 
important factors can be seen in Table 3.

Comparison of three methods for identifying common genes between two datasets
After normalization with significant p-value and log fold change, the common genes between GSE126848 and 
GSE48452 were 155, which were used to identify the most important candidate genes using Lasso Machine 
Learning technique. For GSE126848 dataset with 57 samples, among the three implemented methods with five 
k-fold cross validation for evaluation, the Lasso method had the highest performance (Lambda at minimum 
error: 1.451, R2 = 0.999 and alpha = 1, L1 Norm = 15.96)(Fig. S3). For GSE48452 dataset with 73 samples, among 
the three implemented methods with five k-fold cross-validation for evaluation, the Lasso method had the 
highest performance (Lambda at minimum error: 0.01388, R2 = 0.999 and alpha = 1, L1 Norm = 15.96) (Fig. S4).

Identification of dysregulate expression genes (DEGs)
The GSE48452 chip contained 14 NAFLD, 18 NASH, and 27 obese samples, among which 15,000 genes and 1400 
DEGs were identified. Moreover, the GSE126848 chip had 15 NAFLD, 16 NASH, and 12 obese 9540 genes, and 
843 DEGs were found in this dataset based on specific criteria (Table 2). Furthermore, the commonality of novel 
genes between two datasets was assessed after normalization. Then Penalize machine learning technique was 
used to detect the most important common genes between two data sets. The results indicated that eighty-eight 
genes were common between two datasets (Table 3).

PPI network construction
As seen in Fig. 3, the PPI interaction network of DEGs was analyzed and depicted by String, and the interaction 
score was set at 0.4. As we can see in the network analysis, the KATA6A and KAT7 genes were strongly correlated, 
as well as, a significant correlation was detected between the SART3 and RNPS1 genes.
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Figure 1.   (A) The flow of work; The result of Principal Component Analysis (PCA) indicated the 
discrimination between patients and healthy samples in (B) GSE126848, and (C) GSE48452 datasets.
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Table 1.   The clinical characteristics of datasets. The ensemble ID was converted to gene name by Biotool.fr 
and the ID ref of GEO was converted by g: profiler. All the none genes were deleted from the study.

Attributes Sub category Frequency (%)

GSE48452

 Case–control

Control 14 (19.2)

Obese 27 (37)

NAFLD 14 (19.2)

NASH 18 (24.7)

 Gender
Male 15 (20.5)

Female 58 (79.5)

SD ± Mean

Fat 25.45 ± 3.77

Inflammation 0.48 ± 0.096

Age 45.92 ± 1.32

BMI 40.45 ± 1.38

Nas 1.64 ± 0.252

Fibrosis 0.479 ± 0.1

Lar 4.32 ± 0.57

Leptin 25.44 ± 2.62

GSE126848

 Case–control

Control 14(24.6)

Obese 12 (21.1)

NAFLD 15 (26.3)

NASH 16 (28.1)

 Gender
Male 47 (82.5)

Female 10(17.5)

Table 2.   Association between Clinical/Demographic factors and fatty liver.

Dataset name Variable1 Variable2 Result

GSE48452 Response variable

Fat
F = 134.283
sig = 0.00
DF = 72
Sum of square = 74,782.082

Inflammation
F = 53.514
Sig = 0
Df = 72
Sum of square = 48.219

BMI
Sig = 0
F = 2.374
Df = 72
Sum = 9979.798

Fibrosis
Sig = 0
Df = 72
F = 12.224
Sum = 52.719

Nas
Sig = 0
F = 248.986
Df = 72
Sum of square = 332.760

Leptin
Sig = 0
F = 6.037
Df = 72
Sum of square = 36,056.84

Lar
Sig = 0
F = 5.771
Df = 72
Sum of square = 1715.555

GSE126848 Response variable Sex
Sig = 0
Df = 3
Pearson chi-square = 11.376
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Gene ontology analyses of DEGs
R software results showed that the molecular function of DEGs was enriched in histone acetyltransferase activity, 
peptide–lysine–N–acetyltransferase activity, histone binding, and peptide N-acetyltransferase activity. The 
biological process includes RNA splicing, hematopoietic stem cell proliferation, and histone H3 acetylation. 
Furthermore, the cell component was detected in nuclear speck and H3 histone acetyltransferase complexes 
(Fig. 3).

Figure 2.   Protein–protein interaction (PPI) network of differentialy expressed genes (DEGs); (A) PPI in 
GSE48452 dataset, (B) PPI in GSE126848 dataset, (C–E) PPI between key genes.
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Validation using validation datasets
The five common genes between two datasets, GEO126848 and GEO48452, were validated by two other datasets, 
consisting of GSE89632 and GSE63067. The results indicated the five most important novel genes in fatty liver, 
including NR4A2, ZEB2, IGFBP1b, AKR1B10, DHRS2, and UGT2B17 (Table 4).

GO pathway analyses
Enrichment analysis results showed that the molecular function of shared DEGs was mainly enriched in structural 
molecule activity. The biological processes were peptide biosynthetic process and translation. Moreover, the main 
involved cell components were ribonucleoprotein complex and ribosome. Reactom pathway analysis revealed 
that metabolism of RNA and cellular responses to stress and stimuli were the most significant dysregulated 
pathways in fatty liver (Fig. 3).

ROC curve for identification of diagnostic markers
Our finding showed that NR4A2 alone (AUC of 0.92, 95% CI with a sensitivity of 1.00and specificity of 0.71), 
and also, its combination with ZEB2 (AUC of 0.92, 95% CI with a sensitivity of 0.90 and specificity of 0.85) had 
the highest rank of ROC analysis and can be considered as diagnostic markers (Fig. S5 and Table S1). Moreover, 
our data revealed that IGFBP1b alone (AUC of 0.90, 95% CI with a sensitivity of 0.89 and specificity of 0.87), and 
its combination with AKR1B10, DHRS2, IGFBP1, and UGT2B17 with AUC of 0.96, 95% CI with a sensitivity 
of 0.94 and specificity of 0.95, also had the highest rank (Fig. S6 and Table S2).

Association between Clinical/Demographic factors and fatty liver
A significant relationship was obtained between fat, fibrosis, BMI, inflammation, and fatty liver.

Investigation of the binary correlations of Clinical/Demographic influence variables on fatty 
liver
Using the correlation matrix, we examined the correlation between pairs of variables. The results are shown in 
Fig. 4. Note that a correlation coefficient of less than 0.3 is considered weak, the coefficient between 0.3 and 0.6 
is moderate, and a coefficient greater than 0.6 is considered strong. Coefficients with a P-value less than 0.05 are 
also significant. As we concluded from Fig. 4, BMI, Lar, Leptin, Fat, and Nas have correlated significantly with 
the disease in positive direct and Adiponectin correlated with fatty liver negatively.

Discussion
For the first time in the present study, we have used machine learning approaches to compare the gene expression 
profile of individuals with NAFLD, NASH, and obesity with healthy individuals.

Firstly, we analyzed GSE126848 and GSE48452 datasets separately, and the results detected 9540 and 1400 
DEGs genes in the two datasets, respectively. We reported genes with higher coefficients in each dataset. Six genes, 
including ABCF1, SART3, APC5, NONO, KAT7, and ZPR1 were identified in GSE48452 datasets, as well as four 
genes, including RABGAP1, SLC7A8, SPAG9, and KAT6A were detected in GSE126848 dataset with a different 
expression between NAFLD and healthy samples. Subsequently, we identified six common genes between the two 
datasets and validated them in other datasets. Further analysis demonstrated that two genes, including NR4A2 
and IGFBP1b with higher AUC, sensitivity, and specificity, were diagnostic biomarkers in fatty liver.

ABCF1, also named ABC50, is a member of the ABC transporter superfamily protein localized on the cytosol 
and endoplasmic reticulum (ER), which transport different molecules, including carbohydrates, amino acids, and 
ions. Furthermore, ABCF1 is critical in regulating innate immune and inflammatory responses27,28. This protein 

Table 3.   The most important genes coefficients on the fatty liver) GSE126848 and GSE48452).

GSE126848

Gene name Coefficient Full name

RABGAP1 4.2404 RAB GTPase Activating Protein 1

SLC7A8 3.4923 Solute Carrier Family 7 Member 8)

SPAG9 2.3551 Sperm Associated Antigen 9

KAT6A 1.7418 Lysine Acetyltransferase 6A

GSE48452

Gene name Coefficient Full name

ABCF1 8.3581 ATP Binding Cassette Subfamily F Member 1

SART3 7.891196 Spliceosome Associated Factor 3

RNPS1 6.815792 RNA-binding protein with serine-rich domain 1

ANAPC5 3.360324 Anaphase Promoting Complex Subunit 5

NONO 2.726974 Non-POU Domain Containing Octamer Binding

CTDNEP1 1.722116 CTD Nuclear Envelope Phosphatase 1

KAT7 0.855729 Lysine Acetyltransferase 7

ZPR1 0.805633 ZPR1 Zinc Finger
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Figure 3.   Gene ontology (GO) functional annotation of top DEGs enrichment terms in fatty liver 
disease; molecular function (MF) of DEGs was mainly enriched in histone acetyltransferase activity, 
peptide − lysine − N − acetyltransferase activity, histone binding, and peptide N − acetyltransferase activity. 
The biological process (BP) consisted of RNA splicing, hematopoietic stem cell proliferation, and histone H3 
acetylation. The cell component (CC) was detected in nuclear speck and H3 histone acetyltransferase complexes.
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is considered an oncofetal protein significantly expressed in the fetal liver, not healthy adult cells. Fung et al. 
showed that the expression of ABCF1 was increased in hepatocellular carcinoma (HCC), and was associated with 
chemoresistance29. Cheung et al. demonstrated that upregulated ABCF1 gene is associated with poor recurrence-
free survival (RFS) in liver cancer30. A significant association between other members of the ABC family and 
NAFLD has been proven in previous studies. ABCB1 plays a crucial role in transporting phospholipids and 
cholesterol into the liver cells. An animal study exhibited that the level of transporter proteins such as ABCB1, 
ABCC1-6, and ABCG2 increased during the progression of NASH31. The ABCB1 is overexpressed in liver diseases 
such as cholestatic, biliary cirrhosis, and obstructive jaundice32–34. The SART3 and RNPS1 are the genes with 
the highest score in the advanced stage of NAFLD; moreover, the result of PPI revealed that there is a strong 
correlation between SART3 and RNPS1, both of them are members of the post-splicing complex. SART3 is 
known as tumor-associated antigens detected in HCC and makes hepatocytes sensitive to immunotherapy35. A 
previous study used two datasets of GEO (GSE33814 and GSE89632) and showed that RNPS1 is one of the top 
genes overexpressed in NAFLD cells compared to the control group. RNPS1 is a member of the post-splicing 
complex role in RNA processing and apoptosis36. One of the other key genes detected in our investigation was 
APC5, a subunit of the anaphase-promoting complex (APC). Zhang et al. showed APC5 plays a critical role in 
activating the cell cycle during adipose tissue proliferation37. A study showed that after feeding, the expression 
of NONO gene significantly increased to uptake glucose. Furthermore, the results revealed that the deficient-
NONO gene in mice reduces triglyceride storage and increases hepatocyte lipid catabolism38. In a current study, 
Wu et al. indicated that the expression of NONO gene was highly elevated in NAFLD mice39. our result indicates 
that CNTNAP1 is upregulated in NAFLD, which agrees with the previous study. CNTNAP1 has a positive role 
in triglyceride metabolism40. KAT7 gene, also known as HBO1, belongs to the lysine acetyltransferase family, 
which is a key factor in forming a replication complex, regulating the immune system and developing embryonic 
development. Information confirmed that the expression of KAT7 in mRNA and protein levels elevated in HCC 
cells leads to the proliferation and invasion of tumor cells. Zhong et al. reported that silencing the KAT7 gene 
using short hairpin RNA (shRNA) and CRISPR/Cas9 in the xenograft HCC model inhibited tumorigenesis41. 
ZPR1 is a zinc finger family member, and Wo et al. showed patients with severe NAFLD had ZPR1 rs964184 
polymorphism. we hypothesized that this polymorphism could be associated with high expression of ZPR1 in 
patients42.

The analysis of the GSE126848 dataset revealed that the expression of RABGAP1 gene is associated 
with NAFLD. The previous studies showed Rabgap1 expression raised in perirenal fat and brown fat  in 
Gpr21 knockout mice when fed with a high-fat diet43. Rabgap1 GTPase Activating protein which transited the 
cells from metaphase to anaphase. SLC7A8 and SPAG9 are two novel DEGs identified in our study. SLC7A8, 
the light-chain subunit solute carrier family 7, member 8, is a vital gene in inducing hypertrophy in adipose 
tissue and inflammation. Pitere et al. reported that the SLC7A8 deficiency in mice with diet-induced obesity 
decreases lipid accumulation in the liver44. SPAG9 is expressed explicitly in the testis and has a vital role in 
fertility. A study on chicken illustrated that the samples that overexpressed the SPAG9 gene have more fat content 
on the abdominal and liver tissues45. Furthermore, SPAG9 increases the proliferation of HCC cells through 
the interaction with MAPK/Jun pathway45. KAT6A is another member of the lysine acetyltransferase family, 
which epigenetically regulates the transcription of different genes involved in DNA repairing systems, cell cycle, 
metabolism, and autophagy. Many studies confirmed the overexpression of KAT6A related to HCC progression 
and chemoresistance46,47.

Our result revealed a significant relationship between clinical and demographic data, including fat, fibrosis, 
body mass index (BMI), inflammation, and fatty liver. In many studies, BMI is announced as a critical index for 
increasing the risk of fatty liver. The BMI score of patients is a 4 to 14-fold change higher than healthy individuals. 
Fan et al. reported that 73% of patients with NAFLD were obese and overweight48. BMI measurement is a helpful 
and non-invasive marker for predicting fatty liver. They suggested triple approaches comprising examining 
the lipid panel, BMI measurement, and radiological techniques49,50. Inflammation and fibrosis are the major 
pathological consequences of NAFLD. Fibrogenesis is stimulated by the activation of hepatic stellate cells and 
Kupffer cells, resulting from high plasma levels of glucose and lipids51. The activated hepatic stellate cells express 
different myogenic and pro-inflammatory markers such as myocyte enhancer factor-2 (Mef2), c-myb, and TGF-β. 

Table 4.   Common genes between GSE126848 And GSE48452 validated in other datasets.

Gene name Full name

AKR1B10 Aldo–keto reductase family 1 member B10

DHRS2 Dehydrogenase/reductase SDR family member 2

UGT2B17 UDP-glucuronosyltransferase 2B17

IGFBP1 Insulin-like growth factor-binding protein 1

NR4A2 Nuclear receptor subfamily 4 group A member 2

ZNF653 Zinc finger protein 653

ZEB2 Zinc finger E-box-binding homeobox 2
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Moreover, inflammation results from increasing the level of reactive oxygen species (ROS) and cytokines in liver 
tissue52,53. The result of a meta-analysis revealed that the fibrosis stage significantly correlates with the risk of 
mortality in NAFLD54.

We reported NR4A2 and IGFBP1b as novel diagnostic biomarkers in fatty liver. Insulin-like growth factor 
binding protein (IGFBP) binds to insulin-like growth factors (IGFs) and regulates cellular metabolism. 
Hepatocytes largely produce IGFBP and secrete it into the serum. Previous studies are in line with our results, Pan 

Figure 4.   Correlation matrix for showing significant relationship between clinical/demographic influence 
variables in fatty liver disease.
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et al. reported a high expression of IGFBP in NAFLD patients, L02 cells, and also in mice models of NAFLD55. 
NR4A2 is a transcription factor that plays a pivotal role in regulating fatty acid beta-oxidation. Therefore, the 
dysregulation of NR4A2 causes fat accumulation in the liver56. Chen et al. showed that NR4A2 overexpression 
prevents Hepatic stellate cell (HSCs) proliferation which plays a key role in liver fibrogenesis57.

Previous evidence confirmed that novel approaches, including machine learning, are promising strategies 
for diagnosing, preventing, and managing diseases. Wu et al. compared four machine learning algorithms in 
predicting fatty liver disease, and they showed that the random forest model has a higher performance in the 
early diagnosis of fatty liver58. The result of a cross-sectional investigation showed that machine learning is a 
predictive model of NAFLD. They revealed that this method enhances clinical decisions and reduces end-stage 
disease59. Furthermore, previous studies used machine learning methods for identifying novel biomarkers in 
various conditions, such as cancer60–62, cardiovascular diseases63,64, pulmonary diseases65,66, and neurological 
disorders67,68.

In conclusion, using a bioinformatic approach; twelve key genes were detected that are significantly related to 
the fatty liver. It is recommended that these key genes are assessed further as possible predictive markers during 
the development of the fatty liver.

Data availability
The datasets generated and/or analysed during the current study are available in the GEO repository, https://​
www.​ncbi.​nlm.​nih.​gov/​geo/​geo2r/?​acc=​GSE48​452 and https://​www.​ncbi.​nlm.​nih.​gov/​geo/​query/​acc.​cgi?​acc=​
GSE12​6848.
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