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Predicting dengue transmission 
rates by comparing 
different machine learning 
models with vector indices 
and meteorological data
Song Quan Ong 1*, Pradeep Isawasan 2, Ahmad Mohiddin Mohd Ngesom 3, Hanipah Shahar 4, 
As’malia Md Lasim 5 & Gomesh Nair 6

Machine learning algorithms (ML) are receiving a lot of attention in the development of predictive 
models for monitoring dengue transmission rates. Previous work has focused only on specific weather 
variables and algorithms, and there is still a need for a model that uses more variables and algorithms 
that have higher performance. In this study, we use vector indices and meteorological data as 
predictors to develop the ML models. We trained and validated seven ML algorithms, including an 
ensemble ML method, and compared their performance using the receiver operating characteristic 
(ROC) with the area under the curve (AUC), accuracy and F1 score. Our results show that an ensemble 
ML such as XG Boost, AdaBoost and Random Forest perform better than the logistics regression, 
Naïve Bayens, decision tree, and support vector machine (SVM), with XGBoost having the highest 
AUC, accuracy and F1 score. Analysis of the importance of the variables showed that the container 
index was the least important. By removing this variable, the ML models improved their performance 
by at least 6% in AUC and F1 score. Our result provides a framework for future studies on the use of 
predictive models in the development of an early warning system.

Dengue fever is the most widespread mosquito-borne disease, and the global incidence has increased dramati-
cally over the last five decades1,2. The World Health Organisation (WHO) estimates that more than 100 million 
dengue incidences occur annually3–5, and the disease is endemic in all tropical countries2,5. Due to global warm-
ing and urbanisation, nearly 75% of people in the Asia–Pacific region are at risk of infection6, and the number 
of countries where dengue fever has been identified is increasing.

The disease is transmitted by the primary vector Aedes aegypti (L.) and the secondary vector Aedes albopictus 
(L.), which are highly adapted to urban environments7. In endemic countries, WHO recommends the use of 
vector indices such as the house index (HI), Breteau index (BI), container index (CI) and premise index (PI) as a 
quantitative tool to estimate vector abundance to improve dengue surveillance. According to WHO8, to calculate 
these indices, the container index is the percentage of containers containing larvae or pupae. The premises index 
(PI) is the percentage of positive premises with larvae or pupae out of the number of premises inspected. The 
house index is the percentage of houses infested with larvae or pupae. The Breteau index (BI) is the number of 
positive containers per 1000 inspected houses. Previous studies have found an association between the indices 
and dengue transmission. For example, Sanchez et al.9 assessed the discriminatory power of BI and HI as predic-
tors of dengue outbreak and found a strong association between indices and transmission with the highest area 
under the curve (AUC) of 0.71. Chadee10 used retrospective data from Trinidad and showed that PI and CI were 
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significantly associated with dengue incidences. Morales-Perez et al.11 assessed HI, BI, CI and PI at household 
and cluster levels of dengue transmission and found that BI was the only weak predictor of dengue infections. The 
results of these studies show that the indices can potentially be used as variables to predict dengue transmission 
rates. Indeed, both vector abundance and dengue transmission have seasonal patterns that are strongly influenced 
by meteorological factors12,13. Therefore, meteorological data have often been used to develop a model to predict 
dengue transmission rates. For example, Anwar et al.14 used an empirical model with ambient temperature to 
predict dengue incidence in some high-risk countries. Masrani et al.15 used five weather data—minimum tem-
perature, average temperature, maximum temperature, rainfall, and wind speed—as predictors in a generalised 
additive model (GAM) to predict dengue incidence in northeast Malaysia. Xu et al.16 investigated the direct and 
indirect effects of temperature and precipitation on dengue outbreaks in Guangzhou China using a structural 
equation model (SEM).In previous studies, other algorithms were used to develop the predictive model. For 
example, the Bayesian Markov Chain Monte Carlo (MCMC) technique was used to build a model to predict the 
dengue outbreak in Singapore and Honduras17. Supervised machine learning (ML) algorithms have also been 
explored to address the challenge. For example, Sarma et al.18 used machine learning algorithms, namely decision 
trees (DT) and random forest (RF) and achieved an average accuracy of 79%. Salim et al.19 developed Support 
Vector Machine (SVM), DT and Artificial Neural Networks (ANN) to predict dengue transmission outbreak in 
Selangor Malaysia using climate data and achieved the highest accuracy of 70% using SVM algorithm. Roster 
et al.20 found that DT ensemble models with epidemiological and meteorological variables gave more robust 
results in predicting monthly dengue cases in Brazil. Nevertheless, most studies have not adequately considered 
such appropriate disease variables in modelling21, focusing mainly on meteorological data11–20, or used only vector 
indices to develop a logistic regression model22. Moreover, other ML algorithms that was demonstrated robust in 
prediction, such as XG Boost, AdaBoost and Random Forest have not been investigated for their ability to predict 
dengue transmission. Therefore, in this study, we aim to develop a dengue transmission rate prediction model 
that uses both vector indices and meteorological data, and compared seven machine learning algorithms were 
most commonly used in predictive studies23 for their discriminative power in dengue outbreak classification.

Materials and method
Data set construction
To create the dataset, we obtained the vector indices from the Entomology and Pest Unit, Health Department of 
Federal Territory of Kuala Lumpur & Putrajaya, Malaysia. These include house index (HI), Breneu index (BI), 
container index (CI) and premise index (PI) from January 2018 to December 2020 in five districts, namely Titi-
wangsa, Kepong, Cheras, Lembah Pantai and Putrajaya. The meteorological data for each area, such as rainfall, 
maximum temperature, humidity and barometric pressure, were obtained from the Malaysian Meteorological 
Department. For the temperature variable, we used the maximum temperature rather than all minimum, average, 
and maximum temperatures together to avoid the problem of collinearity. Furthermore, the maximum tempera-
ture was able to provide a larger trend variation24. The target variable is dengue transmission rate, i.e., whether an 
outbreak occurs or not. An outbreak is defined as the transmission of dengue fever in an area in a given period 
with a higher frequency than expected. According to the World Health Organisation (WHO), the operational 
definition of a dengue fever outbreak in Malaysia is the reporting of more than two standard deviations of the 
4-week average of dengue cases above the three-week moving average of dengue cases25. Before building the 
model, the data set was checked for typographical errors, outliers and missing values. Normality of the data was 
analysed using the Shapiro–Wilk test. A variable with a p-value of less than 0.05 for the Shapiro–Wilk test was 
considered not normally distributed.

Variable importance analysis
We applied variable importance analysis, which is commonly used prior to modelling high-dimensional data 
in the development of machine learning models26,27. The process of selecting study variables with the greatest 
predictive power for dengue transmission rates. Variable selection improves model performance by eliminating 
redundant features, reducing computational costs, and reducing overfitting when analysing high-dimensional 
data27. In this study, we use the Boruta algorithm28, a wrapper algorithm to select all relevant features. Figure 1 
illustrates the process of variable importance analysis using the Boruta algorithm. The random forest-based algo-
rithm finds relevant variables by comparing the meaning of the original variables with the randomly achievable 
meaning estimated from their permuted copies27.

Model development
Figure 2 shows the workflow of developing a machine learning model (ML) for dengue transmission rate clas-
sification using two sets of input data, namely all variables and Boruta variables, respectively. We built several 
predictive models using ML algorithms (logistic regression [LR], decision tree [DT], random forest [RF], support 
vector machine (SVM), XGBoost [eXtreme Gradient Boosting] and AdaBoost [Adaptive Boosting]). We split 
the study data into 70% (n = 602) for model training and 30% (n = 258) as a validation set in which the trained 
model was used to predict this unseen data.

To evaluate the performance of the model, we plot the Receiver Operating Characteristic (ROC) curve, 
which represents the sensitivity to specificity of a classification model and obtain the area under the curve-
AUC (Table 1)29. We also used standard evaluation matrices for precision (1) and the F-measure, also known as 
F1-score (2), which can be simply interpreted as a harmonic mean of precision and recall (Table 1) and is often 
used to evaluate the performance of classification algorithms30,31.Grid search strategy32 was used to optimise 
the model to find the best hyperparameters and parameters to predict the target output of the model. Grid 
search strategies exhaustively generate candidates from a grid of parameter values specified with the algorithm 
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parameters (e.g., C-value for logistic regression and minimum leaf samples for decision tree). Later, the candidates 
that fit the data set are evaluated with all possible combinations of parameter values and the best combination 
is selected.

Ethical statement
This study has been registered with National Medical Research Register with ID RSCH ID-22-04904-PMV for 
using the vector indices that collected by Department of Vector Control, Ministry of Health Malaysia.

Result
Dataset
In this study, a dataset with a total of eight variables was created, containing vector indices and meteorological 
data from five districts of Federal of Kuala Lumpur, Malaysia. Table 2 describes the variables in the dataset used 
in this study. Figures 3 and 4 show the weekly temporal trend for the average of vector indices and meteorological 
data from 2018 to 2020. As shown in Fig. 3, -Q2 and Q3 generally had higher indices than Q1 and Q4, and the 
pattern of vector indices was more similar to the rainfall pattern (Fig. 4). It is noteworthy that the vector indices 
each show their own seasonal trend, even though they all measure immature Aedes mosquitoes. This suggests 
that the variables are not collinear and certainly have different predictive power. To visualise the temporal trend 
of dengue transmission rates, the temporal trend of dengue cases was shown in Fig. 5.

Variable importance analysis
In general, meteorological data were more important than vector indices; HI is the most important vector indica-
tor. It is noteworthy that CI was listed as the less important variable (Fig. 6). Therefore, this variable was filtered 
out and the rest was used to develop the machine learning model.

Figure 1.   Illustration of identification of important variables using the Boruta algorithm. (a) All independent 
variables studied in modelling; (b) Variable selection using the Boruta algorithm; (c) Development of a model 
using all independent variables or important variables selected using the Boruta algorithm; (d) Prediction of the 
target outcome—dengue transmission rate.
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Performance of the model
In order to develop a predictive model to differentiate dengue transmission rates, two groups of variables, namely 
all variables and Boruta variables, were used as input data for model development. Using the Boruta variables, 
Naïve Bayes, DT, SVM and XGBoost had an average 6.71% higher AUC than using all variables (Fig. 7), indicat-
ing that the Boruta algorithm improved the performance of the model.

We are interested in which type of machine learning (ML) classifier is able to predict dengue transmission 
rate. Therefore, a total of seven ML classifiers were compared with their model performance. Figure 8 shows 
the result of the performance of the machine learning (ML) models using all variables or Boruta’s variables. The 
ensemble methods, including Random Forest, XGBoost and AdaBoost, generally performed better than the 
other ML algorithms. Specifically, using Boruta’s selected variables, the XGBoost algorithm performed best in 
AUC, precision and F1 score.

Figure 2.   Workflow for the development of machine learning classifiers using all variables or Boruta variables.

Table 1.   Formulas for calculating the evaluation matrices from a confusion matrix. *True Positive (TP); False 
Positive (FP); False Negative (FN); True Negative (TN) and precision is calculated by [TP/(TP + FP)] and recall 
is calculated by [TP/(TP + FN)].

Evaluation metrics Calculation or Equation

AUC​

Accuracy TP+TN
TP+TN+FP+FN(1)

F1-score 2× precision × recall
precision + recall (2)
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Due to the trade-off between precision and recognition, the F1-score, which has a hormonal mean between 
two scoring matrices, is a better tool for evaluating the performance of a classifier29,30. As can be seen from Fig. 8, 
the classifier has good performance in AUC and precision but a low F1 score. Therefore, based on these matrices, 
XGBoost is the ML algorithm that has the greatest performance among the algorithms in this study.

Table 3 shows the ROC-AUC and the confusion matrices for the model performance as well as the param-
eters obtained by using the grid search strategy. As can be seen from ROC, the ensemble learning algorithm, 
especially XGBoost, was able to reach the threshold or trade-off between sensitivity and specificity earlier than 
other ML algorithms. The parameters used for all variable models may differ from those of the Boruta variable 
model. This was evident in the algorithms of RF and XG, which used many parameters to generalise the result.

Discussion
The magnitude of dengue transmission is increasing worldwide, making the prediction of dengue outbreaks in 
advance crucial. This study considered a dataset that included dengue risk factors for vectors and meteorologi-
cal data, which was more complete, unlike previous studies that used either meteorological data17–19 or vector 
data10,21. The dataset was similar to that of Chang et al.22, who also used both entomological and meteorological 

Table 2.   Variables Analysed in this study.

Variables Units Description and values

House index % Numerical

Breteau index – Numerical

Container index % Numerical

Premise index % Numerical

Maximum temperature Celsius Numerical

Humidity % Numerical

Atmosphere Pressure mBar Numerical

Rainfall mm Numerical

Dengue transmission rate Binary Boolean 0_Yes 1 No

Figure 3.   Temporal trend of vector indices.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19129  | https://doi.org/10.1038/s41598-023-46342-2

www.nature.com/scientificreports/

Figure 4.   Temporal trend of meteorological data.

Figure 5.   Temporal trend of dengue cases from 2018 to 2020 by quartile.
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data from 2005 to 2012 in a non-endemic city of Kaohsiung, Taiwan, but only used vector data to develop a 
multivariate logistic regression model.

From our result of variable importance analysis, the Boruta algorithm shows that the meteorological variables 
were more important than the vector indices (Fig. 6). This result is in agreement with the study of Sylvestre et al.33, 
according to which the most important predictors were precipitation, temperature and humidity. In addition, our 
findings that meteorological variables are stronger predictors of dengue transmission rates were also confirmed 
by Kamana et al.24, who used rainfall and temperature to predict malaria case recurrence in China. On the other 

Figure 6.   Boruta result plots for all variables. Blue boxplots correspond to the minimum, average and 
maximum Z-score of a shadow attribute. Red and green boxplots represent Z-scores of rejected and confirmed 
attributes, respectively.

Figure 7.   Comparison of AUC performance of the machine learning model using either all or Boruta variables.
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hand, the vector indices we used in this study, which indicate immature populations, have been questioned by 
some previous studies, according to which the relationship between vector indices and dengue transmission rates 
is weak2,10,34. It is noteworthy that the container index (CI) is the only variable not listed as an important variable 
by the algorithm. This was also confirmed by removing the CI during the development of the machine learning 
model and obtaining an average improvement in AUC of 6.71%. The weak correlation between CI and dengue 
transmission was also mentioned by Garjito et al.35 who collected a total of 65,876 mosquito larvae and pupae as 
CI and found no correlation between the indices and dengue transmission; and Bhat et al.36 who conducted an 
entomological survey in selected villages in Tirunelveli district and found a weak correlation (R2 = 0.43) between 
CI and dengue incidences. On the other hand, the reason why the vector indices were relatively less important 
than the meteorological data could be that the indices refer to the immature mosquitoes that cannot transmit 
the virus. This reasoning is supported by many valuable studies that question the strength of vector indices, 
particularly Stegomyia indices, in monitoring dengue transmission. Bowman et al.2, for example, reviewed the 
literature and concluded that the majority of the literature found a weak or no association between immature 
vector indices and dengue transmission rates.

Nevertheless, HI, BI and PI were the important variables listed by Boruta and were used in the model devel-
opment. Our result shows that vector indices can play a crucial role in improving the predictive model. This can 
be further substantiated by comparing our result with previous studies that used only meteorological data17–19 
and hardly achieved more than 80% AUC. Add to these studies like that of Sanchez et al.8 who found that BI 
and HI are good predictors of dengue transmission rates with 71% AUC, 8% sensitivity and 63% specificity. We 
agreed that additional risk factors could be included as variables to predict dengue transmission in the future. 
These included adult female Aedes mosquitoes2 and host mobility. Some studies also suggested the geographical 
element to use a different algorithm for localisation5, which supports the idea of using a more flexible algorithm 
in the architecture of the early warning system for dengue transmission or outbreak.

Our result of predicting dengue outbreak using machine learning algorithm is encouraging. This has already 
been demonstrated by Salim et al.19 who used SVM with linear kernel to predict dengue outbreak and achieved 
70% accuracy. The high performance of RF, XGBoost and AdaBoost in this study was supported by Roster et al.20 
who studied different ML algorithms and concluded that RF could be the algorithm that helps in dengue surveil-
lance. Our study and results also extend the ML algorithms studied by Sylvestre et al.33, where the decision tree 
and neural network performed best. However, to prevent the modelling from being more like a “black box”, we 
need to remember to justify and explain the mechanism within the model, e.g., the parameters used by the model, 
and justify the performance of the model based on the ROC and the learning curve. We should also strongly 
consider using more than one scoring matrix for modelling. For example, ROC-AUC is a standard and powerful 
matrix for evaluating the discrimination of binary classes. Accuracy is very commonly reported in modelling, but 
often leads to misinterpretation37. Therefore, we included the F1 score, which is a harmonic mean of recall and 
precision and balances the trade-off between recall and precision. The predictive model we have demonstrated 
in this study could be used in the backend of a dengue early warning system that uses meteorological data and 
vector indices to predict dengue outbreaks in specific areas. Or the model could be used as an algorithm in the 
backend of an app that allows the public to check the status of dengue transmission in their own region and 
possibly take some precautions and personal protection against the Aedes mosquitoes. Nevertheless, this study 
also has some limitations. For example, a more representative vector index such as the pupal index and the adult 
index might be a better indicator as it is closely linked to the adult population. However, due to the time and 

Figure 8.   The result of the performance of machine learning models (ML) using all variables (top) and the 
variables selected by Boruta (bottom).
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Table 3.   ROC-AUC and confusion matrices for model performance and parameters obtained with the grid 
search strategy. TON (turnover number) = [(mmol of product formed)/(mmol of catalyst used)] TOF (turnover 
frequency) = [TON/time (h)] The TON and TOF values were calculated based on the existed amount of Zr in 
the nanocatalyst (in 5 mg of the nanocatalyst, 0.186 mg (or 0.00203894 mmol) of Zr has existed)
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effort involved, this index data was not included in the dataset, which could be made up in a future study when 
the data is available. In summary, we have demonstrated the ability of the ML algorithm to build a predictive 
model for dengue transmission. Future work should be further explored in terms of feature selection, model 
architecture and a larger data cohort.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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