
1

Vol.:(0123456789)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports

Just‑in‑time deep learning
for real‑time X‑ray computed
tomography
Adriaan Graas 1*, Sophia Bethany Coban 1,3, K. Joost Batenburg 1,2 & Felix Lucka 1*

Real-time X-ray tomography pipelines, such as implemented by RECAST3D, compute and visualize
tomographic reconstructions in milliseconds, and enable the observation of dynamic experiments
in synchrotron beamlines and laboratory scanners. For extending real-time reconstruction by image
processing and analysis components, Deep Neural Networks (DNNs) are a promising technology, due
to their strong performance and much faster run-times compared to conventional algorithms. DNNs
may prevent experiment repetition by simplifying real-time steering and optimization of the ongoing
experiment. The main challenge of integrating DNNs into real-time tomography pipelines, however,
is that they need to learn their task from representative data before the start of the experiment. In
scientific environments, such training data may not exist, and other uncertain and variable factors,
such as the set-up configuration, reconstruction parameters, or user interaction, cannot easily be
anticipated beforehand, either. To overcome these problems, we developed just-in-time learning, an
online DNN training strategy that takes advantage of the spatio-temporal continuity of consecutive
reconstructions in the tomographic pipeline. This allows training and deploying comparatively small
DNNs during the experiment. We provide software implementations, and study the feasibility and
challenges of the approach by training the self-supervised Noise2Inverse denoising task with X-ray
data replayed from real-world dynamic experiments.

Computed Tomography (CT) is a powerful imaging technique to reveal the interior of objects using X-rays,
with applications in health care, industry, life sciences, physics1, material sciences2, as well as many other fields3.
At synchrotron light source facilities and X-ray microscopy laboratories, time-resolved tomography allows the
reconstruction of dynamically evolving processes4. In these environments, experimental data is collected by an
imaging scientist, but reconstruction is often postponed to a later stage. As a result, the domain expert has little
control or feedback over the imaging process5,6, and an experiment may need to be repeated after reconstructions
have been inspected. With recent advances in hardware, such as GPUs (Graphical Processing Units) and CMOS
(Complementary Metal Oxide Semiconductor) detector technology, several synchrotrons and laboratories have
now developed real-time tomographic pipelines. Next to streamlining data acquisition and preprocessing steps,
these pipelines achieve reconstructions within milliseconds5,7–9. Live observation of the experiment helps image
scientists and domain experts to optimize acquisition settings, and therefore save valuable time and storage4,6,10.

While real-time reconstruction provides a valuable insight into the imaged object through the spatial distri-
bution of X-ray attenuation, image processing and analysis tasks are often necessary to improve or evaluate the
experimental outcome. Algorithms for these tasks can perform image enhancements, such as noise and artefact
removal, and show whether or not the reconstructed object features are of sufficient quality. In more complex
cases, they may extract semantic information, e.g., through object classification, counting of object instances, or
image segmentation. This helps the domain expert in the evaluation of the experiment. However, many image
analysis tasks take too much time when computed with traditional algorithms, and integration in tomographic
pipelines has therefore not yet been possible. With the advent of Deep Learning, this has changed. A new class of
algorithms called Deep Neural Networks (DNNs), in particular those using convolutional layers (CNNs), shows
remarkable results for a wide range of image tasks, such as motion estimation and image classification11. Because
DNNs can operate on the timescales required by real-time tomography, they are a promising next component
in the tomographic pipeline, which we illustrate in Fig. 1. In the nearby future, DNNs may be able to close the
experimentation loop, by providing automated feedback and experimental control8. For example, a DNN could
automatically identify a region of interest, and adapt the scanning geometry to zoom into it.

OPEN

1Computational Imaging, CWI, 1098 XG Amsterdam, The Netherlands. 2Leiden Institute of Advanced Computer
Science, Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands. 3Frazer-Nash Consultancy,
Leatherhead KT22 7NL, Surrey, UK. *email: adriaan.graas@cwi.nl; felix.lucka@cwi.nl

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-46028-9&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

In practice, applying DNNs in real-time tomographic pipelines is not straightforward. The success of DNNs is
generally attributed to training, i.e., the optimization of algorithmic hyperparameters based on data. This process
takes place before inference, i.e., the application of a network to unseen data. The real-time setting makes training
challenging for two main reasons. The first concerns the acquisition of training data. Image reconstructions—the
inputs to a neural network—depend on the object to be imaged, the set-up and noise levels, and the reconstruc-
tion algorithm. Experiments are, furthermore, often not repeatable, and the effect of user interaction with the
experiment cannot easily be anticipated as well. Generating training data of sufficient quality and quantity from
previous experiments may therefore be difficult, or relevant training data may simply not be available. The second
reason is a lack of training time. Beamline time at synchrotron facilities is scarce and expensive, making schedules
too tight to train a DNN in between experiments.

We propose to overcome these challenges by taking advantage of the spatio-temporal continuity of samples
from a tomographic pipeline. Unlike typical data sets used to train CNNs, image samples from the pipeline are
the result of continuous processes, e.g., the dynamics of the experiment, the mechanics of the set-up, or changes
in the reconstruction parameters. Data samples are therefore not i.i.d. samples, but rather possess a high degree
of spatio-temporal continuity. This opens the opportunity to train small neural networks that adapt to the data
during the experiment, while simultaneously being used for inference on incoming reconstructions. Since pat-
terns in the images are likely to reappear in the following seconds to minutes, we say the network is trained
just-in-time for inference. This offers the sought flexibility towards changing and unpredictable reconstructions,
and can be fully automated, once integrated in a pipeline. The approach is limited to network architectures that
can be trained quickly, and is only applicable to learning tasks that do not require external data. However, as the
goal is to perform well on the current image from the pipeline, only a small data set is required for training. To
the best of our knowledge, we are the first to propose and investigate such an approach for CNNs.

In this article, we explore the new concept, with the aim to enable real-time tomography with Deep Learn-
ing-based image processing in tomographic pipelines. For this purpose, we replay two experiments with the
RECAST3D software, using data obtained from our FleX-ray laboratory at CWI, in Amsterdam5. The experi-
ments entail tablets that are dissolved in a fluid inside a glass container with a granular ground (see Figs. 1 and
2). Experiment (A) features large spatial structures and fast dynamics, whereas Experiment (B) has smaller
structures and slower dynamics. They are representative for the study to bubble physics, an important topic
in material and engineering sciences12, as well as dissolution processes, which is relevant in pharmaceutical
research13. Due to natural noise and artefacts, the experiments allow for a real-world challenge of our learning
strategy. The article is organized as follows: First, in Methods, we formalize real-time tomography, and explain
the Deep Learning context and self-supervised denoising task called Noise2Inverse14. We furthermore discuss
our software set-up and software contributions. In the subsequent section on Just-in-time Learning, we introduce
three topics that we identified as main challenges: the stochastic structure of real-time data, suitable network
architectures, and an online learning strategy. In the penultimate section, Results, we report on the findings
for each topic with DNNs trained on our experimental data. We finalize with a discussion of the potential and
remaining challenges of just-in-time learning.

Methods
Real‑time computed tomography
Tomographic reconstruction is an imaging technique that probes the interior of an object using a penetrating
beam, such as X-rays or electrons. In real-time X-ray CT, radiographic projections f ∈ R

mx×my are recorded in a
continuous stream while the object is rotated. A reconstruction algorithm then takes the last mφ projections from
the stream, usually corresponding to a full rotation, and recovers the interior of the object as a three-dimensional
image xt ∈ R

nx×ny×nz . The reconstruction algorithm achieves this by inverting the X-ray transform F. That is,
it solves xt from the relation [ft−mφ

, . . . , ft] = F(xt) , with t the index of the last projection. Two major classes
of reconstruction algorithms are used in practice. Direct algorithms solve the inverse problem analytically, by

Figure 1.   In real-time tomographic pipelines, measurement acquisition, image reconstruction, and image
processing or analysis, are subsequent computational steps that can be executed concurrently during an
experiment. User feedback or DNN automation can be used to steer the experiment. The illustration shows
a dissolving-tablet experiment at the FleX-ray laboratory5, and is further detailed in the Experimental set-up
section.

3

Vol.:(0123456789)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

formulating the solution in a closed-form equation. Iterative algorithms, on the other hand, express the inverse
through an optimization objective. Commonly used direct algorithms are the filtered-backprojection (FBP) and
Feldkamp-Davis-Kress (FDK)15, and consist of a single, fast filtering operation and a subsequent application of
FT , the adjoint of the X-ray transform. Iterative algorithms often have better noise-reducing properties than
direct algorithms, but require multiple applications of F and FT , which increases the computational cost and
time considerably16.

A (Deep-Learned) image processing or analysis task, such as a denoising algorithm, takes a reconstructed
volume xt as input, and produces an output yt . The output can be an image, but can also be a different quantity,
such as a vector field or scalar, depending on the image task. We will denote the analysis algorithm with the
mapping A : xt �→ yt . In the forthcoming sections, we will explain RECAST3D, a pipeline for reconstruction
and visualization, and choose an image-to-image Deep Learning component for A. In a real-time tomographic
pipeline, the processes of Experimentation until Visualization/automation, i.e., the different components of Fig. 1,
are taking place concurrently, using software buffers, in order to be efficient. As a result, multiple reconstructions
or analysis outputs can be generated from the same projections at time t. For brevity, we will reuse the subscript
t amongst ft , xt , and yt.

Experimental set‑up with RECAST3D
High-resolution 3D image reconstruction poses a difficulty for real-time applications. To compute a full volume
at the potential resolution of the data, algorithms take several minutes of computation time, even when modern
hardware and efficient direct solvers are considered. To enable visualization and analysis at much faster frame
rates, RECAST3D, a software for real-time reconstruction6, limits the reconstruction to a few user-selected slices
through the volume. The RECAST3D graphical user interface is shown in Fig. 2. RECAST3D uses the FBP and
FDK algorithms, which, thanks to their linearity and computational structure, allow reconstructing a region of
interest with a computation time that is linearly related to the number of voxels in the region. The result is called
a quasi-3D reconstruction, and permits a refresh-rate of milliseconds. In its graphical user interface, a user may
add, remove, and reposition slices, which allows for a fast interrogation of the object during the experiment.
RECAST3D has been used for real-time alignment8, explorative imaging5, and visualization of experiments
with quickly evolving dynamics9. In our software configuration, we send the output of the analysis operator, yt ,
to the graphical user interface, using RECAST3D’s package-based communication protocol. Reconstruction is
therefore not restricted to slices, i.e., xt could also be a 3D image. The analysis operator, A, on the other hand,
must always return a slice. By default, RECAST3D initializes with three orthogonal slices (Fig. 2). For the ease
of discussion, however, we will limit our analysis to a single slice. The RECAST3D pipeline is illustrated in the
top four processes of Fig. 3. We will discuss its technical details in the section Software set-up.

For our experiments, we take a subset of projection data from the two dynamic imaging experiments5, each
corresponding to a five-minute interval. The laboratory set-up consists of a polychromatic conebeam source
and a Dexela1512NDT CMOS detector. Measurement data is acquired by rotating the sample at a speed of 1.8
seconds per rotation. With an exposure time of 12 milliseconds per frame, this yields 150 projections for each
full rotation. The field of view was cropped to the sample holder, which resulted in a 647-by-768 pixel image.
Flat and dark field images were collected before the start of the experiment. For reconstructions, we used a voxel
size of 0.25 mm and the geometry parameters that are provided with the data. Reconstructions are computed
from full rotations (150 projections) with the FDK algorithm, which is a type of filtered-backprojection for the
conebeam geometry. For spatio-temporal reconstructions, the interval between neighbouring reconstructions
is fixed to 0.720 seconds (60 projections).

Deep learning for real‑time analysis
Deep Learning is a recent machine learning technology which obtains impressive results in various fields of imag-
ing sciences, e.g., autonomous driving, robotics and computer vision, by using deep neural network architectures

Figure 2.   Illustration of the RECAST3D user interface (https://​github.​com/​cicwi/​RECAS​T3D, release v1.1.0).
Left: Experiment (A) with fast dynamics. Right: Experiment (B) with slow dynamics. During the experiments,
reconstructions are performed and visualized on three slices.

https://github.com/cicwi/RECAST3D

4

Vol:.(1234567890)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

with convolutional layers and non-linear activation functions17,18. DNNs enjoy remarkably fast execution due
to execution on GPUs. They are therefore especially well-suited in tomographic pipelines, where they can be
used to perform real-time image enhancement tasks such as supersampling, artefact removal, segmentation, or
denoising11,19,20. Fast inference is of crucial importance in synchrotron and laboratory environments, to yield
real-time feedback at sufficient framerates as well as to create control mechanisms that steer the ongoing experi-
ment. From here on, the analysis operator Aθ of Fig. 3 will denote an image-to-image DNN.

In general, the goal of A is to perform an image task by approximating an ideal mapping A† : U → V , where
U and V denote image manifolds. For image denoising, for example, the aim of A would be to approximate
a perfect denoiser: Then A† would map each noisy image from U to a noise-reduced counterpart in V . The
approximation of DNNs is accomplished through a parametrization of the mapping, i.e., A = Aθ , with θ ∈ �
being the free parameters, such as weights of convolutional filters. Deep Learning concentrates on three main
aspects: representation, optimization, and generalization. In the following, we describe each aspect in the context
of real-time tomography, and introduce further notation.

Designing a DNN architecture Aθ that is well-suited to the task at hand, is the area of representation. A design
usually concerns the number of layers and channels, choices of operators, and connections in the network. In
the context of tomographic pipelines (Fig. 3), an architecture has the possibility to use multiple reconstructions
as input, to take advantage of the spatio-temporal information contained in the data.

During optimization, or training, θ is optimized using a data set of input-target pairs. We will use ui ∈ U to
denote an input—a 2D or 3D reconstruction—and vi ∈ V to denote a target. In supervised learning, the target
is a ground truth, i.e., vi ≈ A†(ui) . In the case of supervised denoising, for example, the input would be a noisy
image, and the target is the noise-reduced counterpart. The inputs and targets do not need to correspond to the
data seen during inference, that is, ui and vi can be different to xt and yt . In our case, ui and vi are random small
regions-of-interest reconstructions: Image-to-image networks can be designed to work for inputs of different
dimensions, which, as we will see, speeds up the training process significantly. Given a task-specific loss func-
tion ℓ(u, v) that measures the misfit between two images, training can be formulated as the optimization of the
empirical risk RD for parameters θ , data set D , architecture Aθ and loss ℓ:

The performance of a trained network on unseen data is the domain of generalization. To quantify generalization,
image pairs from D are considered as random samples from a latent training distribution, a probability distribu-
tion P over U ×V . The expected risk describes the true but unknown performance of Aθ over P,

whereas the empirical risk is limited to a finite sample of it. The generalization gap,
∣

∣RD − RP
∣

∣ , describes the
distance between the two risks, and a network is said to generalize well when the gap is small. To quantify the
gap, RP is commonly approximated using a hold-out data set D ′ also sampled from P (also often referred to as
the test data set), and one computes

∣

∣RD − RD ′

∣

∣ for an approximation of the generalization gap. In our setting,
D and D ′ contain reconstructions, and need to be generated from different projection sets to be independent
samples from P.

Self‑supervised image denoising with Noise2Inverse
An important analysis task for real-time tomography is image denoising. Reconstruction images are often severely
degraded due to noise that the reconstruction algorithm propagates from the projection data. This is unavoidable
in most real-time experiments, as low angular sampling and short exposure times are necessary to observe fast
object dynamics. Unfortunately, fast direct reconstruction algorithms, including the filtered-backprojection, are
less capable of suppressing noise. In the past years, several DNNs, e.g., DnCNN21, U-Net22, or the Mixed-scale

(1)min
θ∈�

RD [Aθ] :=
1

|D |

∑

(ui ,vi)∈D

ℓ(Aθ (ui), vi).

(2)RP[Aθ] := E(u,v)∼P[ℓ(Aθ (u), v)],

Figure 3.   The proof-of-concept set-up for just-in-time learning with RECAST3D, using a U-Net for image
denoising with the Noise2Inverse loss. Labels 1–4: The RECAST3D pipeline reconstruct slices xt from a stream
of projections ft , and sends these to the visualization client (cf. Fig. 2). Labels 5 and 6: Our JITLearn software
intercepts the slices, via a plug-in, at (3). In a concurrent process, the U-Net architecture Aθ is trained on
reconstructions (ui , vi) , using a capacity queue (cf. Fig. 6). The figure is described in more detail in the main text
of the section Software set-up.

5

Vol.:(0123456789)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

Dense Network23, have demonstrated excellent denoising qualities. Moreover, denoisers can already be trained
with small data sets, as the small-scale image features in a spatio-temporal neighbourhood of the target often
provide sufficient information for the task. For example, the neural network approach named Noise2Self24 dem-
onstrates that even a single image can be sufficient to obtain a noiseless output. Denoising is therefore an illustra-
tive task for our just-in-time approach.

For denoising of tomographic data, different training strategies are used in practice. The supervised strategy
is to train with a noiseless target. However, such strategy is not feasible in tomographic pipelines, as noiseless
ground truths cannot be obtained in reasonable time. In such cases, the self-supervised learning methodology
called Noise2Noise25 can be implemented, which allows DNNs to approximate the noiseless ground truth using
image self-similarity. Noise2Noise requires a training data set D consisting of pairs (ui , vi) , where ui and vi are
images of the same object but contain different i.i.d. (independent and identically distributed) realizations of a
latent noise distribution. The use of a noisy target, rather than a ground truth, yields an optimization problem
where Aθ (ui) needs to match vi , polluted with a different noise realization than the input. However, since unbi-
ased noise does not correlate between inputs and targets, Aθ can at best reproduce noiseless image features, as
these are consistent between ui and vi . Those image features are encoded as convolutional filters in θ , and are
learned due to similarity of patterns in the data set.

Noise2Noise is brought to the tomographic domain by Noise2Inverse14. Since ui and vi need to be generated
from the same set of projections, [ft−mφ

, . . . , ft] , Noise2Inverse proposes to split the projections into sets of odd
and even time indices. When ui and vi are subsequently computed from the different sets, they result in closely
similar objects, but with statistically independent noise. However, as fewer projections are used in reconstruc-
tion, the method sacrifices angular resolution.

Software set‑up
For the proposed just-in-time learning strategy, reconstruction software and Deep Learning software need to
work closely together. In Fig. 3, we illustrate our proof-of-concept set-up. The arrows from (1) to (4) describe
the RECAST3D pipeline, which is built on top of its TomoPackets library, i.e., a set of software interfaces for
passing projections, geometries, reconstructions and user interactions via Push/Pull and Publish/Subscribe
protocols in ZeroMQ26. Real-time reconstruction requires two processes: one to compute xt at fixed projection
intervals in the RECAST3D SliceRecon server, component (2), and another to continuously generate training
data (ui , vi) , at (5). Deep Learning requires two similar processes. The first, a Python script at component (3),
accepts xt , loads θ from memory, and subsequently computes yt = Aθ (xt) and sends it to an external machine
running RECAST3D. Component (6) accepts a batch of (ui , vi) , performs a training step, and updates the stored
parameters θ . In an optimal set-up, the four processes run concurrently, each with a single or multiple GPUs.

In the proof-of-concept software, JITLearn, that we release together with this article (see Additional Informa-
tion), we separate training, i.e., we only run component (5) and (6), and evaluate the trained network at a later
time. To simulate a real-time experiment, we preload all projection data to RAM (Random Access Memory), and
synchronize all GPU processes using a projected experiment start time. Projection data is subsequently released
to the GPU processes on the basis of a virtual framerate, which we set to 24 milliseconds per frame to prolong
our experimental data from 5 to 10 minutes. Dark and flat field removal, as well as FDK filtering steps, are not
computed immediately, but processed on the GPU as soon as required by a reconstruction. During training, we
store the network parameters at regular intervals. This allows restoring and evaluating the network on different
xt afterwards.

The neural network architecture we employ for our experiments with Noise2Inverse is a U-Net22. This is a
widely adopted architecture for image processing, consisting of a symmetric downscaling (encoder) and upscal-
ing (decoder) part complemented by skip connections. In our PyTorch implementation, which replicates the
original U-Net proposal22, downscaling is performed with strided convolutions, and upscaling with transposed
convolutions. Our U-Net has implemented three down and upscaling levels. Each level has three encoding and
three decoding convolutional layers, with a concatenating skip connection bridging the two parts. Every level
doubles the number of feature maps while halving their resolution, starting with 8 feature maps after the first
level. A higher number of levels increases the size of the network’s receptive field, i.e., the region in the input that,
after a sequence of layers, contributes to the determination of a feature. Our implementation accommodates
to reconstructions that are 2D, 2D + time, or 3D. Both 2D + time and 3D are implemented with 3-dimensional
convolutions, rather than a concatenation in the channel dimension. We thus treat a third dimension similar to
the first two. We refer to this architecture without modifications as our Standard architecture.

For training, we employ the Adam optimizer with a learning rate of 0.0001 and batch size of 32. We do not
train on full slices, but reconstruct only small regions-of-interest in the volume, which we refer to as patches. The
patches are sampled uniformly at random from a slice as well as its spatial neighbourhood in the fluid container.
No patches are sampled outside the glass container to prevent the sampling of reconstruction artefacts. While
the patch-sampling region is adjustable during the experiment, we currently do not provide a graphical user
interface to do so—by default, the optimizer samples from the entire reconstruction volume. For brevity, we will
not introduce notation for this sampling process in our analysis or results.

Training data generation
Generating sufficient amounts of reconstruction data poses a key challenge when training in parallel with the
ongoing experiment (cf. component (5) in Fig. 3). A naive approach would call a reconstruction software for
each ui and vi , and with that repeat projection preprocessing steps, as well as CPU-GPU memory transfers,
unnecessarily. Obtaining (ui , vi) as random samples from a single high-resolution volume is not possible either,

6

Vol:.(1234567890)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

as high-resolution 3D reconstruction takes seconds to minutes to complete6. This would result in either throttling
the training process, or introducing a delay before the network can access new reconstruction data.

This problem has motivated the development of a new software package, which we released as an extension to
the GPU-accelerated reconstruction framework called ASTRA Toolbox27. Our software takes the Nvidia CUDA
kernels from the ASTRA package through CuPy, a Python interface to the Nvidia CUDA library. The software
enabled an implementation of the FDK algorithm that is optimized for repeated reconstructions from a stream-
ing buffer of projection data. Before entering the buffer, projections are pre-filtered with the Ram-Lak filter and
stored in textures, a CUDA memory structure for efficient interpolation. Modifications to the CUDA kernels
furthermore enable efficient backprojection from arbitrary projection subsets, which benefits the efficiency of
the Noise2Inverse algorithm.

Figure 4 shows run-times of the developed software for differently sized reconstructions. With slices we denote
2D reconstructions, with slabs thin reconstruction volumes, and with sequences three consecutive reconstruc-
tions. A small training patch takes about 2 milliseconds, regardless of size, as the computational cost of the
reconstruction algorithm for very small reconstructions is dominated by geometry computations. Timings of
DNNs for different input sizes display an expected quadratic trend in nx , i.e., a linear relation to the total number
of voxels. For training with small patches, reconstruction is the bottleneck. A batch of 60-by-60 reconstructions,
for example, takes 64 milliseconds, while an iteration of the optimizer for these inputs takes 10 milliseconds.
During inference, on the other hand, the DNN is typically the bottleneck. Inference on a 1000-by-1000 slab takes
about 45 milliseconds (22 Hz), and reconstruction is an order of magnitude faster.

Just‑in‑time learning
We will now sketch a context for the just-in-time learning paradigm by formulating three interlinked research
topics. The first topic formalizes the continuously varying data that is encountered during an experiment. In
the second topic, we discuss the DNN architecture and its relation to the reconstruction operator. In the third
topic we explain the buffer-based online training approach that we developed for pipeline data. We will take the
assumption that no previous training data, or ground truths, are available prior to the experiment.

Topic I: real‑time imaging data
In a real-time scientific imaging experiment, reconstructions are often originating from a continuous (physical)
process. A data set D hence consists of consecutive reconstructions. The real-time setting is in that regard dif-
ferent to typical neural network applications, where the data set is often assumed to consist from i.i.d. (image)
samples of a distribution P over U ×V . Instead, real-time samples are often highly temporally correlated, and
describe a type of directed random walk on the manifold of U ×V . We will see that this is both a “curse and a
blessing”: while these samples may not appropriately cover the sought data distribution, short sequences of cor-
related data contain local information that can help neural networks with the analysis task (discussed in Topic II).

A more formal modelling of real-time data in the tomographic pipeline would describe D as a single realiza-
tion of a continuous stochastic process with the Markov property28. Every input-target pair (u, v) from D can thus
be interpreted as a sample from a time-dependent Pt over U ×V that is correlated with all previous samples.
The evolution of Pt reflects the evolution of the physical system that is imaged: If the system is in a (possibly
dynamic) equilibrium, Pt remains constant over time (a steady-state regime). While subsequent samples are still
temporally correlated, a long collection of samples will eventually approximate the distribution. In transient
regimes, Pt changes smoothly with t, and each sample is from a slightly different distribution. Transient regimes
occur at the beginning of an experiment, during experiments with evolving dynamics, or, for instance, during
object exploration5 and zooming4. They pose a bigger challenge for learning. Obtaining sufficient samples to
cover a particular Pt might require multiple realizations of the same process, i.e., repetitions of the experiment
under the same conditions.

However, Pt may also change abruptly in time, e.g., if the user changes the scan geometry or alters a recon-
struction parameter during the experiment. In RECAST3D, a re-orientation of a slice effectively changes the

Figure 4.   Timings, in milliseconds, for nx-by-nx slices ( • ), nx-by-nx-by-3 slabs ( × ), and three consecutive slices
( � ). DNN timings use the Standard architecture. Training time includes backpropagation, whereas inference
time only measures the forward pass. Timings are calculated using the mean over 200 repetitions after a
200 warm-up iterations on an Nvidia GeForce RTX 2080 Ti Rev. A.

7

Vol.:(0123456789)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

geometry of the reconstruction, and the images may show differently-oriented features of the object. We call
these discontinuous jumps between continuous regimes. Draws from Pt at a time t and its next timestep, at t + 1 ,
could possibly display an unseen part of an object, and therefore radically change the latent distribution of the
data samples. A network trained on a data set D , with samples drawn until Pt at time t, is thus principally unpre-
pared to generalize to samples after a jump, say a data set E drawn at time t + 1 , as they are not from the training
distribution. In Results I, we therefore quantify the discontinuous jumps, and in Results III, we investigate the
ability of a network to recover from a discontinuity.

Topic II: network architectures
In order to function in a just-in-time setting, DNN architectures need to be comparatively small. That is, they
need to consist of a limited number of (parameterized) operations, such as layers and channels. The first reason
is that, in order to keep up with the incoming data from the tomographic pipeline, the network optimizer must
be able to update network parameters quickly enough, which is only possible when the number of operations is
small. The second reason is that, during inference, a network is presented images in high resolution. For large
detectors, for example, a reconstructed slice at the potential resolution of the data can be as large as 2000-by-
2000 pixels. Large networks typically demand too much GPU memory and cannot easily attain high framerates
at these resolutions. On the other hand, small networks have limited expressivity, which makes a careful archi-
tectural design (e.g., number of hidden layers, residual connections) more important. For image tasks with low
spatio-temporal complexity, such as segmentation and denoising, small networks yield satisfactory results20.

The next consideration for an architecture is what additional reconstructions it should use as inputs to process
a given image slice. Neighbouring slices and additional timesteps—usually given to the network as additional
image channels—often provide important contextual information, which could help to improve the image task.
Fig. 5 shows this by example, where, in a region of interest, Experiment (A) has spatially coherent features (along
rows), while Experiment (B) has spatio-temporally coherent features (along diagonals). For a denoising task,
where redundant patterns contain additional information, a network for Experiment (A) may benefit from a
sequence of nearby slices, whereas a network for Experiment (B) improves with a spatio-temporal volume.
More generally, this also points to an intricate connection between reconstruction and analysis operators (G
and A). Multiple spatial or temporal reconstructions may improve the network performance, but also decrease
the reconstruction speed, and delay training and the end-to-end framerate of the pipeline. A network should
therefore ideally be designed jointly with all parameters of the reconstruction operator, such as the spatial extent,
the choice of filter, or image resolution. We will illustrate the importance of architectural choices in Results II.

Topic III: online learning
Online learning, or incremental learning, is a strategy in which samples are presented in sequential or chrono-
logical order during training29. The strategy is typically employed in machine learning applications where data
is processed in large volumes, as it allows data samples to be discarded after training. During online learning,
network weights are continuously updated to fit the most recently presented samples. As a result, a network that
generalizes well to a distribution of recent samples may have diminishing accuracy for older samples—a process

Figure 5.   Different dynamics between Experiments (A) and (B), illustrated by the spatio-temporal
reconstruction of a vertically-oriented subvolume of dimensions (50, 50, 3). In (a), the dissolvent is soap-based,
leading to fast-traveling bubbles of overall large size. In (b), a spatio-temporal pattern appears along the time-
slice diagonal, due to the slower and smaller bubbles in the gel-based dissolvent.

8

Vol:.(1234567890)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

known as catastrophic forgetting. While this behaviour is undesired for learning a static distribution from a
stream of data30, the strategy suits real-time tomography, since distributions are time-dependent and our goal is
to generalize only to the most recently reconstructed image from the pipeline. The field of online learning as of
today is still developing, but examples exist in image classification31 and denoising autoencoders32.

Just-in-time learning is an application of real-time online learning to dynamic imaging data (Topic I), and
can be explained through the temporal evolution of neural network weights θ . Without the real-time aspect, its
goal at a time t is to find optimal weights θ⋆t from reconstructions Dt (Eq. 1) obtained by drawing from Pt . Note
that, since pairs (ui , vi) are generated separately from xt (Fig. 3), such Dt would ideally be designed ad hoc by
reconstructing input-target pairs that are expected to help generalization towards xt . For example, when xt is
from a steady-state regime, Dt could consist of a large amount of reconstructions sampled from the last m projec-
tions {ft−m, . . . , ft} corresponding to the regime. As each time index has a corresponding data set and optimum,
the dynamics of the real-time experiment leads to a trajectory θ⋆0 , θ

⋆
1 , . . . in the parameter space, and in principle

we would like our learning process to follow this trajectory as closely as possible.
In practice, the challenge of just-in-time learning is not only to approximate θ⋆t at each time t as closely as

possible, but also to do this within the time constraints of the experiment. Similar to other online strategies, we
achieve this by continuing the training with the previous (suboptimal) weights θt−1 and by appending or updating
the data set Dt−1 with new samples to form Dt . Thanks to the spatio-temporal continuity of Pt , the difference
between most data set pairs is small, and an optimization from θt−1 towards θ⋆t can therefore be interpreted as a
minimal example of transfer learning from Dt−1 to Dt . Transfer learning can be significantly faster and a neural
network can reuse features as well as low-level statistics when θt−1 is in the basin of θ⋆t 33. A basin is a region from
the parameter space in which local descend optimization methods, e.g., the commonly-used stochastic gradient
descend, would converge towards θ⋆t  . Our approach is different to, e.g., continual learning where instead the goal
is to preserve the structure of the parameter space, for example through constraints on the weights or gradients,
or by replaying training data34.

In our result section, we train DNNs with reconstructions that are generated chronologically. However, as
illustrated in Fig. 4, sample generation is often slower than optimization, even with our tailored reconstruction
software. This forms a bottleneck: If we would allow only single-time access per sample, i.e., let Dt = {(ut , vt)} ,
in the way other online learning strategies are designed, the optimizer would not be able to continue training
until new reconstructions are generated. We therefore introduce a modification that enables resampling of
reconstructions for a short duration. We will let the training data set be time-dependent, i.e., D = Bt , and
practically implement this as a buffering capacity queue, as shown in Fig. 6. The buffer Bt at time t contains the
last Nbuffer := |Bt | draws from Pt . By enabling asynchronous drawing from the buffer, the optimizer may select
randomly from Bt while new reconstructions are continuously added.

The size of the buffer, Nbuffer , is a user-specified parameter. If an optimizer is able to handle nopt samples per
second, and reconstructions are generated with nreco samples per second, a sample will on average be picked
nopt/nreco times during its lifetime in Bt . The choice of Nbuffer thus does not affect how often a sample is picked.
A suitable choice, however, may not be straightforward. A too small buffer may not contain sufficiently diverse
features. In contrast, a buffer too large may unnecessarily retain reconstructions that have become irrelevant
for the current timestep. In Results III, we will inspect the online learning process for different buffer strategies.

Results
We investigate the three topics of the preceding section with the Noise2Inverse method as learning task and data
collected using our experiments. To quantify results for samples in small time windows, the mean-squared error
loss does not provide a robust performance metric, due to the fluctuating noise levels that occur during data
collection in our set-up. Similar to the loss and expected risk (equation (2)), we therefore define an accuracy α
and empirical accuracy Rα

D
 , with

In comparison to the mean-squared error (MSE), the denominator of α(Aθ , u, v) in Equation (3) additionally
normalizes by the noise magnitude. As a result, we expect the empirical accuracy to be Rα

D
∈ [0.5, 1] . To see this,

first consider a network that does not denoise at all, i.e., Aθ (u) = u , and note that this leads to α(Aθ , u, v) = 1
and Rα

D
= 1 . Then, consider the ideal Noise2Noise setting (discussed in Methods) in which u = û + ǫ and

v = û + ǫ′ , where û is the noiseless image and ǫ and ǫ′ denote two independent realizations of voxelwise-i.i.d.

(3)α(Aθ , u, v) :=
�Aθ (u)− v�22
�u − v�22

, Rα
D
[Aθ] :=

1

|D |

∑

(ui ,vi)∈D

α(Aθ , ui , vi).

Figure 6.   Online learning implemented with an Nbuffer-sized capacity queue Bt . Training-target pairs (ut , vt)
are pushed onto the queue, while the network optimizer draws pairs asynchronously by a uniform random
sampling of their indices.

9

Vol.:(0123456789)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

noise images with zero mean and finite variance σ 2 . A perfect denoising network would predict Aθ (u) = û ,
and therefore

where n := nxnynz is the number of voxels. For large n, i.e., for typical image sizes, the nominator will be close to
σ 2 whereas the denominator will be close to 2σ 2 , thus α(Aθ , u, v) ≈ 0.5 . Using the Noise2Inverse setting, how-
ever, we will occasionally see that Rα

D
< 0.5 . This is possible when sparse-angle artefacts or fast object motion

inflicts additional differences between the even-angle ( ut ) and odd-angle ( vt ) reconstructions, in other words,
when ut and vt have different underlying ground truths. When a DNN network learns to predict such differences,
this reduces the numerator �Aθ (u)− v�22 in Eq. (3).

Results I: real‑time imaging data
As discussed in Topic I, a real-time network continuously encounters differently distributed samples, due to
transient and discontinuous changes in the data distribution. We call these out-of-distribution samples. Com-
pared to the hold-out samples, both types of samples have not been seen by the network before, but the out-
of-distribution samples are not distributed like the training set. To quantify the error this induces, we train the
Standard network Aθ on a data set D , while evaluating it on samples of an unseen data set E . At the same time,
we also train a baseline network Aψ on E . The accuracy change is approximated by

i.e., the difference between Aθ , trained on D but evaluated on E , and the baseline Aψ , trained on E and evalu-
ated on E.

Figure 7 displays six scenarios for D and E . Scenarios (a)–(c) correspond to discontinuous changes due to
user interaction, and (d)–(e) show the transient regimes during the experiment. Both D and E are generated
from 12 seconds of projection data of Experiment (A). The error ǫ is the difference between the dashed line and
the red dotted markers. For repositioning, D is the top half of the volume, and E the bottom half. For tilting, we
change horizontal to vertical slices, and for zooming we reduce the voxel size to 0.125. In the second row of the
figure, the choices for E are data sets that are generated from different projections. In (d), projections are taken
12 seconds directly after D . In (e), the data is from 25 minutes later in the same experiment. For (f), 12 seconds
of data are taken from Experiment (B).

In Fig. 7 most scenarios show that evaluation on out-of-distribution samples cause a significant loss in
accuracy, and that training Aθ for a prolonged time does not improve this evaluation. For user interaction, the
error ǫ is highest in the case of zooming. This is expected, as convolutional operators are not scale-invariant,
and therefore take notion of the size of the learned image features. We note that a similar change in the data
distribution could also occur when the acquisition geometry changes. In panel (d), training on D generalizes
well to the next 12 seconds. In (e), however, the object dynamics in Experiment (A) have changed substantially,
as more smaller bubbles occur in the data. This led to a decreased accuracy. In (f), we find that generalization

(4)α(Aθ , u, v) =
�û − (û + ǫ′)�22

�(û + ǫ)− (û + ǫ′)�22
=

1
n

∑n
i ǫ

′2
i

1
n

∑n
i (ǫi − ǫ′i)

2
,

(5)ǫ := Rα
E
[Aθ]− Rα

E

[

Aψ

]

,

Figure 7.   Empirical accuracy of a network with parameters θ trained on D , and a network with parameters ψ
trained on E . In (a)–(c), E is a change to D due to interaction with the experiment, and in (d)–(f), E is a data
set from different projections. The solid and dashed lines denote the accuracies of Aθ and Aψ on 3200 hold-
out samples. The error of Aθ on out-of-distribution samples, i.e., Eq. (5), is the distance between the potential
accuracy, i.e., the dashed baseline Rα

E
[Aψ] , and the achieved accuracy, i.e., the red markers Rα

E
[Aθ].

10

Vol:.(1234567890)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

towards Experiment (B) is poor, likely due to the change in liquids and set-up. We will inspect the visual effect
of out-of-distribution evaluation in Results III.

Our results in this section, for Noise2Inverse and Experiment (A), indicate that small DNNs can be sensitive
to changes in the pipeline data, i.e., the learned image features from 12 seconds of data are not generic enough
to be useful for differently placed, oriented or zoomed slices. While this may suggest extending the training data
D with reconstructions from E , similar to data augmentation, this is not straightforward. Set-up changes or
discontinuous changes in the physics cannot easily be anticipated by augmentation. Moreover, small networks
may not be expressive enough to anticipate large amounts of data, and the generation of additional data will
require more computational resources.

Results II: network architectures
In the following, we explore the performance of different U-Net architectures, and look at the effect of recon-
struction dimensions for Experiments (A) and (B). Table 1 lists four variations of our Standard architecture, the
network trained on randomly-selected 20-by-20 input patches. Cx-networks use x feature maps after the first
layer (and then follow the U-Net principle). With more feature maps the representational capacity of the network
increases, i.e., the network stores a larger number of filters. The next class, Vx-networks, use larger x-by-x-sized
patches during training, which increases the receptive field during training. Zx-networks use x nearby spatial
reconstructed slices, and Tx-networks use x timeframes, with the middle frame as target. Both increase the
image input during training and inference, and use 3D convolutions. During 30 minutes of training, samples
are continuously generated from a fixed 12-seconds data set of projection data, and previous reconstructions
are allowed to be resampled by the optimizer to avoid throttling. This is representative of online training in an
experiment where the data has no temporal component yet. For evaluation, 3200 hold-out samples are taken
from a 12 second interval later in the experiment.

Figure 8 displays the evolution of empirical accuracies for the architectures presented in Table 1. The results
show that all denoising networks can be trained to a satisfactory accuracy in 10 minutes or less. Training is
approximately fast for all networks, although the Cx, Zx, and Tx networks become significantly slower when
evaluated on high-resolution slices. This results in a lower framerate at the RECAST3D graphical interface. This
is not the case for the V30–V150 architectures, which used larger patches. While larger patches do not affect
the DNN framerate, we note that the slower initial convergence was only valuable for Experiment (B), where it
eventually resulted in a better accuracy.

Figure 9 illustrates the best architectures in each category, with an evaluation on a hold-out sample. Overall,
the architectures produce comparable outputs, suggesting that convergence speed may be the most important
criterion for selecting a network. In Experiment (A) the more expressive network (C32) and more slices (Z7)
help to produce a slightly smoother background. In Experiment (B), Z7 predicts bubbles better, and T7 produces
the sharpest bubble interfaces, although the latter predicted streak artifacts too. This is likely due to a difference
that occurs between even-angle and odd-angle reconstructions in Noise2Inverse. Yet, since the dynamics in
Experiment (B) are slower, the temporal network may also be better at using the redundancy of features between
multiple frames.

Results III: online learning
We conclude with a real-time simulation of Experiment (A) by replaying the full projection data set to our just-
in-time software using the T3 network (Table 1). When t < 336 seconds, reconstructions are taken in random

Table 1.   The network architectures in Topic II, corresponding to various parameter choices, that are used
to compare accuracy and training speed in Figs. 8 and 9. “· ” denotes a Standard parameter (see Software
set-up). nopt denotes the number of samples per second drawn by the network optimizer during training.
*Corresponding to a 1024-by-1024 output slice.

Feature maps Input dimensions Frames nopt (per second) DNN framerate* (Hz)

Standard 8 (20, 20, 1) 1 4,190 73

C16 16 · · 4119 38

C32 32 · · 4058 16

V30 · (30, 30, 1) · 3725 72

V40 · (40, 40, 1) · 4111 72

V60 · (60, 60, 1) · 2983 71

V100 · (100, 100, 1) · 1303 71

V150 · (150, 150, 1) · 591 71

Z3 · (20, 20, 3) · 3721 29

Z5 · (20, 20, 5) · 3820 17

Z7 · (20, 20, 7) · 3778 10

T3 · · 3 4597 23

T5 · · 5 4342 14

T7 · · 7 3935 10

11

Vol.:(0123456789)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

orientations from the top of the fluid container, and when t ≥ 336 seconds, samples are taken from the bottom.
This simulates a discontinuity in the pipeline data, corresponding to the repositioning of a horizontal slice in
RECAST3D (panel (a) in Fig. 7). In this scenario, the reconstructions were generated at a speed of 9 batches per
second, while the T3 network trained with 141 iterations per second.

Figure 10 shows the empirical accuracy of the network during training, estimated with 3200 samples in a small
window �t around each t, i.e., the accuracy Rα

D�t
 . The solid black line marks the accuracy of the T3 offline-trained

network on all data before the discontinuity, the dashed line a Total Variation (TV) based denoising35 implemen-
tation from the Python scikit-image package, and the dotted line describes a training strategy without buffer. The
blue and red lines mark the just-in-time strategy with a buffer of 32 and 320 reconstructions, respectively. Our
first observation is that both buffer sizes perform better than a network that processes the input sequentially.
The network with Nbuffer = 320 (about a second of data), performs best, which suggests that including previous
reconstructions in the training process is advantageous in the case of slow data generation.

Figure 11 visualizes images of the pretrained and Nbuffer = 320 network before and after the discontinuity. We
note that at t = 4 minutes (first row), bubbles of the just-in-time network are slightly oversmoothed, compared
to the pretrained network, but that the results are of satisfactory quality. For TV, the regularization parameter
was set to � = 0.03 and the number of iterations to niter = 300 , after tuning on 3200 samples from the top of the
container. In these experiments TV denoising was not able to outperform the data-driven denoisers. In future
work, classical TV can be combined with neural networks in the tomographic pipeline.

When, after 336 seconds, samples are taken from the bottom of the volume (see the tablet in Fig. 2), the
pretrained and just-in-time strategies observe a similar accuracy. Interestingly, the just-in-time strategy requires
only a short time to improve over the pretrained network. The second row in Fig. 11 shows, the strategy at t = 8
minutes, has a clear visual advantage. It maintains the fine-grained structure in the tablet (yellow), and is better

Figure 8.   Empirical accuracy of the architectures in Table 1 for Experiment (A) and (B), using 3200 hold-out
samples per evaluation point. Increasing the features (Cx) or slices (Zx) is effective, although they slow down the
DNN framerate. The effect of patch size (Vx) and frames (Tx) is dataset-dependent.

Figure 9.   90-by-120 region-of-interest network outputs, comparing the best-performing DNNs in each
class of Table 1 visually. Standard, C32, V150, Z7, and T7 outputs, for Experiment (A) and (B), are the best
networks from Fig. 8 evaluated on Input. Experiment (A) shows a rising bubble in a vertically-oriented slice, and
Experiment (B) a horizontal cross-section in the middle of the volume.

12

Vol:.(1234567890)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

able to remove the noisy background in the gas around the tablet (dark blue). A video, combining Figs. 10 and 11
for the Nbuffer = 320 network, is included with the Supplementary Information.

Discussion
Recent advances in Deep Learning have produced powerful image processing and analysis algorithms that operate
in a fraction of the time that conventional algorithms take. Our just-in-time concept brings these algorithms to
real-time tomographic pipelines at synchrotron light source facilities and X-ray microscopy laboratories, where
a large diversity of imaging data is processed. The leading principle of just-in-time learning is that continuous
regimes in the experiment lead to spatio-temporal continuous data in the pipeline, which can be be used to
train while the experiment is ongoing. By combining small, easy-to-train architectures with online learning,
the approach allows the analysis of reconstructions during the experiment, and can therefore be employed
without preparation and without prior data. In this article, we have demonstrated just-in-time learning using
the quasi-3D reconstruction paradigm proposed in RECAST3D6, and for the small U-Net architectures20,22 on
the Noise2Inverse loss14. For extending it to high-resolution fully-3D reconstructions, fast DNN inference poses
the main challenge. While image partitioning techniques can divide the workload over multiple GPUs36,37, such
techniques have not yet been demonstrated on millisecond timescales.

In Results I, small networks are found to be sensitive to changes in the data distribution, even within a single
experiment. This is generally unavoidable, since, as Results II illustrates, more expressive networks are signifi-
cantly slower. At the same time, Results I and II show that reconstructions have a large degree of spatio-temporal
continuity when the experiment is in steady-state or transient regimes. This enables spatio-temporal DNNs, and
allows a neural network to generalize to data from the tomographic pipeline. In Results II, several hyperparameter
settings, such as the number of feature maps, led to good visual results. However, we did not discuss how such

Figure 10.   Accuracy of the online-trained T3 network on Experiment (A), with different buffer sizes,
in comparison to a pretrained baseline, Total Variation based denoising, and a training strategy without
buffer. After 336 seconds, reconstructions are sampled from the bottom of the fluid container to simulate a
discontinuity in the pipeline data. Each point on the graph is an evaluation of the network on 3200 randomly
selected samples.

Figure 11.   A comparison between the input image to denoise, denoising results of TV minimization, and
pretrained and just-in-time trained network after t = 4 and t = 8 minutes, i.e., before and after the discontinuity
of the experiment in Fig. 10. *The difference is taken between the pretrained and Nbuffer = 320 outputs.

13

Vol.:(0123456789)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

hyperparameters are to be picked for a new set-up, task, or experiment. An interesting direction for future work
would be to find heuristics to automate this. For Results III, we showed a straightforward buffer strategy for online
learning. Yet, it is also possible to design the buffer or training data set adaptively. Constraints on gradients, or
specialized network architectures, are further possibilities to retain information over longer time spans of the
experiment34. This, and a more precise description and exploration of the formal concepts behind just-in-time
learning that we sketched in Topic I and III, are important directions of future research.

We have demonstrated the feasibility of our approach using real-world laboratory data on an image denois-
ing task using the Noise2Inverse training loss. While we expect this to be representative of other tasks with low
spatio-temporal complexity, such as image super-resolution, segmentation, or artefact removal, future research
is needed to see what is achievable for more sophisticated image processing tasks—especially when more diverse
image features need to be stored in the network. Strategies such as dynamic pruning38,39, improved (U-Net)
architectures40, mixed precision weights, and parallelization can improve the speed and accuracy of DNNs, which
would widen the applicability of our approach by enabling more expressive networks. For denoising, just-in-time
learning already proves to be a viable Deep Learning paradigm with a large potential use. Deep Learning-based
analysis can provide valuable feedback during an experiment, which can be used for experimental control8 or
real-time scan adaptation and optimization techniques. For the latter, we will investigate coupling the proposed
just-in-time learning strategy with reinforcement learning approaches41.

Data availability
A subset of 10,000 projections of experimental data has been published on Zenodo42 at https://​zenodo.​org/​recor​
ds/​36101​87. The full data sets used in the manuscript are available upon reasonable request. Requests should be
addressed to Felix Lucka.

Code availability
Our Python software, JITLearn, is available at https://​github.​com/​adria​angra​as/​jitle​arn. Reprints and permis-
sions information is available at www.​nature.​com/​repri​nts.

Received: 15 August 2023; Accepted: 26 October 2023

References
	 1.	 Vanrompay, H. et al. Real-time reconstruction of arbitrary slices for quantitative and in situ 3D characterization of nanoparticles.

Part. Part. Syst. Charact. 37, 2000073. https://​doi.​org/​10.​1002/​ppsc.​20200​0073 (2020).
	 2.	 Marone, F. et al. Time resolved in situ X-ray tomographic microscopy unraveling dynamic processes in geologic systems. Front.

Earth Sci. 7, 346. https://​doi.​org/​10.​3389/​feart.​2019.​00346 (2020).
	 3.	 Withers, P. J. et al. X-ray computed tomography. Nat. Rev. Methods Primers 1, 18. https://​doi.​org/​10.​1038/​s43586-​021-​00015-4

(2021).
	 4.	 Nikitin, V., Tekawade, A., Duchkov, A., Shevchenko, P. & De Carlo, F. Real-time streaming tomographic reconstruction with on-

demand data capturing and 3D zooming to regions of interest. J. Synchrotron Radiat. 29, 816–828. https://​doi.​org/​10.​1107/​S1600​
57752​20030​95 (2022).

	 5.	 Coban, S., Lucka, F., Palenstijn, W., Loo, D. & Batenburg, K. Explorative imaging and its implementation at the FleX-ray laboratory.
J. Imaging 6, 18. https://​doi.​org/​10.​3390/​jimag​ing60​40018 (2020).

	 6.	 Buurlage, J.-W., Kohr, H., Palenstijn, W. J. & Batenburg, J. Real-time quasi-3D tomographic reconstruction. Meas. Sci.
Technol.https://​doi.​org/​10.​1088/​1361-​6501/​aab754 (2018).

	 7.	 Schwartz, J. et al. Real-time 3D analysis during tomographic experiments on tomviz. Microsc. Microanal. 27, 2860–2862. https://​
doi.​org/​10.​1017/​S1431​92762​10099​83 (2021).

	 8.	 Buurlage, J.-W. et al. Real-time reconstruction and visualisation towards dynamic feedback control during time-resolved tomog-
raphy experiments at TOMCAT. Sci. Rep. 9, 18379. https://​doi.​org/​10.​1038/​s41598-​019-​54647-4 (2019).

	 9.	 Marone, F., Studer, A., Billich, H., Sala, L. & Stampanoni, M. Towards on-the-fly data post-processing for real-time tomographic
imaging at TOMCAT. Adv. Struct. Chem. Imaging 3, 1. https://​doi.​org/​10.​1186/​s40679-​016-​0035-9 (2017).

	10.	 Schwartz, J., Zheng, H., Hanwell, M., Jiang, Y. & Hovden, R. Dynamic compressed sensing for real-time tomographic reconstruc-
tion. Microsc. Microanal. 26, 2462–2465. https://​doi.​org/​10.​1017/​s1431​92762​00216​74 (2020).

	11.	 Schoonhoven, R., Buurlage, J.-W., Pelt, D. & Batenburg, J. Real-time segmentation for tomographic imaging. In IEEE 30th Inter-
national Workshop on Machine Learning for Signal Processing, 1–6, https://​doi.​org/​10.​1109/​MLSP4​9062.​2020.​92316​42 (2020).

	12.	 Plank, B., Helmus, R., Gschwandtner, M., Hinterhölzl, R. & Kastner, J. In-situ observation of bubble formation in neat resin during
the curing process by means of X-ray computed tomography, In 19th World Conference on Non-Destructive Testing, WCNDT, S.
1–8 (2016).

	13.	 Vijayakumar, J. et al. Characterization of pharmaceutical tablets by X-ray tomography. Pharmaceuticals. https://​doi.​org/​10.​3390/​
ph160​50733 (2023).

	14.	 Hendriksen, A. A., Pelt, D. M. & Batenburg, K. J. Noise2Inverse: Self-supervised deep convolutional denoising for tomography.
IEEE Trans. Comput. Imaging 6, 1320–1335. https://​doi.​org/​10.​1109/​tci.​2020.​30196​47 (2020).

	15.	 Buzug, T. M. Computed tomography: From photon statistics to modern cone-beam CT (Springer, 2009).
	16.	 Hansen, P. C., Jørgensen, J. & Lionheart, W. R. B. Computed Tomography: Algorithms, Insight, and Just Enough Theory (Society for

Industrial and Applied Mathematics, 2021).
	17.	 Berner, J., Grohs, P., Kutyniok, G. & Petersen, P. The modern mathematics of deep learning. CoRR abs/2105.04026 (2021). arXiv:​

2105.​04026.
	18.	 Vidal, R., Bruna, J., Giryes, R. & Soatto, S. Mathematics of deep learning. CoRR abs/1712.04741 (2017). arXiv:​1712.​04741.
	19.	 Huang, Y., Zhang, N. & Hao, Q. Real-time noise reduction based on ground truth free deep learning for optical coherence tomog-

raphy. Biomed. Opt. Express 12, 2027–2040. https://​doi.​org/​10.​1364/​BOE.​419584 (2021).
	20.	 Tekawade, A. et al. Real-time porosity mapping and visualization for synchrotron tomography. TechRxivhttps://​doi.​org/​10.​36227/​

techr​xiv.​20369​421.​v1 (2022).
	21.	 Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. Beyond a gaussian denoiser: Residual learning of deep CNN for image denois-

ing. IEEE Trans. Image Process. 26, 3142–3155 (2017).
	22.	 Ronneberger, O., Fischer, P. & Brox, T. U-Net: Convolutional networks for biomedical image segmentation (2015). arXiv:​1505.​

04597.

https://zenodo.org/records/3610187
https://zenodo.org/records/3610187
https://github.com/adriaangraas/jitlearn
http://www.nature.com/reprints
https://doi.org/10.1002/ppsc.202000073
https://doi.org/10.3389/feart.2019.00346
https://doi.org/10.1038/s43586-021-00015-4
https://doi.org/10.1107/S1600577522003095
https://doi.org/10.1107/S1600577522003095
https://doi.org/10.3390/jimaging6040018
https://doi.org/10.1088/1361-6501/aab754
https://doi.org/10.1017/S1431927621009983
https://doi.org/10.1017/S1431927621009983
https://doi.org/10.1038/s41598-019-54647-4
https://doi.org/10.1186/s40679-016-0035-9
https://doi.org/10.1017/s1431927620021674
https://doi.org/10.1109/MLSP49062.2020.9231642
https://doi.org/10.3390/ph16050733
https://doi.org/10.3390/ph16050733
https://doi.org/10.1109/tci.2020.3019647
http://arxiv.org/abs/2105.04026
http://arxiv.org/abs/2105.04026
http://arxiv.org/abs/1712.04741
https://doi.org/10.1364/BOE.419584
https://doi.org/10.36227/techrxiv.20369421.v1
https://doi.org/10.36227/techrxiv.20369421.v1
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597

14

Vol:.(1234567890)

Scientific Reports | (2023) 13:20070 | https://doi.org/10.1038/s41598-023-46028-9

www.nature.com/scientificreports/

	23.	 Pelt, D. M. & Sethian, J. A. A mixed-scale dense convolutional neural network for image analysis. Proc. Natl. Acad. Sci. 115, 254–259
(2018).

	24.	 Batson, J. & Royer, L. Noise2Self: Blind denoising by self-supervision, https://​doi.​org/​10.​48550/​ARXIV.​1901.​11365 (2019).
	25.	 Lehtinen, J. et al. Noise2Noise: Learning image restoration without clean data, https://​doi.​org/​10.​48550/​ARXIV.​1803.​04189 (2018).
	26.	 Hintjens, P. ZeroMQ: Messaging for many applications (O’Reilly Media, Inc., 2013).
	27.	 van Aarle, W. et al. Fast and flexible X-ray tomography using the ASTRA toolbox. Opt. Express 24, 25129–25147. https://​doi.​org/​

10.​1364/​OE.​24.​025129 (2016).
	28.	 Øksendal, B. Stochastic Differential Equations: An Introduction with Applications (Universitext) 6th edn. (Springer, 2014).
	29.	 Sahoo, D., Pham, Q., Lu, J. & Hoi, S. C. H. Online deep learning: learning deep neural networks on the fly, https://​doi.​org/​10.​48550/​

ARXIV.​1711.​03705 (2017).
	30.	 Aljundi, R., Lin, M., Goujaud, B. & Bengio, Y. Gradient based sample selection for online continual learning. arXiv:​1903.​08671

(2019).
	31.	 Siddiqui, Z. A. & Park, U. Progressive convolutional neural network for incremental learning. Electronics 10, 1879 (2021).
	32.	 Zhou, G., Sohn, K. & Lee, H. Online incremental feature learning with denoising autoencoders. In Artificial Intelligence and

Statistics, 1453–1461 (PMLR, 2012).
	33.	 Neyshabur, B., Sedghi, H. & Zhang, C. What is being transferred in transfer learning? arXiv:​2008.​11687 (2021).
	34.	 Wang, L., Zhang, X., Su, H. & Zhu, J. A comprehensive survey of continual learning: Theory, method and application. arXiv:​2302.​

00487 (2023).
	35.	 Chambolle, A. An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97. https://​doi.​org/​

10.​1023/B:​JMIV.​00000​11325.​36760.​1e (2004).
	36.	 Hou, L. et al. High resolution medical image analysis with spatial partitioning. arXiv:​1909.​03108 (2019).
	37.	 Bakhtiarnia, A., Zhang, Q. & Iosifidis, A. Efficient high-resolution deep learning: A survey. arXiv:​2207.​13050 (2022).
	38.	 Blalock, D., Ortiz, J. J. G., Frankle, J. & Guttag, J. What is the state of neural network pruning? arXiv:​2003.​03033 (2020).
	39.	 Schoonhoven, R., Hendriksen, A. A., Pelt, D. M. & Batenburg, K. J. LEAN: Graph-based pruning for convolutional neural networks

by extracting longest chains. arXiv:​2011.​06923 (2022).
	40.	 Isensee, F., Kickingereder, P., Wick, W., Bendszus, M. & Maier-Hein, K. H. No new-net. arXiv:​1809.​10483 (2019).
	41.	 Wang, T., Lucka, F. & van Leeuwen, T. Sequential experimental design for X-ray CT using deep reinforcement learning. arXiv:​

2307.​06343 (2023).
	42.	 Coban, S. B. & Lucka, F. Dynamic 3D X-ray micro-CT data of a tablet dissolution in a water-based gel. Zenodohttps://​doi.​org/​10.​

5281/​zenodo.​36101​87 (2019).

Acknowledgements
This work was supported by the Dutch Research Council (NWO), project numbers 613.009.106 and 613.009.116.

Author contributions
A.B.M. Graas wrote the manuscript. F. Lucka and S.B. Coban conducted the experiments. All authors reviewed
the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​46028-9.

Correspondence and requests for materials should be addressed to A.G. or F.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://doi.org/10.48550/ARXIV.1901.11365
https://doi.org/10.48550/ARXIV.1803.04189
https://doi.org/10.1364/OE.24.025129
https://doi.org/10.1364/OE.24.025129
https://doi.org/10.48550/ARXIV.1711.03705
https://doi.org/10.48550/ARXIV.1711.03705
http://arxiv.org/abs/1903.08671
http://arxiv.org/abs/2008.11687
http://arxiv.org/abs/2302.00487
http://arxiv.org/abs/2302.00487
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
https://doi.org/10.1023/B:JMIV.0000011325.36760.1e
http://arxiv.org/abs/1909.03108
http://arxiv.org/abs/2207.13050
http://arxiv.org/abs/2003.03033
http://arxiv.org/abs/2011.06923
http://arxiv.org/abs/1809.10483
http://arxiv.org/abs/2307.06343
http://arxiv.org/abs/2307.06343
https://doi.org/10.5281/zenodo.3610187
https://doi.org/10.5281/zenodo.3610187
https://doi.org/10.1038/s41598-023-46028-9
https://doi.org/10.1038/s41598-023-46028-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Just-in-time deep learning for real-time X-ray computed tomography
	Methods
	Real-time computed tomography
	Experimental set-up with RECAST3D
	Deep learning for real-time analysis
	Self-supervised image denoising with Noise2Inverse
	Software set-up
	Training data generation

	Just-in-time learning
	Topic I: real-time imaging data
	Topic II: network architectures
	Topic III: online learning

	Results
	Results I: real-time imaging data
	Results II: network architectures
	Results III: online learning

	Discussion
	References
	Acknowledgements

