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Research on improved algorithm 
for helmet detection based 
on YOLOv5
Chun Shan 1,2*, HongMing Liu 1 & Yu Yu 1

The continuous development of smart industrial parks has imposed increasingly stringent 
requirements on safety helmet detection in environments such as factories, construction sites, 
rail transit, and fire protection. Current models often suffer from issues like false alarms or missed 
detections, especially when dealing with small and densely packed targets. This study aims to 
enhance the YOLOv5 target detection method to provide real-time alerts for individuals not wearing 
safety helmets in complex scenarios. Our approach involves incorporating the ECA channel attention 
mechanism into the YOLOv5 backbone network, allowing for efficient feature extraction while 
reducing computational load. We adopt a weighted bi-directional feature pyramid network structure 
(BiFPN) to facilitate effective feature fusion and cross-scale information transmission. Additionally, 
the introduction of a decoupling head in YOLOv5 improves detection performance and convergence 
rate. The experimental results demonstrate a substantial improvement in the YOLOv5 model’s 
performance. The enhanced YOLOv5 model achieved an average accuracy of 95.9% on a custom-made 
helmet dataset, a 3.0 percentage point increase compared to the original YOLOv5 model. This study 
holds significant implications for enhancing the accuracy and robustness of helmet-wearing detection 
in various settings.

Intelligent upgrading and management of traditional industrial parks represent a new model for industrial devel-
opment aimed at promoting industrial transformation, enhancing productivity, improving resource utilization 
efficiency, and ensuring environmental sustainability. While wearing a helmet is crucial to protect workers’ heads 
from falling objects and potential collisions on complex construction sites, it is often observed that construction 
workers lack safety awareness and do not consistently wear helmets for various reasons. This behavior not only 
poses a significant threat to workers’ personal safety but also hinders effective supervision at construction sites. 
Therefore, there is an urgent need to find more effective methods to monitor and enforce helmet usage.

Traditional supervision methods predominantly rely on manual oversight, which consumes substantial mate-
rial and human resources. In recent years, many scholars, both domestically and internationally, have applied 
machine learning technology to helmet detection. This approach can significantly reduce labor costs while 
ensuring effective supervision. For instance, Lowe1 proposed a scale-invariant feature transformation method 
for detecting key image features. Viola et al.2 developed the Haar-like feature extraction method by exploring 
human facial features . To enhance feature extraction efficiency, directional gradient histograms have also been 
employed for target detection3. In 2014, R. Girshick and colleagues introduced the Region-Convolutional Neu-
ral Network (RCNN) algorithm, marking the acceleration of target detection development with convolutional 
neural networks4.

Due to human limitations in processing large amounts of loosely correlated information simultaneously, 
researchers have translated this concept into deep learning to extract more useful features and enhance target 
detection model performance. This mechanism is known as the attention mechanism and is widely used in vari-
ous fields, such as natural language processing5, computer vision, and tasks like face recognition, crowd detec-
tion, car recognition, insulator detection, and speech recognition6–10. In 2017, Hu et al. introduced the Squeeze 
and Excitation Network (SENet)11. Subsequently, in 2018, Park et al. proposed the Convolutional Block Atten-
tion Module (CBAM) and Bottleneck Attention Module (BAM), each featuring channel and spatial attention 
modules12,13. These modules have been integrated into the ResNet network, providing plug-and-play convenience 
to improve feature quality.

Our research will delve into the principles and methods of a fusion attention mechanism, as well as enhance 
the YOLO algorithm across multiple stages and levels. This enhancement aims to enable the model to better 
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extract features and process complex data, ultimately improving its accuracy, stability, and generalization capabili-
ties. To validate the model’s effectiveness, we will conduct experiments and compare its performance with other 
attention models. Finally, we will discuss potential challenges and future directions for this improved model. We 
hope to offer an efficient and accurate helmet detection solution for industrial, construction, and manufacturing 
fields, thereby contributing to the safeguarding of employees’ personal safety and the reduction of workplace 
accidents. Simultaneously, we anticipate that this paper will inspire further exploration of target detection tech-
nology applications in safety-related fields, fostering innovation and development. The main contributions of 
this paper are summarized as follows:

1.	 Due to the lack of a large number of public safety helmet detection datasets in field scenarios, an open-source 
safety helmet dataset was created using Mosaic data augmentation.

2.	  Considering the high computational load and memory requirements of YOLOv5, making it challenging to 
deploy on small mobile embedded devices, improvements were made to the backbone network, specifically 
the BIFPN structure. Additionally, the Efficient Channel Attention was introduced. Comparative experiments 
were conducted using the dataset at each improvement point to validate their effectiveness.

3.	  In response to the time-consuming and cumbersome safety helmet detection process in existing research, 
this paper introduced the YOLOX decoupled head structure. This structure separates the extraction of target 
position and category information, enabling them to be learned independently in different network branches. 
This approach effectively reduces the number of parameters and computational complexity, greatly enhancing 
convergence speed, model generalization, and robustness.

The rest of this paper is organized as follows.: “Related work” provides a review of related work. In “Improved 
methods”, we elucidate the proposed improved methods. “Experiment and results” delves into experiments and 
results, with conclusions drawn in “Conclusion”.

Related work
In addition to the methods outlined above, numerous studies have dedicated their efforts to harnessing deep 
learning networks for the extraction of highly discriminative features in helmet detection14. These studies under-
score the integration of diverse data sources and the utilization of knowledge graphs for comprehensive data 
analysis and inference, ultimately leading to a more profound comprehension of the intricate interrelationships 
within the data15. Furthermore, the focal point of future research is expected to shift towards cybersecurity 
concerns and the deployment of edge devices in industrial IoT systems16. Notably, Sun et al.17 have introduced a 
method for honeypot identification based on deep learning, while Tian et al.18 have unveiled a digital evidence 
framework founded on blockchain technology. Both of these approaches hold pivotal roles in ensuring the 
security, immutability, and traceability of the digital evidence subject to examination.

Deep learning-based target detection algorithms can be primarily categorized into one-stage detection algo-
rithms and two-stage detection algorithms. Within the one-stage category, renowned options include the YOLO 
(You Only Look Once) series19 and SSD (Single Shot MultiBox Detector)20. These algorithms excel in their ability 
to efficiently extract features and employ multi-scale detection techniques, thereby facilitating real-time target 
detection with a high degree of accuracy. In contrast, two-stage detection algorithms involve a two-step process, 
first localizing the object through a candidate box, followed by classifying the localized content. Representative 
examples encompass RCNN, SPP-NET, Fast R-CNN, Faster R-CNN, Mask R-CNN, and Cascade R-CNN21–26. 
While two-stage detection algorithms offer exceptional accuracy, their real-time performance often falls short, 
rendering one-stage detection algorithms the prevailing choice. Ongoing research endeavors have given rise 
to numerous one-stage detection algorithms, each endowed with distinctive features that enhance detection 
accuracy without compromising processing speed. YOLOv5, as the most recent optimization within the YOLO 
series, has garnered significant attention for its exceptional performance and efficient real-time processing. It 
achieves higher accuracy and faster speeds, rendering it an ideal solution for the helmet detection challenge.

The YOLO series algorithm framework27, a classic one-stage target detection algorithm, conducts detection 
within a single stage, simplifying the operational process and enhancing speed. YOLOv5 introduces four network 
models: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Among these, YOLOv5s features the smallest network 
volume, whereas YOLOv5m, YOLOv5l, and YOLOv5 increase the depth and width of the network structure, 
resulting in improved accuracy, albeit with a slightly slower processing speed.

The YOLOv5 algorithm model is divided into Input, Backbone, Neck, Head, and Output, typically based on 
the CSP architecture28. The Backbone network extracts features from input images with fewer parameters, ena-
bling faster inference speed. Additionally, YOLOv5 incorporates a feature pyramid network after the Backbone 
network to handle targets of various scales. This network uses multiple feature maps of different levels to detect 
targets of different sizes. YOLOv5 generates candidate boxes by applying anchor boxes to represent targets of 
varying sizes and aspect ratios. Each feature layer includes a prediction layer, which outputs target confidence, 
class probability, and box location information for class and location prediction. Training the YOLOv5 model 
requires a loss function to measure the difference between predicted results and true labels, with YOLOv5 using 
a comprehensive loss function that includes confidence loss, class loss, and box regression loss. In the final object 
detection stage, non-maximum suppression (NMS) removes overlapping detection boxes and selects the detec-
tion result with the highest confidence as the final output.

To validate the effectiveness of the improved model and the proposed YOLOv5 target detection algorithm, 
we conducted comparative experiments on the dataset. Considering practical application scenarios, this paper 
focuses on integrating all improvements into an overall model and validating it using real-world scenario datasets. 
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We aim to assess the improved algorithm’s detection performance under actual conditions. The next section will 
introduce the process of improving the original algorithm.

Improved methods
To enhance the applicability of the YOLOv5 algorithm for helmet detection in complex environments, several 
optimizations are needed. Firstly, adopting a lightweight backbone network for feature extraction is essential 
before deploying the algorithm on the target device. Simultaneously, by incorporating the improved Neck net-
work to extract more intricate features, we can enhance the algorithm’s ability to focus on small targets, expedite 
convergence, and predict outcomes efficiently through the Head computation. We achieve this by integrating 
the ECA channel attention mechanism, which efficiently extracts features from the input image using fewer 
parameters, resulting in faster inference speeds.

Additionally, to address targets of varying scales, we retain the feature pyramid network29, as in the original 
YOLOv5. This network utilizes multiple feature maps from different layers to detect targets of different sizes. 
To enrich the feature mapping with semantic information, we have adopted the BiFPN feature fusion structure 
within the Neck section of the network, replacing the FPN + PAN feature fusion structure from the original 
YOLOv5 target detection algorithm.

For generating candidate boxes representing targets of different sizes and aspect ratios, YOLOv5 continues 
to utilize anchor boxes. Furthermore, to alleviate conflicts between the classification and localization branches 
in the target detection task, we transitioned from a shared header structure to a decoupled header. You can find 
a visual representation of the improved YOLOv5 network structure in Fig. 1.

A. Data enhancement
Data augmentation is a preprocessing technique used to broaden the image dataset. In this approach, the original 
image data is combined with the mosaic data augmentation method during input processing. Essentially, when 
multiple image datasets are stacked to create a new image dataset, they function similarly, with slight variations 
in operation. Mosaic data augmentation begins by randomly selecting four original image datasets, adjusting each 
image for brightness, zoom, flipping, noise addition, and other operations, as illustrated in Fig. 2. Subsequently, 
the four processed images are arranged, cropped, and zoomed freely, among other operations, and then pieced 
together to form a new image. An example of the input after Mosaic data augmentation is depicted in Fig. 3.

The Mosaic data augmentation method serves to expand the dataset’s helmet feature data, significantly 
increasing the diversity of the detection dataset. This, in turn, enhances the detection algorithm’s capability to 
identify small targets and improves its overall robustness. Moreover, this method allows for the simultaneous 
processing of data from four images, effectively expanding the dataset while minimizing computational overhead. 
As a result, it accelerates the detection speed and reduces the training time of the detection algorithm.
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Figure 1.   Improved YOLOv5 network architecture diagram.
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B. Incorporating ECA channel attention mechanisms
The ECA attention mechanism is a variation of the attention mechanism used in image processing and computer 
vision tasks. It draws inspiration from the Squeeze-and-Excitation (SE) attention mechanism30, which enhances 
a model’s feature representation by dynamically adjusting the significance of channels in CNN models.

The channel attention mechanism, applied to CNN models, aims to enhance a convolutional neural network’s 
ability to capture relationships between channels. In traditional CNNs, the feature maps of each channel are typi-
cally considered as independent, with all channels assigned equal importance. However, in real-world images, 

Figure 2.   Data enhancement effect diagram.

Figure 3.   Mosaic data enhancement input example.
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different channels may exhibit varying relationships and levels of importance. The ECA attention mechanism 
addresses this by allowing the network to focus more effectively on task-relevant information through adaptive 
channel importance adjustments. This approach has proven highly effective in improving the model’s capacity 
to represent critical channel features.

To be specific, the fundamental concept behind ECA channel attention involves assigning a weight to each 
channel. This is accomplished by introducing a learnable one-dimensional convolutional layer, which aggregates 
a global description of each channel by pooling the global average of its feature maps. For each input channel, a 
one-dimensional convolution operation is then applied using a convolution kernel, with the convolution result 
transformed into a weight value ranging from 0 to 1 via a sigmoid function to represent attention weights. Below 
is the ECA formula for generating channel weights through a one-dimensional convolution of size K:

where, C1D denotes one-dimensional convolution, y denotes channel,σ denotes Sigmoid activation function.The 
larger the channel dimension,the larger the range of local cross-channel interaction. The mapping relationship 
between the channel dimension C and K is as follows:

Given the channel dimension C, the kernel size K is determined adaptively:

The parameters γ and b are hyperparameters in the context of the ECA attention mechanism. The γ parameter 
is employed to scale attention weights, allowing control over the concentration of attention distribution. A larger 
value of γ sharpens the attention, focusing it on a smaller number of channels, whereas a smaller γ broadens the 
attention distribution more evenly. Conversely, the b parameter is used to shift attention weights, influencing 
the reference point of attention. When b is a positive number, attention may be inclined towards channels with 
higher responses, while a negative b value may favor low-response channels. Typically, an initial value for b can 
be set, such as a smaller positive number like 1, and then adjusted based on experimental outcomes.

Finally, the features of each channel are multiplied by their respective attention weights to derive weighted 
channel features, as illustrated in Fig. 4. These weights are applied to each channel within the feature map, 
resulting in a weighted feature map where important channels are amplified, and less significant channels are 
suppressed. This approach enhances computational efficiency and boosts the performance of the ECA channel 
attention mechanism when compared to the SE channel attention mechanism.

With the incorporation of the ECA attention mechanism, the model becomes better equipped to adapt to 
relationships between different channels, address the correlation among channel features, and direct attention 
towards channels crucial for the task. This reduction in redundant information ultimately leads to improved 
model performance.

C. Replacement of feature pyramid structure
Traditional Feature Pyramid Networks (FPNs) have certain limitations, including the loss of feature information 
and ambiguities. These limitations result in incomplete information transfer and a reduction in feature resolu-
tion. To address these issues, the Bidirectional Feature Pyramid Network (BiFPN)14 serves as an enhancement 
and extension of the conventional FPN.

The Weighted Bidirectional Feature Pyramid Network (BiFPN) is a multi-target, multi-size, and multi-scale 
target detection network structure. Rooted in efficient bi-directional cross-scale connectivity and weighted feature 
fusion, BiFPN constitutes a feature fusion network structure inspired by the theoretical foundations of PANet. 
This structure is re-engineered to facilitate feature fusion across the entire network, wherein features originating 
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from top layers down to lower layers are fused. Instead of directly passing these features to the detector, the fusion 
process is conducted from the lower layers up to the top layers, with certain unfused features being pruned. In 
essence, it "redirects" the feature flow, allowing for enhanced feature fusion, cost savings, simplified network 
architecture, and rapid multi-scale feature integration.

BiFPN’s design philosophy draws from the concepts of Feature Pyramid Network (FPN) and PANet. It facili-
tates the transmission of feature information between the upper and lower layers of the network. The network 
constructs a feature pyramid by employing both top-down and bottom-up pathways to merge features at vary-
ing scales. These top-down connections combine high-level features with their low-level counterparts, thereby 
extracting more comprehensive semantic information.

The core concept behind BiFPN involves the gradual generation of high-level features layer by layer, starting 
from the initial bottom-level features. This process is achieved through bidirectional connectivity and layer-by-
layer iteration. BiFPN introduces bidirectional connections, enabling feature fusion not only in top-down paths 
but also through the passage of features in bottom-up paths. This approach facilitates multilevel and multisize 
feature fusion and allows for the repetition of network layers. Consequently, it results in the acquisition of 
superior-quality semantic features, location features, and higher-level feature fusion, as illustrated in Fig. 5.

The computation of BiFPN feature fusion can be expressed as shown in Eq. 1d.

In the equation, F represents the layer feature, ω denotes the feature weight for the layer, and Fout represents 
the resulting output feature following feature fusion.

Furthermore, as a feature fusion network, BiFPN addresses the issue of varying importance levels among 
connected features at each scale and layer in the final output features. It achieves this by incorporating weight 
parameters designed to learn and update the contributions of different input features, thus differentiating their 
degrees of importance. Simultaneously, the overall network structure shares these learned weight parameters. 
This approach allows us to balance the information from features at different scales, resulting in higher-quality 
fused features for subsequent detection stages.

This bidirectional approach proves highly effective in capturing feature information at different scales, ena-
bling the construction of feature pyramids at various scales. This solution ensures a more stable and consistent 
detection performance across different levels, making it a common feature in advanced target detection models 
such as EfficientDet and RetinaNet. Models like BIFPN that utilize this approach have consistently delivered 
outstanding performance and results.

D. YOLOX decoupling header
In the realm of target detection, the classification task and the regression problem are a pair of conflicting 
objectives. This is primarily because the characteristics required for classification differ from those needed for 
regression. Classification necessitates a degree of subtlety, while regression relies more on contour and bound-
ary features.

The concept of a shared head structure originally emerged in the Fast RCNN paper, offering a one-step solu-
tion that significantly enhances detection speed. However, as single-stage and two-stage detection networks 
evolved, some classical target algorithms continued to employ coupled detection heads. Researchers gradually 
realized that this coupled structure could potentially compromise performance. It was observed that during back-
propagation, coupling could lead to slow network convergence and reduced accuracy. Consequently, researchers 
began exploring alternative approaches to enhance both detection speed and effectiveness.

As the applications of the YOLO series have expanded, particularly with the evolution of the backbone and 
feature pyramid (e.g., FPNPAN), the concept of a decoupled head structure has been introduced. This concept 
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Figure 5.   Structure of FPN and BIFPN.
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aims to strike a balance between detection effectiveness and speed while avoiding a substantial increase in 
computational demands. It recognizes that classification and localization pertain to distinct aspects of the task.

One notable implementation of the Decoupled Head structure is found in YOLOX31, as depicted in Fig. 6. 
From a foundational perspective, it begins with a 1 × 1 dimensionality reduction operation, followed by the 
connection of two branches: one for classification and the other for localization. This approach separates the 
extraction of target location and category information, allowing them to be learned independently within dif-
ferent network branches. Subsequently, these branches are fused, effectively reducing the number of parameters 
and computational complexity. This enhances the model’s generalization ability and robustness.

By incorporating the YOLOX decoupled head into YOLOv5, we not only integrate the strengths of both 
algorithms but also elevate detection performance and accuracy.

In real-world datasets and task requirements, fine-tuning operations such as hyperparameter tuning, data aug-
mentation, and the use of appropriate loss functions and optimizers across the entire network become essential. 
We have observed that substituting the YOLOX head with a decoupled head significantly improves convergence 
speed and enhances model performance, leading to improved detection accuracy. Consequently, decoupled 
classification and regression heads are widely adopted in most primary and secondary detectors, particularly in 
multi-class target detection scenarios, resulting in superior detection performance.

E. Evaluation indicators
For target detection algorithm models, algorithms are usually evaluated for performance using some evaluation 
metrics, such as Precision (Pr), Recall (Rc), F1 Evaluation Score (F1), Average Precision (AP), Mean Average 
Precision (AP), Mean Average Precision (mAP), and Frames Per Second (FPS)32 , among others.

Precision and recall are a pair of metrics used in machine learning to measure how accurate a classifier is. 
Precision is also known as positive predictive value and Pr is called positive predictive value. It represents the 
proportion of the number of correct predictions when the predicted detection frame overlaps with the real detec-
tion frame. Similarly, Rc represents the proportion of the number of correct predictions across all real objects.
The curves of Pr and Rc emphasize the trade-off between precision and recall by giving a comprehensive view. 
When a comprehensive view of Pr and Rc is required, then F1 is proposed.F1 is a combined measure of preci-
sion and recall. It considers their average values to represent the difference in detection performance. And FPS 
is a metric of detection speed, which indicates the number of images that can be processed per second by the 
network of object detection algorithms. Pr, Rc, and F1 are calculated as expressed in Eqs. (2a), (2b), and (2c).

In the above equation, TP denotes True Positive, which represents correct detection of an object; FP denotes 
False Positive, which represents detection of an incorrect object as a correct object; and FN denotes False Nega-
tive, which represents detection of a correct object as an incorrect object.

The value of average precision ranges from 0 to 1. A threshold value is set for AP before starting the calcula-
tion, and then the IoU of the detection results is calculated and sorted. The detection results that are categorized 
correctly and at the same time the IoU reaches the set value are grouped into TP, and the FP and FN are calculated 
in the same way, and then the Pr and Rc of this category under this set condition are calculated. adjusting the 
set threshold, the same operation is repeated to get the Pr and Rc under each set threshold, and the Pr-Rc (PR) 
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Figure 6.   YOLOX decoupling header.
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curve is drawn, and the size of the area underneath the PR curve is the AP, while the The average value of the AP 
of all the detected objects in the target detection application scenario is the mAP.The formulas for calculating 
the AP and mAP are shown in Eqs. (2d) and (2e).

Evaluation metrics serve as critical indicators for assessing and validating the performance of an object detec-
tion algorithm. A top-tier object detection algorithm should not only yield high mean Average Precision (mAP) 
and F1 scores but also excel in various other evaluation metrics.

In this paper, we aim to enhance the YOLOv5 object detection algorithm network framework by integrating 
BiFPN, a weighted bidirectional feature pyramid network. This integration facilitates the transmission of both 
semantic and positional information within the network’s feature fusion structure. Consequently, the lower-level 
prediction output branch gains access to a more comprehensive semantic feature graph, while the top-level pre-
diction output branch benefits from a richer set of front and back logical information within the feature graph. 
This augmentation contributes to an overall improvement in the algorithm network’s detection accuracy.

Experiment and results
A. Experimental environment
All experiments were conducted on a Windows operating system using an NVIDIA GeForce RTX 3090 GPU 
equipped with 16 GB of video memory. The YOLOv5 model was implemented within the PyTorch deep learning 
framework, utilizing Python 3.8 as the programming language. PyTorch version 1.10.0 was employed, alongside 
CUDA 11.1.1 for GPU acceleration.

For the experiments, we utilized an open-source and in-house helmet dataset comprising a total of 23,088 
images. This dataset was partitioned into training and test sets in an 8:2 ratio. The images were annotated in the 
VOC format and subsequently transformed into YOLOv5-compatible TXT format. The dataset labels encompass 
two categories: individuals wearing helmets, designated as "Helmet," and those not wearing helmets, labeled as 
"Head."

Table 1 outlines the hyperparameters essential for the experiments.

B. Training visualization
The dataset label visualization distribution graph is a valuable tool for depicting the distribution of samples 
across various categories within the dataset, as exemplified in Fig. 7 below. Positioned in the upper left corner 
are the dataset’s object categories, providing a comprehensive overview of the data and highlighting the balance 
of samples among these categories. In the bottom left corner, the distribution of object centroid locations is 
depicted, emphasizing the focal points and location information of the samples.

Moving to the top right plot, it showcases the positions of horizontal and vertical coordinate centroids, aiding 
in the detection of any dataset skewness. Lastly, the bottom right plot illustrates the distribution of object sizes, 
where the horizontal coordinate WIDTH and the vertical coordinate HEIGHT represent the width and height 
of the objects. This offers valuable insights into assessing the dataset’s usability and reliability.

Visualizing the model training process allows us to monitor the model’s performance metrics in real time. By 
plotting these metrics as the number of training iterations increases, we gain insights into the model’s learning 
progression, including metrics like accuracy and loss functions. This monitoring helps in preventing overfitting 
and aids in devising an effective tuning strategy.

Furthermore, visualizing the training process enables us to comprehend parameter and gradient variations 
within the model, optimizing learning rates and weight initialization strategies. This process also evaluates the 
effectiveness of techniques such as data augmentation and regularization. By comparing augmented data samples 
with their original counterparts, we can assess the impact of augmentation on the dataset’s diversity and the 
model’s robustness.

Figure 8 showcases the visualization of the improved YOLOv5 algorithm’s performance over 300 rounds of 
training on the dataset. Notably, the precision and recall metrics exhibit minimal fluctuations. The loss curves 

(2d)AP =

∫ 1

0
Pr(Rc)dRc

(2e)
mAP =

n
∑

i=1
APi

n

Table 1.   Parameter setting.

Parameter name Parameter value

Momentum 0.937

Weight decay 0.0005

Batch size 16

Learning_rate 0.01

Epochs (number of iteration rounds) 300
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for both the training and validation sets converge gradually without significant fluctuations, encompassing 
bounding-box regression loss (box_loss), objective confidence loss (obj_loss), and classification loss (cls_loss). 
These trends indicate that the model neither overfits nor underfits during training. The values of detection pre-
cision metrics, including mAP_0.5 and mAP_0.5:0.95, steadily rise and stabilize, underscoring the optimized 
model’s robust learning capabilities.

C. Experimental results

1.	 The following is a comparison of the results of BiFPN feature fusion structure, as shown in Table 2
2.	 The algorithm comparison results of the improved model are shown in Table 3
3.	 Improve the image comparison results, as shown in Fig. 9
4.	 Analysis of results

Figure 7.   Distribution of label visualization.

Figure 8.   Improved visualization of the model training process.
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Based on the results of the comparative experiments, it is evident that the selected improved BiFPN network 
structure exhibits a notable 2.1% increase in mAP value compared to the original YOLOv5s algorithm. The detec-
tion performance of the improved algorithm, YOLOv5-BIFPN-ECA-HEAD (YOLOv5-BEH), surpasses that of 
the original YOLOv5s algorithm, with a remarkable 3.0% rise in mAP value. Although the change in detection 
performance of the improved model may not be as pronounced when compared to the network structure of 
the original YOLOv5x algorithm, this thesis contends that the concept of cross-layer connectivity and weight 
control within BiFPN serves as a valuable guideline for enhancing the detection performance of target detection 
algorithms. Additionally, it offers a lighter deployment weight than YOLOv5x.

Consequently, this thesis leverages the BiFPN feature fusion structure to bolster the algorithm’s feature fusion 
capability by regulating the weight ratio. This is achieved by connecting to various layers within this network 
structure through channel dimension splicing, subsequently fusing features based on their varying degrees of 
importance, thus capturing more high-level information. Moreover, comparative assessments of various attention 
mechanisms reveal that selecting YOLOv5-BEH as the improved model results in the model’s ability to focus 
on small targets, leading to higher average precision and enhanced accuracy while maintaining a commendable 
recall rate. Additionally, the adoption of a decoupling head serves to expedite the model’s convergence speed 
and further elevate the algorithm’s detection performance.

As illustrated in Fig. 9, a comparative analysis of the improved algorithm’s detection effectiveness clearly 
demonstrates that the YOLOv5-BEH model outperforms the YOLOv5 model across various performance aspects, 
particularly in intricate and diverse detection scenarios. In scenarios involving small and densely-packed targets, 
where the YOLOv5 model is prone to omitting and misdetecting, the YOLOv5-BEH model excels. It exhibits 
higher target localization accuracy and robustness within complex construction scenarios. Consequently, the 
YOLOv5-BEH model exhibits superior performance and enhanced target localization accuracy.

Conclusion
In this paper, we introduce an enhanced algorithm model, YOLOv5-BEH, designed to address the limitations 
observed in current helmet detection algorithms. These limitations encompass challenges related to false detec-
tions, especially leakage misdetections, and low accuracy, particularly in scenarios involving small and densely-
packed targets.

Our improved algorithm replaces the BiFPN feature pyramid structure within the YOLOv5 backbone extrac-
tion network for feature fusion. We introduce the ECA channel attention mechanism and refine the loss function 
to incorporate the decoupling header, resulting in enhanced detection speed and the accurate identification of 
small or densely-packed targets. Consequently, this significantly improves the model’s generalization ability and 
robustness. The experimental results indicate that the YOLOv5-BEH model effectively mitigates false and leakage 
detections, achieving high-accuracy detection that meets the stringent requirements for helmet-wearing detection 
in complex construction scenarios when compared to the YOLOv5 model. Moreover, the model demonstrates 
robust generalization, making it applicable to various target detection tasks.

In our ongoing work, we plan to further optimize the model and deploy it in real-world projects. We aim to 
gradually extend its application to diverse areas, effectively addressing complexities and variations encountered 
in detection tasks, such as varying lighting conditions, crowd sizes, target distances, and more. This approach 
will enable us to achieve faster and more accurate detection results in a wide range of scenarios.

Table 2.   The results in comparative experiments of BiFPN feature fusion structure.

Arithmetic mAP %

YOLOv5 92.9

YOLOv5-BiFPN 95

Table 3.   Experimental results of algorithm comparison for improved models.

Model Weight (MB) mAp (%) Recall (%) Precision (%)

Yolov5s 13.6 92.9 94.0 94.5

Yolov5s + ECA 14.0 92.2 88.4 94.1

Yolov5s + SE 13.7 95.0 91.6 94.4

Yolov5x 87.1 95.7 93.1 95.0

Improved Yolov5 27.9 95.9 92.4 94.7
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were used under licence for this study and are therefore not publicly available, but may be obtained from the 
corresponding authors upon reasonable request and with the permission of the team for academic research 
purposes only. In addition, the University has a Graduate School as the Ethics Committee and the President’s 
Office as the Institutional Review Board, and the full name of the Institutional Review Board that approved the 
research is the Office of the President of the Guangdong Polytechnic Normal University with a clear statement 
that it covers all experimental methods.
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Figure 9.   Comparison of the detection effect of the improved algorithm.



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18056  | https://doi.org/10.1038/s41598-023-45383-x

www.nature.com/scientificreports/

References
	 1.	 Lowe, D. G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004).
	 2.	 Viola, P. & Jones, M. Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition. CVPR 2001. Vol. 1. I–I (IEEE, 2001).
	 3.	 Dalal, N. & Triggs, B. Histograms of oriented gradients for human detection. In 2005 IEEE Computer Society Conference on Com-

puter Vision and Pattern Recognition (CVPR’05). Vol. 1. 886–893 (IEEE, 2005). 
	 4.	 Girshick, R. et al. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. 

Mach. Intell. 38(1), 142–158 (2015).
	 5.	 Xu, D. et al. Deep learning based emotion analysis of microblog texts. Inf. Fusion 64, 1–11 (2020).
	 6.	 Wang, M. & Deng, W. Deep face recognition: A survey. Neurocomputing 429, 215–244 (2021).
	 7.	 Li, M. et al. Deep reinforcement learning for partially observable data poisoning attack in crowdsensing systems. IEEE Internet 

Things J. 7(7), 6266–6278 (2019).
	 8.	 Kasper-Eulaers, M. et al. Detecting heavy goods vehicles in rest areas in winter conditions using YOLOv5. Algorithms 14(4), 114 

(2021).
	 9.	 Ibrahim, A. et al. Application of machine learning to evaluate insulator surface erosion. IEEE Trans. Instrum. Meas. 69(2), 314–316 

(2019).
	10.	 Gaikwad, S. K., Gawali, B. W. & Yannawar, P. A review on speech recognition technique. Int. J. Comput. Appl. 10(3), 16–24 (2010).
	11.	 Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition. 7132–7141 (2018).
	12.	 Woo, S., Park, J., Lee, J.Y. et al. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer 

Vision (ECCV). 3–19 (2018).
	13.	 Park, J., Woo, S., Lee, J.Y. et al. Bam: Bottleneck attention module. arXiv preprint arXiv:​1807.​06514 (2018).
	14.	 Tan, M., Pang, R. & Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on 

Computer Vision and Pattern Recognition. 10781–10790 (2020).
	15.	 Ren, Y., Xiao, Y., Zhou, Y. et al. CSKG4APT: A cybersecurity knowledge graph for advanced persistent threat organization attribu-

tion. In IEEE Transactions on Knowledge and Data Engineering (2022).
	16.	 Tian, Z. et al. A distributed deep learning system for web attack detection on edge devices. IEEE Trans. Ind. Inform. 16(3), 

1963–1971 (2019).
	17.	 Sun, Y. et al. Honeypot identification in softwarized industrial cyber–physical systems. IEEE Trans. Ind. Inform. 17(8), 5542–5551 

(2020).
	18.	 Tian, Z. et al. Block-DEF: A secure digital evidence framework using blockchain. Inform. Sci. 491, 151–165 (2019).
	19.	 Redmon, J., Divvala, S., Girshick, R. et al. You only look once: Unified, real-time object detection. In Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition. 779–788 (2016).
	20.	 Liu, W., Anguelov, D., Erhan, D. et al. Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Confer-

ence, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. 21–37 (Springer, 2016).
	21.	 Girshick, R., Donahue, J., Darrell, T. et al. Rich feature hierarchies for accurate object detection and semantic segmentation. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 580–587 (2014).
	22.	 He, K. et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 

37(9), 1904–1916 (2015).
	23.	 Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision. 1440–1448 (2015).
	24.	 Ren, S. et al. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 6 

(2015).
	25.	 He, K., Gkioxari, G., Dollár, P. et al. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision. 2961–2969 

(2017).
	26.	 Cai, Z. & Vasconcelos, N. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. 6154–6162 (2018).
	27.	 Jocher, G., Chaurasia, A., Stoken, A. et al. Ultralytics/yolov5: v7. 0-yolov5 sota realtime instance segmentation. Zenodo (2022).
	28.	 Wang, C.Y., Liao, H.Y.M., Wu, Y.H. et al. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings 

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 390–391 (2020).
	29.	 Lin, T.Y., Dollár, P., Girshick, R. et al. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition. 2117–2125 (2017).
	30.	 Yang, X. An overview of the attention mechanisms in computer vision. J. Phys. Conf. Ser. (IOP Publishing) 1693(1), 012173 (2020).
	31.	 Ge, Z. Liu, S., Wang, F. et al. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:​2107.​08430 (2021).
	32.	 Padilla, R. et al. A comparative analysis of object detection metrics with a companion open-source toolkit. Electronics 10(3), 279 

(2021).

Author contributions
All the authors contributed extensively to the manuscript. H.L. designed the experiments and wrote the main 
manuscript. Y.Y. is responsible for drawing and manuscript layout design. C.S. revised and suggested the manu-
script, and helped with the formatting review and editing of the manuscript. All authors have read and agreed 
to the publication of the manuscript.

Funding
This work was funded by The National Natural Science Foundation of China under Grant (No. 62273108), 
The Youth Project of Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou) 
(PZL2022KF0006), The National Key Research and Development Program—Research on Key technology of 
High Frequency broadband mobile communication credit Filter and its Industrialization application—Subproject 
Circuit Design and Simulation of high frequency broadband Filter (2022YFB3604502), "New Generation Infor-
mation Technology" Major Science and Technology Project of Guangzhou Key Field R&D Plan (202206070001), 
Special Fund Project of Guangzhou Science and Technology Innovation Development (202201011307; 
202201011239), Guangdong Provincial Department of Education Key construction discipline Scientific research 
ability Improvement Project, Introduction of Talents Project of Guangdong Polytechnic Normal University of 
China (2022SDKYA003; 2021SDKYA037), and Special Projects in Key Fields of General Colleges and Universi-
ties in Guangdong Province (2021ZDZX1016).

http://arxiv.org/abs/1807.06514
http://arxiv.org/abs/2107.08430


13

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18056  | https://doi.org/10.1038/s41598-023-45383-x

www.nature.com/scientificreports/

Competing interests 
The current study is based on the results obtained by the team, as well as on other participants. But the authors 
declare no competing interests. In this paper, we confirm that all methods have been implemented in accord-
ance with relevant guidelines and regulations. Experimental protocols have been approved by the College of 
Electronics and Information Technology at Guangdong Polytechnic Normal University. Informed consent has 
been obtained from the team and participating members.

Additional information
Correspondence and requests for materials should be addressed to C.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Research on improved algorithm for helmet detection based on YOLOv5
	Related work
	Improved methods
	A. Data enhancement
	B. Incorporating ECA channel attention mechanisms
	C. Replacement of feature pyramid structure
	D. YOLOX decoupling header
	E. Evaluation indicators

	Experiment and results
	A. Experimental environment
	B. Training visualization
	C. Experimental results

	Conclusion
	References


