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Stress fluctuations and adiabatic 
speed of sound in liquids: a simple 
way to estimate it from ab initio 
simulations
Taras Bryk 1,2*, Giancarlo Ruocco 3,4,6 & Ari Paavo Seitsonen 5,6

One of the fundamental quantities in dynamics of the liquid state, the adiabatic speed of sound c
s
 , is 

extremely difficult to predict from computer simulations, especially in ab initio simulations. Here we 
derive an expression for the instantaneous correlator of fluctuations of longitudinal component of 
stress tensor, which contains c

s
 along with others quantities easy accessible via classical and ab initio 

computer simulations. We show that the proposed methodology works well in the case of Lennard-
Jones and soft-sphere simple fluids, Kr–Ar liquid mixture in connection with simulations with effective 
pair interactions as well as for liquid Sb, fluid Hg and molten NaCl from ab initio simulations.

Sound propagation and its different mechanisms in liquids and solids are of paramount importance for funda-
mental many-particle effects in condensed matter, as well as for technologies based on vibrational properties 
of crystals and disordered systems. The difference of acoustic long-wavelength propagating modes in liquids 
from standard phonons in crystals is well known1,2. In the low, ω → 0 limit, at variance with the crystals, 
where the displacements around stable potential energy minima are described via propagating longitudinal 
(L) and transverse (T) waves, in the case of liquids one has the absence of long-wavelength transverse sound 
and a pressure wave with adiabatic propagation speed in longitudinal case3,4. The adiabatic sound propagation 
is a very specific feature of the liquid state, when on macroscopic scales the pressurized and rarefied regions 
of the pressure wave have different local temperatures as the thermal diffusion is always slower than the wave 
oscillation period, ( DTk

2 ≪ csk ), and the local thermal equilibrium cannot be reached. Here DT is the thermal 
diffusivity, k - the wave number and cs the adiabatic speed of sound. Only at much higher k, when DTk

2 ≈ csk , 
the local equilibrium is guaranteed5. On macroscopic scale, however, the fluctuations of local temperature cause 
an increase of the propagation speed in comparison with the isothermal case ( cT ) by γ 1/2 times with γ being the 
ratio of specific heats. By definition the adiabatic speed of sound is defined by the isothermal compressibility 
and ratio of specific heats6,7.

here Bs is the adiabatic bulk modulus, P—pressure and ρ—mass density.
It is a highly non-trivial task to predict the macroscopic adiabatic speed of sound in fluids from computer 

simulations. Expressing cs via quantities calculated in molecular dynamics (MD) simulations one has

where S(k) = �n−knk� is the structure factor (static density-density correlator), kB—Boltzmann constant, T—
temperature and vth—the average thermal speed. The k-dependent ratio of specific heats γ (k) can be estimated 
via computer simulations from static correlators �e−kek� , �n−kek� and �J̇L−kek�8–10.
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It is practically impossible to estimate correctly the cs from the calculated dispersion law of acoustic branch 
ω(k) , because in simulations the smallest sampled wave number compatible with periodic boundary conditions is 
kmin = 2π/L with L being the box length, and there is no guarantee that kmin reached the hydrodynamic region3. 
At the boundary of hydrodynamic regime11 the dispersion law changes from macroscopic linear dependence12,13 
and depending on the coupling between density, heat and stress fluctuations can show either positive (positive 
sound dispersion) or negative (negative sound dispersion) deviation from macroscopic hydrodynamic law14. 
Therefore the primitive linear extrapolation of the dispersion law ω(k) towards k = 0 will not result in correct 
value of cs.

There exist three basic approaches to calculation of cs from computer simulations. The first one is based on 
estimation of the equation of state F(P, V, T)15, fitting it to some analytical form, and estimation of the isother-
mal compressibility. Weak points here are in many runs for estimation of F(P, V, T) at fixed temperature or 
pressure and in the need to have additionally the value of γ , which is taken either from experiments, or from 
thermodynamic relation for the difference of specific heats CP − CV via derivatives (∂P/∂T)V and (∂P/∂V)T , 
that requires very precise knowledge of the equation of state in the ranges of interest for P,V,T. Another possibil-
ity is to perform separate simulations in (NVT) and (NPT) ensembles in order to estimate separately CV and 
CP and consequently γ16.

The second approach was proposed by Lustig17 and consists in estimation of a number of ensemble averages 
〈U〉 , 〈U2〉 , 〈 ∂U

∂V 〉 , 〈( ∂U
∂V )2〉 , 〈 ∂2U

∂V2 〉 , which in dfferent combinations result in macroscopic values for isobaric heat 
capacity Cp , adiabatic speed of sound cs , and Joule-Thomson coefficient µJT

17. Here U is the potential energy of 
the system and V - its volume. This methodology was implemented in the software package ms218 for molecular 
simulations with effective interatomic potentials. So far it is unclear whether this methodology could be applied 
with ab initio simulations, when the subsystem of valence electrons is treated explicitly via density functional 
theory and total energy of the system is a complex functional of electron density19.

The third approach is easily applicable with classical (with interatomic effective interactions) MD simulations 
and needs calculations of k-dependent correlators involving energy (or heat) density10,20, that allows estimation of 
k-dependent ratio of specific heats γ (k) . The ratio γ (k)/S(k) as a function of wave numbers is a smooth function 
that allows reasonable extrapolation towards k → 0 to use in Eq. (2). The precision of this approach is much better 
than for the first one and it allows to determine cs with an uncertainty of order 7–8%21,22. However, in the case 
of ab initio (with explicit treatment of electron subsystem via density functional theory) simulations the second 
approach is difficult to apply, because of huge efforts to sample k-dependent energy fluctuations within the DFT. 
In23 it was proposed to avoid sampling of k-dependent energy fluctuations by using a simultaneous fit of theoreti-
cal (within the thermo-viscoelastic (TVE) model) density-density and current-current time correlation functions 
to the corresponding AIMD-derived ones. The fitting parameters being correlators involving energy fluctuations 
allowed the calculation of γ (k) and corresponding ratio γ (k)/S(k) , however such a fitting results in much lower 
precision in estimation of the adiabatic speed of sound, than directly from classical simulations. Hence, any new 
approach to estimate the adiabatic speed of sound from classical and ab intio simulations avoiding complicated 
calculations of γ (k) will be of great interest. In this paper we present an alternative approach that allows to 
determine cs starting from an easy-to-calculate stress tensor corellation function and other accessible quantities.

The remaining part of the paper is organized as follows. In the next Section we report an expression, which 
allows calculations of the adiabatic speed of sound via the instantaneous averages of the macroscopic longitudinal 
stress and high-frequency speed of sound. The proposed methodology is applied then to calculations of cs for 
Lennard-Jones, soft sphere (purely repulsive) fluids and a binary liquid mixture, as well as for fluid Hg, liquid 
Sb and NaCl from ab initio simulations.

Results
Theory
The generalized hydrodynamics in long-wavelength limit must be consistent with the Green-Kubo expressions for 
macroscopic transport coefficients because they describe the same relaxation phenomena. So, the k-dependent 
shear-stress relaxation time in generalized hydrodynamic description of transverse collective dynamics in liquids

tends in the macroscopic limit k → 0 to the Maxwell relaxation time24.

In Eq. (3) η , G∞ and ρ are the shear viscosity, high-frequency shear modulus and mass density, respectively. It 
is important to emphasize that the Maxwell relaxation time is in fact the correlation time of macroscopic shear-
stress autocorrelation functions with the standard Green-Kubo integral

where
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[
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σαβ are the Cartesian components of stress tensor, and

For longitudinal collective dynamics the relaxation of diagonal stress tensor components is different14,25,26 than 
the relaxation of off-diagonal components (for the transverse case) due to interaction of longitudinal stress 
fluctuations with density and heat ones:

where DL = (ηb + 4η/3)/ρ is the longitudinal kinematic viscosity with ηb being bulk viscosity, 
c∞ = [(B∞ + 4G∞/3)/ρ]1/2 is the high-frequency speed of “bare” (non-damped) acoustic-like excitations in 
liquid, and B∞ is the high-frequency bulk modulus. The term with a prefactor (γ − 1) in the right hand side of 
(4) is due to coupling of stress tensor with heat fluctuations, which is characterized by a correlator �14. Since we 
are interested in the macroscopic limit of (4), the explicit expression of the latter quantity is of no importance 
here, and

and as in the transverse case it should be the correlation time of the macroscopic autocorrelation function

where

P̄ is the average pressure over the production run. Equalizing (5) and (6), and making use of the Kubo relation 
for longitudinal stress autocorrelation function1 we obtain a relation

which connects the instantaneous correlator of longitudinal stress tensor fluctuations with the difference of 
squares of high-frequency and adiabatic speeds of sound, and Bs being the adiabatic bulk modulus. The nice 
feature of this expression is the possibility to estimate the adiabatic speed of sound from the values of the high-
frequency speed of sound and instantaneous correlator of longitudinal stress fluctuations:

i.e. without explicit need of γ or sampling the energy (or heat) fluctuations from MD. The high-frequency speed 
of sound can easily be calculated from classical27 or ab initio23,28 simulations as

where J̇L(k) is the first time derivative of spatial Fourier-components of the longitudinal part JL(k) of mass-
current J(k) , defined as

and its first time derivative being

where mj is the atomic mass of the j-th particle, rj(t) , vj(t) and Fj(t) are the trajectory, velocity and force acting 
on the j-th particle. Hence, using c∞ from (9) we can calculate cs from (8). One can easily sample (10) and (11) 
in classical or ab initio simulations. Having (10) and (11) one has to calculate the averages in (9) and obtain c∞ 
from (9). Then one needs the values of components of stress tensor along the production run and evaluate from 
them the ψL(0) . In the end, one uses the relation (8) to obtain cs from ψL(0) and c∞.

Application of the proposed methodology
We will check the adiabatic speed of sound calculated via expression (8) for supercritical Ar at T = 280 K and a 
soft sphere fluid in connections with classical MD simulations and comparison with previously calculated values 
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V

kBT
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of cs via heat fluctuations (2). An application to liquid mixtures via classical simulations is performed on liquid 
equimolar mixture KrAr at temperature 116 K. In order to show that expression (8) can be used with ab initio 
simulations we apply it to the calculation of the high-frequency and adiabatic speeds of sound and compare for 
liquid Sb at 793 K, which recently was studied by inelastic X-ray scattering29, then for the case of fluid mercury 
at T = 1750 K and for molten NaCl at 1262 K.

In Fig. 1 we show the density dependence of two main quantities ψL(0) and c∞ needed for calculations of the 
adiabatic speed of sound. We would like to remind that the high-frequency speed of sound c∞ is the characteristic 
idealized speed of non-damped long-wavelength longitudinal waves in elastic continuum having the bulk B∞ 
and shear G∞ moduli. Both calculated dependences in Fig. 1 show monotonic increase with density.

Combining the density dependence in Fig. 1 according to (8) one obtains the adiabatic speed of sound cs 
as a function of density at T = 280 K as shown in Fig. 2. For comparison by open boxes we show the results of 
estimation of cs via the long-wavelength limit of the ratio of k-dependent quantities γ (k) and S(k) according 
to the right hand side of Eq. 2. The latter was calculated in a sophisticated way via sampling of k-dependent 
energy- (or heat-)density fluctuations in MD simulations and calculations of corresponding static correlators. 
One can see that there is practically good agreement of cs obtained by the proposed methodology via Eq. (8) 
and via the previous sophisticated methodology via Eq. (2). Both sets of results are in good agreement with the 
NIST database for supercritical Ar at 280 K.

The other class of simple model fluids, which do not have interparticle attraction, the soft sphere fluids, were 
simulated for seven densities at thermodynamic conditions and with simulation setup identically as in27. Again, 
the adiabatic speed of sound via Eq. (8) is in nice agreement (see Fig. 3) with the results of27 obtained via Eq. (2) 
and sophisticated sampling of k-dependent energy-density fluctuations.

Here we show an evidence that the proposed methodology can be easily applied to the case of many-compo-
nent systems and in particular, to a binary equimolar liquid mixture KrAr at T = 116 K. The classical simulations 
with 4000 particles in microcanonical ensamble and production run of 360,000 time steps allowed to obtain well 
converged static averages for calculations of quantities entering (8). In Fig. 4 we show how perfectly well the 

Figure 1.   Density dependence of the instantaneous longitudinal stress autocorrelation ψL(0) and high-
frequency speed of sound c∞ used in Eq. (8) for supercritical Ar at temperature 280 K.

Figure 2.   Density dependence of the adiabatic speed of sound in supercritical Ar at T = 280 K obtained from 
the proposed methodology (plus symbols) in comparison with the cs obtained via Eq. (2) (open boxes) and 
NIST experimental data30 (open circles).
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wave-number dependence of �J̇
L(−k)J̇L(k)�

�JL(−k)JL(k)� corresponds to the k2 asymptote in the long-wavelength region. Note, 
that JL(k, t) are the space-Fourier components of longitudinal part of total mass current, which includes both 
components according to (10). Another quantity, ψL(0) was well converged and estimated from the stress auto-
correlation function at t = 0 (see Fig. 4b). Inserting these numbers obtained from MD simulations in (8) one 
obtains a prediction for the adiabatic speed of sound in equimolar liquid mixture KrAr at T = 116 K to be 
722.03 m/s. We can compare this macroscopic value with the eigenfrequencies of the generalized Langevin 
equation for liquid KrAr at the same thermodynamic point and simulated with rather small number of particles 
86431. For the smallest k-value in that study, which was outside the hydrodynamic region, the phase speed of 
sound excitations obtained from the eigenfrequency was 808 m/s31, that is a consequence of positive sound 
dispersion outside the hydrodynamic regime.

Discussion
We have shown above that the proposed methodology works perfectly with classical molecular dynamics simula-
tions. The great advantage of the proposed methodology that in contrast to the huge efforts in estimation of cs 
via Eq. 2 it can be applied to ab initio simulations. However, a weak point of the ab initio simulations is in rather 
small size of the simulated system. We will show below how the proposed methodology works in the case of 
simulated systems with 600 (liquid Sb), 200 (fluid Hg) and 300 (molten NaCl) particles.

The ab initio simulations for liquid Sb at 973 K were performed with VASP package using 600 particles over 
the production run of 17,700 configurations. Projector-augmented-wave (PAW) potentials32,33 with 3 valence 
electrons were used for electron-ion interaction. The exchange-correlation functional was taken in the Perdew-
Burke-Ernzerhof (PBE) GGA formulation34 and the Brillouin zone sampling was restricted by the single Ŵ point. 
In Fig. 5 we show the k-dependence of �J̇

L(−k)J̇L(k)�
�JL(−k)JL(k)� and expected k2-dependence crossing the point at the smallest 

available from AIMD k-value. The value ψL(0) from the calculated stress autocorrelations is equal to 45.718 GPa, 
and making use of Eq. (8) results in the estimated value cs = 1923.9 m/s. The experimental data for the adiabatic 

Figure 3.   Density dependence of the adiabatic speed of sound in soft sphere fluids obtained from the proposed 
methodology and compared with the cs obtained via k-dependent ratio of specific heats and structure factor 
(2)27. The standard reduced units for soft core systems as in27 were used.

Figure 4.   The wave number dependence of �J̇
L(−k)J̇L(k)�

�JL(−k)JL(k)� from Eq. (9) for a binary KrAr liquid at density 1.832 g/
cm3 and temperature 116 K (a) and autocorrelation functions of longitudinal (L) and transverse (T) stress 
fluctuations (b).
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speed of sound was taken from29 as 1910 m/s and from35 where four sets of experimental data for liquid Sb were 
fitted to a polynomial c(T) = 1330.6+ 1.0471T − 4.49466 · 10−4T2 giving 1933.1 m/s at 973 K. Hence, a good 
agreement of our estimated value of cs with the experimental data is observed.

Much sophisticated for ab initio simulations is the case of fluid mercury because of metal-nonmetal transi-
tion which takes place at density ∼ 9 g/cm3 . The effective electron-ion interaction should explicitly treat ten 5d 
electrons, that results in very large number of electron states to be converged at each step of AIMD and usually 
the reported simulation studies were performed with rather small number of atoms: 50 mercury atoms in36, 90 
atoms in37,38, while recently there appeared an AIMD study with a comparison of results performed with 100, 
200 and 400 mercury atoms39. We performed AIMD with 200 Hg atoms and PAW potentials with explicitly 
treated 12 (ten 5d and two 6s-p) electrons. The density of our system was 10.0 g/cm3 and temperature was kept 
at 1750 K. We performed two sets of simulations: one with default plane-wave cut-off energy for VASP library 
PAW potentials (233.2 eV) and another one with the cut-off energy of 340 eV. The production runs were 20,000 
timesteps for each of these two different plane-wave energy cut-offs, respectively.

In Fig. 6 we show that 200 particles (default VASP cut-off for plane-wave expansion) for liquid Hg are suffi-
cient to recover almost perfect k2 long-wavelength dependence of �J̇

L(−k)J̇L(k)�
�JL(−k)JL(k)� , which results in the high-frequency 

speed of sound c∞ = 1763.5 m/s. Corresponding value of ψL(0) for this simulation was 17.474 GPa, that results 
via (8) in the adiabatic speed of sound cs = 1167.3 m/s. Increasing the plane-wave cut-off energy up to 340 eV 
results in the following numbers: c∞ = 1784.7 m/s, ψL(0) = 17.629 GPa and adiabatic speed cs = 1192.5 m/s, i.e. 
showing an increase of order just 2.2 percent due to much better convergence of stress tensor components with 
increase of plane-wave cut-off energy in wave function expansion.

In Fig. 7 we show how the high-frequency and adiabatic speeds of sound correspond to the observed dis-
persion of collective excitations in fluids Hg at T = 1750 K and density 10.0 g/cm3 . By plus symbols with error 
bars we show purely numerical estimation of dispersion ω(k) via peak positions of longitudinal current spectral 
function CL(k,ω) , calculated as Fourier transformed longitudinal mass-current autocorrelation function FLJJ (k, t) . 
In order to verify this numerical dispersion we calculated dynamic eigenmodes via the Generalized Collective 
Mode (GCM) approach9,10,23, which allows decomposition of time correlation functions into contributions from 
propagating (complex-conjugated pairs of eigenvalues of generalized hydrodynamic matrix) and relaxing (purely 

Figure 5.   The wave number dependence of �J̇
L(−k)J̇L(k)�

�JL(−k)JL(k)� from Eq. (9) for molten Sb at density 6.43 g/cm3 and 
temperature 973 K (a) and autocorrelation function of longitudinal stress fluctuations (b).

Figure 6.   The wave number dependence of �J̇
L(−k)J̇L(k)�

�JL(−k)JL(k)� from Eq. (9) for liquid Hg at density 10.0 g/cm3 and 
temperature 1750 K (a) and its long-wavelength asymptote divided by k2 (b).
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real eigenvalues) modes. The standard deviation of the peak positions of CL(k,ω) from propagating eigenmodes 
for large wave numbers is the consequence of inability in the numerical procedure to separate contributions 
from relaxing modes which dominate in the collective dynamics with increasing wave numbers as is known for 
dynamic structure factors

We see in Fig. 7 that there exists a strong deviation of the observed ω(k) from the linear hydrodynamic disper-
sion law, which is known as the positive sound dispersion1,14,25. For the case of fluid Hg this is in qualitative 
agreement with experimental findings for the emergence of strong positive sound dispersion in the region of 
metal-nonmetal transition in liquid Hg40.

We applied the proposed methodology on adiabatic speed of sound to another binary liquid, molten NaCl, 
in connection with ab initio simulations. We simulated molten NaCl at density 1.4947 g/cm3 and temperature 
1262 K with 300 particles with similar PAW potentials for electron-ion interaction and PBE exchange-correlation. 
Due to rather high density the dependence �J̇

L(−k)J̇L(k)�
�JL(−k)JL(k)� does not correspond well to the simple asymptote ∼ k2 

in the long-wavelength region, therefore for the high-density systems it is possible to fit the k-dependence in 
Fig. 8 with a polynom ak2 + bk4 . In the limit k → 0 we retain just the first term using the coefficient a = c2∞ . 
This allowed to estimate c∞ = 4223.74 m/s, while using ψL(0) = 22.865 GPa (see Fig. 8) one obtains from (8) the 
value cs = 1594.56 m/s, which is in reasonable agreement with the experimental values 1586.3 m/s(at T 1253 K) 
and 1558.9 m/s (at T = 1283K)41. Note, that the recent AIMD calculations of the dispersion of collective excita-
tions in molten NaCl42 give evidence of a large positive dispersion in this molten salt in comparison with the 
macroscopic hydrodynamic dispersion law with adiabatic speed of sound estimated in the actual study.

S(k,ω) =
k2

ω2
CL(k,ω) .

Figure 7.   Dispersion of the collective excitations in the first pseudo-Brillouin zone for liquid Hg at density 
10.0 g/cm3 and temperature 1750 K. Results of numerical estimation of dispersion via the peak positions of 
longitudinal current spectral function CL(k,ω)—“plus” symbols with error bars, the GCM eigenvalues within 
the thermo-viscoelastic theory23—“cross” symbols. Linear dispersion laws with the adiabatic cs and high-
frequency c∞ speeds of sound are shown by long- and short-dash lines, respectively.

Figure 8.   The wave number dependence of �J̇
L(−k)J̇L(k)�

�JL(−k)JL(k)� from Eq. (9) for molten NaCl at density 1.4947 g/cm3 
and temperature 1262 K (a) and autocorrelation function of longitudinal stress fluctuations (b).
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In summary, we suggested, that the correlation time of macroscopic longitudinal stress autocorrelation func-
tion is equivalent to the long-wavelength limit of the longitudinal stress relaxation time as obtained from gen-
eralized hydrodynamics, exactly as this is in the transverse case. We arrived at Eq. (8), which connects ψL(0) 
with the high-frequency c∞ and adiabatic cs speeds of sound. This allows estimation of the adiabatic speed of 
sound from classical and ab initio simulations without the need to know the ratio of specific heats γ or to sample 
k-dependent energy (or heat) fluctuations in simulations.

We applied the proposed methodology to calculations of the adiabatic speed of sound from classical molecular 
dynamics in supercritical Ar (treated as a Lennard-Jones fluid) and a soft sphere fluid. For both types of fluids 
we obtained perfect agreement of the proposed methodology with the previously obtained values14,27 of cs in a 
wide range of densities via Eq. (2) and sampling of k-dependent energy (heat) fluctuations. Also, for supercritical 
Ar the calculated values of adiabatic speed of sound are in good agreement with the experimental data30. The 
extension of the methodology on many-component liquids is straightforward, as it was demonstrated for the 
case of a binary liquid mixture KrAr.

An important point of this study is in demonstration that the proposed methodology is quite easily appli-
cable with ab initio simulations. For liquid Sb simulated with 600 particles we obtained a perfect agreement 
with experimental values of the adiabatic speed of sound35. Also, the proposed methodology was applied to the 
estimation of the adiabatic speed of sound in fluid Hg at temperature 1750 K and density 10.0 g/cm3 , which is 
in metallic state. The obtained adiabatic speed of sound was used to compare the calculated from AIMD disper-
sion curve ω(k) of collective excitations with linear hydrodynamic dispersion law. This allowed to estimate the 
positive sound dispersion to be of order 25% that is in agreement with experimental findings for the emergence 
of strong positive sound dispersion in the region of metal-nonmetal transition in liquid Hg40, which takes place 
at the density ∼ 9.0 g/cm340. We tried to obtain the adiabatic speed of sound from the thermo-viscoelastic fit23 
and Eq. (2) from ab initio simulations of liquid Hg with the higher plane-wave cut-off energy. The extrapolation 
towards k = 0 results in quite large error bars: the estimated adiabatic speed of sound from the thermo-viscoe-
lastic fit (application of Eq. 2 for cs ) is within the range 1140–1200 m/s, that makes evidence for the advantage 
of the proposed here new methodology for estimation of the macroscopic adiabatic speed of sound in liquids. 
Finally, for another binary liquid, molten NaCl, at 1262 K simulated by AIMD with 300 particles we were able 
to obtain good agreement with the experimental value of the adiabatic speed of sound41.

The performed calculations of the adiabatic speed of sound in simple and complex liquids showed a robust-
ness of the proposed methodology and good agreement with experimental values. The most advantages of the 
proposed methodology is in its simplicity—basically one needs only information about the macroscopic stress 
tensor fluctuations and k-dependent fluctuations of the first time derivative of total mass-current (11). Only static 
correlation functions of these fluctuations are used for estimation of the adiabatic speed of sound. Additionally 
the great advantage of this methodology is that one can perform all these calculations in a single simulation 
run. For classical simulations this method should have the same advantages as the Lustig’s formalism17, while 
for ab initio simulations the proposed method can be superior for estimation of the macroscopic adiabatic speed 
of sound in liquids.

Methods
Equilibrium classical and ab initio molecular dynamics simulations of liquids were used for generating tra-
jectories of particles rj(t) , their velocities vj(t) and forces, acting on them Fj(t) along the trajectories. These 
quantities enter Eq. (11) for spatial-Fourier components of the first time derivative of mass current, and wave 
vectors k in this expression were sampled using the periodicity of cubic MD-box as k = 2π/L(n, l,m) with the 
smallest possible wave number kmin = 2π/L , L being the MD-box side length and n, l,m = 0,±1,±2, . . . . The 
k-dependent correlators (9) were calculated for all possible directions of k-vectors with the same absolute value 
and averaged over them.

Fluctuations of the macroscopic stress tensor components

where Etot is the total energy and εαβ—components of strain tensor, are easily estimated from classical simulations 
with pair interatomic potentials1. In the case of ab initio simulations Etot is the total energy within the electron 
density functional theory, and the much sophisticated calculations of macroscopic stress tensor components 
were performed as implemented in the VASP (Vienna Ab-initio Simulation Package)43–46. The static averages for 
stress tensor autocorrelations ψL(0) from classical simulations were averaged over 100,000 configurations, while 
in much time-demanding ab initio simulations the number of averages were not less than 20,000.

Classical MD simulations for supercritical Ar and soft-sphere fluids were performed using a system of 2000 
particles in microcanonical ensemble. The parameters of Lennard-Jones potential for supercritical Ar were: 
σ = 3.405 Å  and εLJ = 119.8 K . For supercritical Ar we studied 9 densities at T = 280 K, while for soft sphere 
fluids 7 densities were simulated at the temperature T∗ = T/εSS = 0.5843 . Parameters for soft-sphere fluids 
were the same as in27. For both types of fluids the interatomic potentials were cut off at Rcut = 12 Å  and corre-
sponding shift was applied to avoid the discontinuity of potential at Rcut . The values of all densities for simulated 
supercritical Ar and soft-core fluid are listed in Supplemental material. For soft-core fluids we used the mass of 
particles equal to the Argon mass. In both cases the time step of 2 fs was used. Upon a proper equilibration for 
each density a production run over 360,000 time steps was performed for Ar fluids and over 100,000 time steps 
for soft-core fluid. The conservation of energy was perfect in all the simulations for Lennard-Jones and soft-
core fluids: the drift of energy over the whole production run was not larger than 0.005%. All the k-dependent 
correlators were averaged over all possible directions of wave vectors corresponding to the same absolute value. 

σαβ =
1

V

∂Etot

∂εαβ
,
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A binary liquid equimolar Kr–Ar mixture was studied by 4000 particles at T = 116 K using the microcanonical 
ensemble. For Ar–Ar interaction in the binary liquid the same Lennard-Jones potential as for pure Ar fluid were 
used. For Kr–Kr interaction the Lennard-Jones potentials were σKr−Kr = 3.633 Å  and εKr−Kr = 167.0 K , and 
parameters for Kr–Ar interaction were σKr−Ar = (σKr−Kr + σAr−Ar)/2 and εKr−Ar =

√
εKr−KrεAr−Ar  . Similarly, 

as for pure fluids, the potentials were cut off at Rcut = 12 Å  and correspondingly shifted. The production runs 
were performed for 360,000 time steps, each of 2 fs.

Ab initio simulations were performed for liquid Sb at T = 973 K with 600 particles and 1800 electron states, 
for liquid Hg at T = 1750 K with 200 particles and 1300 electron states, and for molten NaCl at T = 1262 K with 
300 particles and 750 electron states. In all ab initio simulations the electron-ion interaction were represented 
by projector-augmented-wave (PAW) potentials, which allow correct representation of the electron density in 
the core region, and exchange-correlation effects were treated by generalized gradient approximation (GGA) of 
the energy functional in Perdew-Burke-Ernzerhof34 formulation.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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