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A global empirical study 
on how street networks facilitate 
driving longer distances
Gabriel Maia 1, Caio Ponte 1, Carlos Caminha 1,2, Lara S. Furtado 3, Hygor P. M. Melo 4,5,6 & 
Vasco Furtado 1*

We simulated over 200 cities worldwide to investigate how the street network affects vehicle routes. 
We demonstrate that there is a ubiquitous super-linear relationship between time and distance when 
optimal route are chosen. More precisely, the average speed will be higher for longer trips when 
compared to shorter trips, showing that the street network makes driving further faster. We attribute 
this phenomenon to the spatial arrangement of extensive street segments that eliminate deceleration 
points. These results underscore the importance for cities to consider the distribution of deceleration-
free streets while mitigating any negative impact on sustainability. To ensure efficient transportation 
planning and engineering, innovative approaches are necessary to facilitate the flow of goods and 
services while adhering to sustainable mobility principles.

Recent urbanization has facilitated the growth of human mobility, leading to the emergence of thriving economic 
and social urban centers1,2. However, alongside its benefits, urbanization presents challenges and potential nega-
tive impacts on mobility, traffic, and sustainability3,4. One notable concern is urban sprawl, which arises when 
rapid and unplanned urbanization encroaches upon rural and green areas, often driven by speculative practices5. 
In response to this issue, contemporary planning, guided by New Urbanism principles, advocates for livable 
centers, walkable neighborhoods, smaller building blocks, and denser concentric cities to foster sustainable and 
traffic-free environments6,7. To support these objectives, sustainable mobility plays a crucial role in designing 
urban networks that optimize transportation structures8–13 while enhancing well-being14–17, thereby influencing 
economic, social, and environmental indicators tied to sustainable development goals18.

Creating dense, vibrant, and functional urban centers while integrating sustainable mobility into planning 
processes remains a significant challenge. However, the emergence of Smart City technologies, including 5G, 
Artificial Intelligence, and the Internet of Things, presents new opportunities for understanding transit patterns 
and calculating novel mobility indicators19.

Moreover, Smart City solutions play a vital role in promoting sustainable development by ensuring efficient 
management of natural resources and equitable access to essential services for all citizens20. Data-driven poli-
cies on mobility can greatly benefit from simulation tools and advanced algorithms, thus advancing the cause 
of sustainable mobility21. When considering sustainable mobility indicators, an effective road network should 
minimize surface area usage, reduce time wasted in congestion, and shorten commuting travel times22. Addition-
ally, it is important to encourage shorter average travel distances and discourage dispersed land use patterns, as 
they lead to longer trips and increased demands for transportation infrastructure space23.

Sustainable mobility, in essence, assesses street efficiency not solely based on speed, but also aims to achieve 
“reasonable and reliable travel times, even if it means slowing down movement”22. It is crucial to weigh the 
quantifiable advantages such as speed, flexibility, and accessibility to remote areas against the economic costs, 
environmental impact, and social equity concerns18. Interestingly, travelers often prioritize travel time over 
physical distance24,25, and this perception of distance can vary depending on street elements like intersections 
and stop signs26. As a result, the design and layout of the street network can influence drivers to opt for longer 
distances if they can reach their destination faster.
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To achieve sustainable development goals, planning principles must consider how travel speed, time, and 
street infrastructure contribute to the creation of dense, multifunctional urban centers while curbing urban 
sprawl23. Physical characteristics of the street network, including connectivity, promote smooth traffic flow, 
reducing travel times and delays27. Moreover, expanding the street network in accordance with sustainable 
mobility factors involves accommodating vehicles from low-density areas and understanding how the existing 
infrastructure can either facilitate or deter sprawl.

Despite these considerations, there is a dearth of studies exploring how urban street expansion, street sig-
nage, and capacity affect the speed of motorized vehicle trips within cities. This research aims to bridge that 
gap by conducting an empirical experiment using computational advancements to simulate vehicle trips. The 
study measures the time and distance of routes, taking into account the existing street layout, to shed light on 
phenomena associated with urban morphology, an increasingly critical aspect in the context of Smart Cities.

To investigate this, we analyze street network data to examine how the spatial distribution of Deceleration 
Points (DP) and the street typology, which is correlated with specific permitted speeds, influence the duration 
and distance of trips. Simulations of motorized trips were conducted for 237 cities worldwide, where drivers 
follow the shortest route without traffic but considering variables related to the built properties of streets, such 
as the presence of traffic lights, stops, intersections, and permitted driving speeds for different road types (e.g., 
highways, motorways, residential areas, etc).

These simulations allowed us to calculate a β exponent, from a power-law relationship between time and 
distance. For all cities studied, the β accounted for a super-linear relationship, meaning that, given a specific time, 
the average distance traveled in each simulated trip increases at a proportionally faster rate than its duration. For 
instance, a trip with double the time typically covers more than double the distance. To account for potential 
limitations in simulating drivers’ paths using shortest routes, we incorporated traffic data in our simulations of 
nine cities. This approach underscored an even stronger super-linear relationship between time and distance. 
Additionally, we explore certain cities based on β , average street speed, and size (built footprint or square foot-
age) to ground results in known geographic contexts.

We find that this super-linearity depends on the amount of Segment Without Deceleration Points (SWDP). 
We coined that term to refer to a segment of one or more streets that contain no points that force stopping or 
deceleration. The size, distribution, and number of SWDP impact the super-linear exponent β , meaning that 
longer SWDP with good spatial coverage are easier to access and increase the gain of scale between the relation 
of time and distance.

The paper begins by explaining the data acquisition and the relation between time and distance used to 
estimating a city’s β exponent. This is followed by detailing of the methodology such as explaining Deceleration 
Points (DP) and optimal routes simulations, providing a foundation for understanding the subsequent findings. 
The results section delves into the significance of SWDPs and DPs in achieving super-linear β exponent, analyz-
ing this relationship across cities worldwide. Lastly, the conclusion section reflects on how these findings align 
with sustainable development principles.

Methods
This empirical research that analyzed cities and simulated optimal travel routes based on the street footprint, 
permissible speeds, and traffic flow patterns. Initially, the routes were extracted from the collaborative mapping 
tool OpenStreetMap. Information pertaining to street lights, street typology (motorway, primary, secondary, etc.), 
maximum street speed, and the length of street segments was obtained for 237 cities across different continents. 
The osmnx library was utilized to generate a graph from the OpenStreetMap data28. To represent cities, a directed 
graph G(V, E) was employed, with nodes v (∈ V) denoting street intersections and edges e (∈ E) representing 
directed street segments connecting them.

Subsequently, routes were simulated from every city nodes and exploring all possible directions until a 
specified time threshold was reached. The path taken was influenced by factors such as street typology, street 
maximum speed (obtained from OpenStreetMap), and the presence of DPs along the way. The calculation and 
adjustment of DPs were elaborated upon in detail. The analysis resulted in the determination of a β exponent, 
representing the correlation between trip time and distance traveled along each optimal route from different 
origin points. Simulations were conducted for all 237 cities, taking into account the characteristics of the street 
network, including signage, speed limits, and intersections. Additionally, a subset of 10 cities was used to simulate 
travel routes considering traffic conditions.

Calculating β based on time and distance
Figure 1a shows a point of origin O1 chosen to simulate routes for a specific city region. We simulate all optimal 
(fastest) routes that can be traveled starting from O1 during a specified time threshold, τ , that represents the 
maximum allowable duration for a vehicle to reach its destination. The colored lines exemplifies routes that 
start from an origin point and reach several destination points. The border points show the furthest destinations 
reached to shape an area that represent the region which can be accessed starting from O1 considering the time 
limit τ . When connected, the border points form an isochrone area12. Such final points are not necessarily placed 
in city intersections and can also be points in the middle of a block since they must equate to places where an 
optimal route has weight equal to τ . When an border point coordinate is not an intersection, we can conduct a 
linear interpolation in the node to find the edge coordinate.

The time needed to reach one node from a city’s network ( td , where d is the node id) is calculated and stored 
from a single execution of the Dijkstra algorithm. Once we obtain the values of td for a given origin and a value 
for τ we can find the border points. We generate 20 τ values for each city ( τ1, τ2, τ3, ..., τ20 ), where τ1 = 1 minute 
and τ20 = max(td) represent the amount of time it takes to get to a city’s boundary from an initial point. The 
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Figure 1.   Method to estimate a city’s β In (a) we show a city region where we simulated multiple optimal routes 
from all directions from a point of origin O1 . The routes are represented by different colors and take a shorter 
time than τ . From those points we define an area that can be reached in τ minutes, represented by the area 
outlined in red. In (b), for a same origin O1 we use multiple values of τ . The legend in (b) indicates how we chose 
τ values. (c) shows how we establish a correlation between τ in the x-axis and the average distance reached 〈D〉 
for the optimal fastest routes in the y-axis, both in logarithmic scale. Each point of this x-y relation is associated 
to an area of (b), where the value from the y-axis is defined as the average distance of the optimal routes within 
an area and the value from the x-axis is the τ used to reach that area. The solid red line shows the regression with 
a better fit between those points, with an inclination of β1 . The dashed line in black is a guideline, with exponent 
equal to 1.0. In (d) we define the calculus used to obtain a city’s β , which is the average of all βi values. Each βi is 
associated to a point of origin Oi where the number of points p represents the total number of nodes in the city 
(cf. this figure(d)). This figure was generated using the open source drawing software Inkscape (v1.2) and the 
Python open source library Matplotlib (v3.7.1).
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other values for τ ’s ( τ2, τ3, ..., τ19 ) are generated to occupy a logarithmic scale. Each value for τj represents an area 
that can be covered in the city, starting from a shorter time until getting to an area that covers the entire city. 
Figure 1b presents the various isochrones generated for an origin point O1 and with each of the 20 values for τ.

We calculated the correlation between trip time and distance traveled for each optimal route originating from 
all nodes in the graph. Figure 1c shows the relation between time and distance for point O1 . Each point in the 
figure illustrates an isochrone area obtained from the varying τ values. The x axis represents the time for optimal 
routes, in minutes, which is also equal to the τ for that area, and the y axis represents the average distance of the 
optimal routes within the area, 〈D〉 , in km, given a single unique distance value for each time limit. The axis are 
plotted in log-log scale. The correlation between τ and 〈D〉 helps to understand how routes with different lengths 
take place within a city.

The relation between time and distance is formally described by a Power Law1,

where τ is time, 〈D〉 quantifies the distance run, a is a pre-factor and β is the exponent we want to measure.
The linear regression exponent between log(〈D〉) and log(τ ) shows the efficiency of longer paths simulated 

within a city. If a correlation exponent is larger than 1, then a trip two times longer, for example, will reach an 
average distance more than twice as long, indicating a gain of scale.

In the example from Fig. 1c the β1 exponent for the correlation between time and distance is associated to 
origin O1 , showing how β gets calculated from a single origin. Figure 1d shows the the calculation of the exponent 
value β for the entire city with multiple p origin points, is the average of all βi , where i = 1, 2, 3, .., p . In the next 
subsections, we will detail the processes presented in Fig. 1, including the explanation of the concepts of DPs and 
SWDPs, which are essential for the execution of the algorithm that simulates optimal routes.

Defining deceleration points
A crucial factor that influences routes is the distribution of DPs, which are street nodes that can potentially cause 
stops or significant reductions in vehicle speed. We highlight that DPs are not static entities since their presence 
depends on the vehicle’s direction when passing a specific node. Consequently, identifying DPs in a city requires 
selecting a segment and direction. A particular intersection may serve as a DP for one route but not for another 
if the vehicle approaches from a different direction. These variations occur in each simulation of trips within a 
city, depending on street hierarchy. So due to the dynamic nature of DPs, all nodes are considered DPs, depending 
on the direction of travel of the vehicle.

The preferential relationship between intersecting streets is determined by the street typology obtained from 
OpenStreetMap: service ≺ residential ≺ tertiary ≺ secondary ≺ primary ≺ trunk ≺ motorway. Here, B ≺ A denotes 
that street segment A has priority over lane B, and if C ≺ B, then C ≺ A. Lanes of the same typology do not exhibit 
preferential differences; in such cases, A = B. This phenomena is shown in Fig. 2.

If the route begins from points A or C, node B takes on a function of DP, whereas if the vehicle begins a trip 
from point D to F, it does not need to stop at B because the segment −→AB has lower preference than segment 
−−−→
DBEF , meaning that B does not characterize as a DP. It is also possible to define SWDPs, which are when the 
intermediate segments of one or more streets are not DP. Figure 2 shows three SWDP: the SWDP−−−→

DBEF
 , which 

starts at D and ends at F, the nodes B and E which are not DP, and the segments SWDP−→
AB

 and SWDP−→
BC

 which 
present only a start and finish node.

In addition to the preference relation determined by street hierarchy, the distribution of DPs is also influenced 
by street signage, specifically traffic lights, and street topology, which can result in changes in vehicle direction. 
Figure 3 presents a simplified schematic depicting the rules associated with these additional elements.

Simulating routes
With the defined rules and conditions for determining DPs, we proceed to simulate routes. The process begins by 
selecting random origin points and generating routes in every feasible direction, adhering to the street typology, 
permitted direction flows, and the presence of DPs along the way. The identification of DPs occurs simultaneously 
with the computation of time and distance for multiple optimal routes simulated from a graph. The trip continues 
until a specified time threshold is reached, and we estimate speeds based on the maximum speed data obtained 
from OpenStreetMap. Since OpenStreetMap does not inform the speed for every single segment and street, we 
employ a method to input missing speeds which is detailed in Supplementary Materials.

In the graph G, we conducted simulations of multiple routes originating from various points. The segments 
e within the graph are assigned a weight w(e), representing the average time required to traverse the segment. 
This time is calculated using the formula w(e) = l(e)/V(e) , where l(e) denotes the segment length and V(e) 
represents the maximum permitted speed on the street. Additionally, each node v is assigned a weight wv(v) , 
reflecting the time a vehicle spends stopped at an intersection. Nodes classified as Deceleration Points (DPs) 
have wv(v) = 10 seconds, while non-DP nodes have wv(v) = 0 . The Supplementary Material elaborates on the 
impact of varying wv on the results.

The sizes of the segments depend on a time threshold ( τ ), which specifies the maximum allowable time for 
a vehicle to reach its destination. In other words, the sum of the weights of nodes and edges must not exceed τ . 
To determine the optimal routes, we adapt the algorithm described in29.

The methodology employed to obtain the β exponents for each city involves two algorithms, as described in 
the following pseudocodes. Algorithm 1 takes the graph of a specific city as input and calculates the correspond-
ing β . Algorithm 1 is invoked by Algorithm 2 to identify border nodes, utilizing a list of routes and a time limit 
of τ as input. The calculation of border nodes is necessary for determining the precise location where a path 

(1)�D� = aτβ
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should terminate, based on a specific value of τ . So the border nodes provide a more accurate delimitation of 
isochronous areas.

Algorithm 1 has its main loop between lines 1 and 14 where we iterate over each city node and calculate their 
β . On line 3 it computes the shortest path from an origin to each other node on the graph (described by com-
ment on line 2). Between lines 5 and 7 it selects the value for τ used as the time limit. It calculates the distance 
associated for each τ in lines 8 to 12. This main loop executes the Dijkstra algorithm for each origin of the graph 
G, in order to obtain an exponent βj for each origin. This procedure is performed to obtain a better estimate of 
the value of β in the city as a whole and not just in a specific region. Algorithm 2 is called to compute what routes 
will be used as border. On line 13 it conducts a linear regression using τ s and the average distances associated to 
them and store the exponent of that regression as a result. On line 15, the algorithm returns an average for the 
exponents calculated for each point.

The algorithm 2 finds the routes associated to a determined τ , called border routes. It defines border routes as 
those where it is possible to reach a destination node within a time limit τ , but where it is not possible to reach 
another further node considering the time. From lines 1 to 11 it computes the iteration on each route. From lines 
2 to 8 it selects the shortest time obtained from a destination node, it iterates on every neighbor of the destination 
node (5 to 8) and select that one with shortest time. On line 10 we use τ , the total route time t and the shortest 
time found previously to select whether a path is a border route. In case it is, line 11 adds that border route to a 
list of routes returned on line 12 at the end of the algorithm.

In Dijkstra29, the algorithm stops running when it finds the optimal path between two pre-defined points. 
In our adaptation, the algorithm runs a shortest path from a all origin point during a time limit τ . Thus, there 
is no established final point and time is the limiting factor for the extent of the route as well as the nodes and 
segments weights.

Calculations considering traffic
Subsequent experiments were conducted to explore a different scenario that incorporated traffic data to calculate 
the β exponent. The objective was to demonstrate the possibility of obtaining similar super-linear results even 
when considering real-world traffic conditions. Nine cities were carefully for these simulations, aiming to 
encompass a wide range of β values, equally distributed across continents.

The selected API, the HERE Isoline Routing API v8, was well-suited for our purposes, as it factors in traffic 
history when performing calculations. This made it an appropriate tool for investigating the influence of traffic 
on β exponents. The API requires inputting the geographic coordinates of an origin point, a departure time, and 
a duration, and then generates polygons representing isochronous areas. Each edge of the polygon represents 

Figure 2.   Identification of Deceleration Points and Segments Without Deceleration Points. The figure presents 
an example of how to identify a DP. In the cross-shaped diagram, the circles represent crossroads - street 
intersections, while the lines represent segments connecting these nodes. The relation of preference given to 
each street, shown by ( ≺ ), indicates which nodes to classify as DP. This classification is dynamic and depends 
on the route the vehicle takes. For instance, the node B highlighted is classified as a DP if the vehicle takes a 
route moving in direction −−→ABC while for the direction −−−→DBEF the node B is not a DP. This takes place because 
−−→
ABC ≺

−−−→
DBEF . The drawing style of the lines help illustrate when node is a DP (dashed lines) and not a DP 

(filled lines). Once the DP are established, the SWDP can be defined by joining the segments between points. 
The example presents three different SWDP: SWDP−→

AB
 , SWDP−→

BC
 and SWDP−−−→

DBEF
 . The first and last nodes of 

the SWDP will always be a DP and the intermediate nodes, if existent, will not be DP. This figure was generated 
using the open source drawing software Inkscape (v1.2).
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a destination reachable within the specified time parameters. For example, using Here, one can determine the 
maximum distance that can be traveled within twenty minutes when departing from a downtown location. We 
utilized the Here service to conduct simulations using a sample of origin points around 6 pm, a time period 
assumed to experience heavy traffic flow.

Results
This section verifies the correlation between the time threshold τ , and the average distances that are reachable 
〈D〉 for the cities selected. As previously stated, this paper encompasses 237 cities from different continents and 
calculates a β value for each. Table 1 details the non-linear relation between time and distance, measured by β 
for all 237 cities, largely superior to 1.0. More statistical descriptions about the cities, including the number of 

Figure 3.   Rules to define Deceleration Points. Rule 1 states that any node with a traffic light is a DP. The 
other rules look at preferential streets, to define which streets have priority to allow for vehicle passage and are 
represented by “ ≺ ” and “ = ” symbols. Rule 2 establishes that if a vehicle hits a node with a segment e1 with equal 
priority among the incident segments (equal to e3 ), then this node gets classified as DP, i.e. e1 = e3 . Rule 3 states 
that a node will be DP, i.e. e1 ≺ e2 if the car reaches a node coming from a segment with lower preference e1 than 
the node used to continue e2.The mapping figures present examples for how rules define DP when the vehicle 
approaches an avenue, roundabout or street junctions. This figure was generated using the open source drawing 
software Inkscape (v1.2) and the Python open source library Folium (v0.14.0).

Algorithm 1.   β calculation(Graph G = [node1, node2, node3, ..., noden]).
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nodes, edges, SWDP, the beta distribution, and the size distribution of SWDP segments, can be found in the 
Supplementary Material.

How the spatial distribution of DPs and SWDPs impact 〈β
s
〉 values

To comprehend the impact of spatial placement of DPs and SWDPs on the β exponent, we conducted an 
experiment to investigate spatial autocorrelation. As conventional measures like Moran’s i index were unsuitable 
due to the dynamic nature of DP placement, we devised an alternative strategy. This involved randomly shuffling 
the values of wv(v) and w(e) and re-running the simulation for optimal routes in each city. Six mega-cities from 
diverse continents were chosen for this detailed analysis.

The shuffling process was performed for every node triplex, which consists of a route between three nodes, 
A → B → C . Node A → B represents the current street being traversed by the vehicle, while B → C indicates 
the desired street. Depending on the priority of streets A → B and B → C , node B can be classified as a DP or 
not, following the rules outlined in Fig. 3. Once the triplexes are categorized as DP or non-DP, these classifications 
are randomized to eliminate the spatial correlation among DPs in the city. The time threshold τ and average 
distances 〈D〉 are then recalculated to determine a new exponent, denoted as 〈βs〉 , for the randomly configured 
DPs. A similar process is applied to randomly distribute street speeds, which consequently alters the node weights 
w(e). This process will not conserve the number of SWDP, since we want to study the natural emergence of these 
large-scale structures from the spatial correlations.

Figure 4 illustrates the spatial distribution of β values for the six cities examined. To generate this visualization, 
we utilized all nodes within each city as origin points and implemented the proposed methodology to assign a 
specific β value to each node, represented by its corresponding color. The experiment was conducted twice for 
each city. In the first run, the simulated routes took into account the city’s signaling system (displayed on the 
left side of the figure). In the second run, we employed the previously described shuffling process (shown on 
the right side of the figure).

The observations reveal two effects resulting from the shuffling: i) the disruption of free flow along continuous 
street segments, and ii) a more uniform distribution of β exponents, with values closer to 1 in all cities. These 
effects are clearly discernible in the maps presented on the right side of the figure.

The results of the regression analysis for these cities demonstrate that the relationships between the shuffled 
DPs and street speeds vanish. This experiment highlights that the nonlinear association between τ and 〈D〉 arises 
as a consequence of the spatial correlation between the street network and DPs.

The role of the large SWDPs
Figure 4 shows also the more extensive SWDPs, highlighted in black. In this paper we selected the 20% longest 
SWDP of each city. Next to the color bars we illustrate the density probability functions of the β to the left and 
βs to the right. The results presented on the images to the left reveal the heterogeneity of the β values, depending 
on the initial point where routes are simulated. Such heterogeneity is explained by the fact that our method 
simulates routes from every city node to estimate the β for each city.

We notice there are origin points which produce routes with high β around large SWDP. In New York, for 
instance, Brooklyn concentrates most of the smaller exponent values and practically no large SWDP, while that 
scenario is completely opposite for Queens and Bronx. Cairo is the city where such correlation can be the hardest 
to visualize since it is the only city where the distribution of β values is multimodal. Still, it is possible to notice 
that hot spots concentrate to the left along with most of the large SWDP. In general, Fig. 4 shows that the large 
SWDP explain the non-linearity since they boost the increase in speed and allow for a gain of scale by reducing 
time for longer trips within cities.

Figure 5 shows another evidence of how SWDP are determining to the phenomena of non-linearity presented 
in this paper. We correlate the β exponent with the percentage of trips completed in SWDP for each city ( δ%SWDP ). 
This percentage illustrates how much gain of scale one can achieve with a route based on two factors. First, the 
greater the SWDP, the greater the gain of scale for a route in a trip. Second, the frequency with which trips use 
SWDP also increases the possibility of a gain of scale, and, in turn, an increase in β . Thus, we observe from Fig. 5 
that the higher the density of δ%SWDP , the more β is exponentially higher for a specific city.

Algorithm 2.   Find borders (Paths [P] = [path1, path2, path3, ..., pathn−1] , Time limit τ).
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City β City β City β

Jakarta, Indonesia 1.4 ±0.07 Cairo, Egypt 1.36 ±0.02 Seoul, South Korea 1.29 ±0.03

Amsterdam, Netherlands 1.29 ±0.02 Dubai, United Arab Emirates 1.29 ±0.02 Rio de Janeiro, Brasil 1.28 ±0.03

Casablanca, Morocco 1.28 ±0.02 Mumbai, India 1.28 ±0.03 Reykjavik, Iceland 1.27 ±0.03

Salvador, Brasil 1.26 ±0.03 Antwerp, Belgium 1.26 ±0.03 Ho Chi Minh City, Vietnam 1.25 ±0.04

Bengaluru, India 1.25 ±0.02 Guayaquil, Ecuador 1.24 ±0.03 Calgary, Canadá 1.24 ±0.02

Tripoli, Libya 1.24 ±0.03 Cologne, Germany 1.24 ±0.02 Kuala Lumpur, Malaysia 1.24 ±0.03

Singapore 1.24 ±0.02 Las Vegas, USA 1.24 ±0.02 Toronto, Canadá 1.24 ±0.03

Wollongong, Australia 1.24 ±0.03 San Diego, USA 1.23 ±0.02 São Bernardo do Campo, Brasil 1.23 ±0.02

Fes, Morocco 1.23 ±0.02 Sydney, Australia 1.23 ±0.02 Quebec City, Canadá 1.23 ±0.03

Adelaide, Australia 1.23 ±0.02 Ribeirão Preto, Brazil 1.23 ±0.02 Shenzhen, China 1.23 ±0.02

Ljubljana, Slovenia 1.22 ±0.03 Cork, Ireland 1.22 ±0.03 Playa del Carmen, Mexico 1.22 ±0.02

Lisboa, Portugal 1.22 ±0.02 Bergen, Vestland, Norway 1.22 ±0.02 Bern, Switzerland 1.21 ±0.03

Madrid, Spain 1.21 ±0.02 Conakry, Guinea 1.21 ±0.02 Tulsa, USA 1.21 ±0.02

Valparaíso, Chile 1.21 ±0.03 Mexico City, Mexico 1.21 ±0.03 Trondheim, Trøndelag, Norway 1.21 ±0.02

Prague, Czechia 1.2 ±0.02 Houston, USA 1.2 ±0.02 Edmonton, Canadá 1.2 ±0.02

Mérida, Yucatán, Mexico 1.2 ±0.02 Dallas, USA 1.2 ±0.02 Marrakesh. Morocco 1.2 ±0.02

Oakland, California, USA 1.2 ±0.03 Marrakesh, Morocco 1.2 ±0.02 Oklahoma City, USA 1.2 ±0.02

Chandigarh, India 1.2 ±0.02 Austin, USA 1.2 ±0.02 Campinas, Brasil 1.2 ±0.03

Utrecht, Netherlands 1.2 ±0.02 Porto, Portugal 1.19 ±0.03 Winchester, UK 1.19 ±0.02

Albuquerque, USA 1.19 ±0.02 Hanoi, Vietnam 1.19 ±0.02 Florianópolis, Brasil 1.19 ±0.03

Natal, Brasil 1.19 ±0.03 Cartagena, Colombia 1.19 ±0.02 São Luís, Brasil 1.19 ±0.03

Jacksonville, Florida, USA 1.19 ±0.02 The Hague, Netherlands 1.19 ±0.02 San Antonio, USA 1.19 ±0.02

Porto Velho, Brasil 1.19 ±0.02 Maputo, Mozambique 1.19 ±0.03 New York, USA 1.19 ±0.02

Valencia, Spain 1.18 ±0.02 Brisbane, Australia 1.18 ±0.02 Portland, USA 1.18 ±0.02

Vila Velha, Brasil 1.18 ±0.03 New Delhi, India 1.18 ±0.02 Columbus, USA 1.18 ±0.02

Los Angeles, USA 1.18 ±0.02 Caracas, Venezuela 1.18 ±0.03 São Paulo, Brasil 1.18 ±0.02

Taipei, Taiwan 1.18 ±0.02 Detroit, USA 1.18 ±0.03 Phoenix, USA 1.18 ±0.02

Bogotá, Colombia 1.17 ±0.02 Saint Louis, Illinois, USA 1.17 ±0.02 Louisville, USA 1.17 ±0.02

Brussels, Belgium 1.17 ±0.02 Vienna, Austria 1.17 ±0.02 Memphis, USA 1.17 ±0.02

Londrina, Brazil 1.17 ±0.02 Saskatoon, Canadá 1.17 ±0.02 Joinville, Brasil 1.17 ±0.02

Nuremberg, Germany 1.17 ±0.02 Nashville, USA 1.17 ±0.02 Hong Kong 1.17 ±0.02

Fortaleza, Brasil 1.17 ±0.02 Goiânia, Brasil 1.17 ±0.02 Campo Grande, Brasil 1.17 ±0.01

Genoa, Italy 1.16 ±0.02 Marseille, France 1.16 ±0.03 Curitiba, Brasil 1.16 ±0.02

Bamako, Mali 1.16 ±0.02 Boa Vista, Brasil 1.16 ±0.02 Niamey, Niger 1.16 ±0.02

Recife, Brasil 1.16 ±0.02 New Orleans, USA 1.16 ±0.02 Orlando, USA 1.16 ±0.02

Kyoto, Kyoto Prefecture, Japan 1.16 ±0.01 Buenos Aires, Argentina 1.16 ±0.02 Aracaju, Brasil 1.16 ±0.02

Kansas City,USA 1.16 ±0.02 Rabat, Morocco 1.15 ±0.02 Miami, USA 1.15 ±0.02

Paris, France 1.15 ±0.02 Nagpur, India 1.15 ±0.02 Baton Rouge, USA 1.15 ±0.02

Munich, Germany 1.15 ±0.02 Venice, Italy 1.15 ±0.02 Chicago, USA 1.15 ±0.02

Frankfurt, Germany 1.15 ±0.02 Rio Branco, Brasil 1.15 ±0.01 Ciudad del Este, Paraguay 1.15 ±0.02

Sapporo, Japan 1.15 ±0.02 Liverpool, UK 1.15 ±0.02 Manila, Philippines 1.14 ±0.02

Umea, Sweden 1.14 ±0.02 Belgrade, Serbia 1.14 ±0.02 Teresina, Brasil 1.14 ±0.02

Philadelphia, USA 1.14 ±0.02 João Pessoa, Brasil 1.14 ±0.02 Bucharest, Romania 1.14 ±0.02

Ulaanbaatar, Mongolia 1.14 ±0.02 Viña del Mar, Chile 1.14 ±0.02 Tirana, Albania 1.14 ±0.03

Manaus, Brasil 1.14 ±0.02 Barcelona, Spain 1.14 ±0.02 Guadalajara, Mexico 1.14 ±0.02

Nouakchott, Mauritania 1.13 ±0.02 Oslo,Norway 1.13 ±0.03 Nice, France 1.13 ±0.02

Charlotte, USA 1.13 ±0.02 Seattle, USA 1.13 ±0.02 Cali, Colombia 1.13 ±0.02

Honolulu, USA 1.13 ±0.02 Nairobi, Kenya 1.13 ±0.02 Budapest, Hungary 1.13 ±0.02

Joensuu, Finland 1.13 ±0.02 Montevideo, Uruguay 1.13 ±0.02 Maceió, Brasil 1.13 ±0.02

Accra, Ghana 1.13 ±0.02 Santo André, Brasil 1.12 ±0.02 Ostrava, Czechia 1.12 ±0.02

Raleigh, USA 1.12 ±0.02 Wuhan, China 1.12 ±0.02 Medellín, Colombia 1.12 ±0.02

Nur-Sultan, Kazakhstan 1.12 ±0.02 Asunción, Paraguay 1.12 ±0.02 Atlanta, USA 1.12 ±0.02

Beira, Mozambique 1.12 ±0.02 Denver,USA 1.12 ±0.02 Edinburgh, UK 1.12 ±0.02

Kinshasa, Democratic Republic 
of the Congo 1.12 ±0.01 London, UK 1.12 ±0.02 Montreal, Canadá 1.12 ±0.02

Manchester, UK 1.11 ±0.02 Cancun, Mexico 1.11 ±0.04 Dar es Salaam, Tanzania 1.11 ±0.02

Setúbal, Portugal 1.11 ±0.02 Hamilton, New Zealand 1.11 ±0.02 Santos, Brasil 1.11 ±0.01

Continued
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How traffic affects the 〈β
s
〉 exponent

Table 2 compares β values obtained with and without traffic data from simulations run in the nine selected cit-
ies. In both cases, the simulations considered the same points of origin to allow for a more reliable comparison. 
Although these results are based on a small city subset, they show that the super-linear result remains constant 
in all cases. In fact, all cities turned out to have even greater β in the scenarios that included traffic data. This 
indicates that traffic exacerbates the super-linear relation between time and distance since traffic tends to be 
more intense in areas without SWDP, which further lowers travel speed. Both scenarios are complementary since 
the street network sets the base for transit flow and traffic inherently operates within that fixed spatial structure.

The traffic analysis is not exhaustive since it focuses on a non-representative sample, but it sets interesting and 
consistent results with findings in previous sections. Such analysis strengthens the notion that the street network 
and the distribution of SWDP, which remain constant, explain the super-linear exponent.

Characterizing cities by average speed
Figure 6 depicts the analyzed cities as white dots distributed across four quadrants based on their v and β values. 
We provide examples to illustrate the exponents, but our aim is not to establish causal relationships for cities’ 
placement in specific quadrants.

The first quadrant in blue is situated in the lower-left portion and encompasses cities with low average 
v and smaller gains of scale (lower β ) for simulated trips. These cities are typically smaller in size, featuring 
a limited number of major arterial roadways and streets with lower maximum permitted speeds. Examples 
include Copenhagen, renowned as a model city in Yan Gehl’s “Cities for people”30, Boulder, recognized for its 
successful Urban Growth Boundary implementation, and London. Generally, these cities have street layouts 
and urban planning characterized by smaller segments, which hinder free flow and diminish the prominence of 
speed gains. Other cities within this quadrant include Miami and Detroit, both possessing relatively high street 
connectivity and density31, as well as Buffalo, celebrated for Frederick Law Olmsted’s planned green-way system 
and accessible streets32.

The upper-left quadrant in green features cities with lower scale efficiency but higher speeds for both long 
and short trips. These cities tend to have smaller built footprints, such as Frankfurt, La Plata, Vancouver, and 
Budapest. While these cities possess well-connected streets that facilitate higher speeds, they also exhibit larger 
city blocks and smaller total areas. For instance, Vancouver covers a modest 115 km2 in comparison to Toronto 
(630 km2 ) and Ottawa (2,778 km2 ). La Plata, in Argentina, consists of a grid of six by six blocks intersected by 
diagonal streets, occupying only 27 km2 . Due to their limited extent, these cities do not allow for long SWDP, 
which accounts for their lower β values.

The other two quadrants encompass cities with larger β , indicating that longer trips are completed propor-
tionately faster than shorter ones. The lower-right quadrant, colored orange, includes cities with lower average 
speeds, such as Paris, New York, and Bogota. These larger cities are known for their extensive highway systems 
that traverse urban areas, enabling higher average speeds for longer distances. However, these cities are also 

Santa Fe, USA 1.11 ±0.02 Zagreb, Croatia 1.11 ±0.02 Pori, Finland 1.11 ±0.02

Porto Alegre, Brasil 1.11 ±0.02 Mombasa, Kenya 1.11 ±0.02 Palmas, Brasil 1.11 ±0.01

Sundsvall, Sweden 1.1 ±0.03 Oxford, UK 1.1 ±0.02 Turin, Italy 1.1 ±0.02

Nottingham, UK 1.1 ±0.02 Sofia, Bulgaria 1.1 ±0.02 Milwaukee, USA 1.1 ±0.02

Richmond, USA 1.1 ±0.02 Boulder, USA 1.09 ±0.02 Leipzig, Germany 1.09 ±0.01

Christchurch, New Zealand 1.09 ±0.02 Turku, Finland 1.09 ±0.02 Minneapolis, USA 1.09 ±0.02

Mar del Plata, Argentina 1.09 ±0.02 San Miguel de Allende, Mexico 1.09 ±0.03 Birmingham, UK 1.09 ±0.01

Timisoara, Romania 1.09 ±0.02 Dresden, Germany 1.09 ±0.02 Buffalo, New York, USA 1.09 ±0.02

Sarajevo, Bosnia and 
Herzegovina 1.08 ±0.01 Eugene, Oregon, USA 1.08 ±0.02 Rijeka, Croatia 1.08 ±0.02

Bristol, UK 1.08 ±0.02 Brazzaville, Congo-Brazzaville 1.08 ±0.01 Pittsburgh, Pennsylvania, USA 1.08 ±0.02

Kolkata, India 1.08 ±0.02 Nouméa, New Caledonia 1.07 ±0.02 Luanda, Angola 1.07 ±0.02

Baltimore, USA 1.07 ±0.01 Niteroi, Brasil 1.07 ±0.03 Boston, USA 1.06 ±0.02

Graz, Austria 1.06 ±0.02 Innsbruck, Austria 1.06 ±0.02 N’Djamena, Chad 1.06 ±0.02

Lyon, France 1.06 ±0.01 Milan, Italy 1.06 ±0.01 Copenhagen, Denmark 1.06 ±0.01

Akureyri, Iceland 1.05 ±0.02 Pyongyang, North Korea 1.05 ±0.02 Dublin, Ireland 1.05 ±0.01

Reading, USA 1.05 ±0.01 Salt Lake City, USA 1.05 ±0.03 Santiago, Chile 1.05 ±0.01

Yaoundé, Cameroon 1.04 ±0.01 Yantai, China 1.04 ±0.01 La Plata, Argentina 1.04 ±0.01

Port Harcourt, Nigeria 1.04 ±0.01 Kampala, Uganda 1.04 ±0.02 Nantes, France 1.04 ±0.02

Cuiabá, Brasil 1.03 ±0.02 Salzburg, Austria 1.03 ±0.01 Newark, USA 1.03 ±0.02

Cambridge, UK 1.03 ±0.01 Norwich, UK 1.03 ±0.01 Vancouver, Canadá 1.02 ±0.01

Papeete, France 1.02 ±0.02 Scranton, Pennsylvania, USA 1.02 ±0.01 Georgetown, Guyana 1.02 ±0.02

Jersey City, USA 1.01 ±0.01 Cayenne, France 1.01 ±0.02 Washington, USA 1.0 ±0.01

Geneva, Switzerland 0.99 ±0.01 Iquitos, Peru 0.99 ±0.02 Wilmington, USA 0.97 ±0.01

Table 1.   Exponent for all cities simulated.
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constrained within dense urban environments. This constraint stems from measures taken to limit urban sprawl, 
either organically (e.g., NYC’s island location) or through legislation (refer to33 for the urban growth boundary 
in Portland). Consequently, smaller building blocks and a dense street network result in more DP points and 
can reduce overall speeds.

The red quadrant comprises cities with larger β values but lower average speeds. This quadrant includes major 
metropolises like Rio de Janeiro, São Paulo, Los Angeles, Mexico City, Mumbai, and Seoul. These world-class 
cities have populations in the millions and have experienced substantial urban expansion. It is noteworthy that 

Figure 4.   Spatial distribution of β ′s for different cities. In (a–e), we calculate the values for β (on the left) and 
〈βs〉 (on the right) for each of those six cities. We take all the nodes from the street network as origin points. The 
points are colored according to their exponent value and their color is painted by the color scheme at the center. 
The black lines represent the larger SWDP. The function for probability density for each experiment’s 〈βs〉 is 
shown in both sides of the color scale to represent each result from the execution, and a dashed line also shows 
its average distribution. This figure also shows the linearity of the 〈βs〉 exponent for a random experiment, which 
stays around 1 for all cities. It also shows how SWDPs are important to ensure the non-linear characteristic of 
〈βs〉’s, indicating there is a spatial correlation between values with high exponents and SWDP. This figure was 
generated using the Python open source library Matplotlib (v3.7.1).

Figure 5.   Correlation between δ%SWDP and β . Each point represents a city where δ%SWDP , representing the 
percentage of the trips spent on free flow segments, is in the x axis and the exponent β is in the y axis. The black 
line shows a linear regression that establishes a relation between both axis. This figure was generated using the 
Python open source library Matplotlib (v3.7.1).
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several of these cities, which achieve higher β s, are also associated with low sustainability and high greenhouse 
gas emissions resulting from on-road transportation34. Additional examples of such cities include Houston, 
known for its lack of zoning laws; Dubai, constructed with a focus on large freeways over the past two decades; 
and Shenzhen, a new city founded in the 1980s and notorious for its severe traffic conditions.

These examples highlight that regardless of attempts to control urban growth, the advantage of high speed for 
longer distances is evident in all cases. This is made possible by the utilization of highway networks with higher 
speeds and fewer deceleration points, which are commonly used for longer trips35. In summary, the presence of 
large-scale arterial roads with fewer DPs is associated with increased β exponents.

Additionally, the previous examples demonstrate that β values are not exclusive to planned or unplanned 
cities. The concept of planning refers to an urban settlement that has been carefully designed and constructed 
based on a predetermined blueprint or set of principles, which can vary according to different theoretical 
approaches guiding the development of street networks. For instance, a modernist city like Chandigarh (1.2) 
exhibits a higher β than a New Urban town like Copenhagen (1.06), despite both being fundamentally planned 
cities.

In brief, these exponents alone are insufficient to categorize a city as “good” or “bad.” Contemporary planning 
principles, emphasizing sustainability, emphasize the importance of considering other indicators to conduct a 
comprehensive evaluation of the exponent. A lower β value can be desirable if a city provides accessibility with 
a balanced distribution of services and opportunities. In such cases, citizens can enjoy a comfortable lifestyle 
with lower average speeds while making shorter trips. Conversely, a city with a low β value due to the absence 
of connecting transportation infrastructure through SWDPs may face limitations in the transportation of goods 
and reduced urban efficiency. Therefore, while SWDPs play a significant role, they should be balanced with other 
factors that influence sustainable development.

Figure 6.   β exponent versus average speed. Each point represents a city where, the x axis presents the average 
exponent ( β ) and the y axis presents the average speed v achieved for each trip simulated. The histograms for 
β and v values are shown in the upper and right-hand corner, respectively. The guidelines separating the four 
colored quadrants are calculated based on their average 〈β〉 and v values. This figure was generated using the 
Python open source library Matplotlib (v3.7.1).

Table 2.   Comparing the β exponent with and without traffic.

City β without traffic β with traffic

Amsterdam, Netherlands 1.29 ± 0.02 1.46 ± 0.02

Baltimore, USA 1.05 ± 0.01 1.36 ± 0.01

Barcelona, Spain 1.11 ± 0.02 1.46 ± 0.03

Christchurch, New Zealand 1.08 ± 0.01 1.31 ± 0.01

Dubai, United Arab Emirates 1.24 ± 0.02 1.34 ± 0.02

Fortaleza, Brazil 1.17 ± 0.01 1.23 ± 0.01

New Delhi, India 1.16 ± 0.01 1.17 ± 0.01

Oslo, Norway 1.13 ± 0.02 1.33 ± 0.01

Portland, USA 1.17 ± 0.02 1.40 ± 0.01
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Conclusion
The objective of this paper was to investigate the relationship between travel time and distance traveled by 
examining the characteristics of the street network in 237 cities worldwide. The results revealed a non-linear 
correlation between time and distance for the simulated trips, indicating that longer trips within a city setting 
take proportionally less time than shorter trips. The β exponent, which measures the power-law relationship 
between time and distance, indicated that cities with higher exponents enable proportionally faster trips as the 
required distance for those trips increases. In other words, if the required distance for a trip doubles in a city, 
the time spent on that trip increases by less than double. These super-linear results were consistently obtained 
across cities of various sizes and urban topologies. While we acknowledge that the Dijkstra algorithm may not 
accurately depict all real-world conditions, we have covered this limitation by simulating realistic traffic in 
nine different cities. This approach allowed us to capture a more realistic dynamic, and it’s worth noting that all 
observed results remain consistent.

The analysis demonstrated that the urban morphology and the street network of SWDP segments directly 
influences the magnitude of the β exponent, resulting in longer trips exhibiting higher average speeds and 
shorter travel times when compared to shorter trips. Specifically, the spatial distribution of DP and street speeds 
contribute to form large SWDPs, which play a crucial role in forming the non-linear relationship between time 
and distance. This phenomenon can be understood by considering the natural growth patterns of cities, where 
residential and commercial zones typically exhibit a high density of DP and lower average speeds, connected by 
avenues with fewer DP and higher speeds. As cities grow, this street layout design facilitates the development of 
longer SWDPs in the form of highways.

This global study consistently yielded similar results across hundreds of cities, offering valuable insights into 
the universal principles governing urban dynamics. Such findings provide a robust foundation for developing 
effective strategies and policies that can be implemented across diverse urban contexts to address common 
challenges and promote sustainable development. From a practical standpoint, these findings can assist urban 
planners in evaluating how the construction of street networks worldwide influences driving behavior in terms 
of longer distances. On one hand, these networks are vital for improving travel efficiency, underscoring the 
continued importance of investing in highway high-speed networks to foster efficient and seamless mobility. 
On the other hand, the tendency to travel further is a natural and ubiquitous process, raising the question of 
how urban sprawl can be curtailed when traveling longer distances offers advantages in terms of speed. While 
enhancing transportation speed is crucial for urban efficiency, it must be balanced with sustainability principles, 
such as containing urban sprawl36. Moving forward, planners must carefully examine how these road segments 
are integrated into the urban fabric to prevent the fragmentation of neighborhoods and mitigate adverse effects 
such as increased pollution and decreased walkability.

The results can lead us to speculate regarding a potential connection between the spatial distribution of β 
and accessibility by car. Though our study does not delve deeply into this aspect, it opens a promising avenue for 
future research. Understanding this connection may require a comprehensive examination of multiple factors, 
such as the influence of the pre-factor a in Eq. (1). We hope that our findings may serve as a stepping stone for 
these future investigations.

Data availability
The data that support the findings of this study are available from the open and collaborative mapping tool 
OpenStreetMap. We used the Python’s library osmnx to generate the graph based on OpenStreetMap data28.
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