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The electroencephalogram (EEG) has emerged over the past few decades as one of the key tools used 
by clinicians to detect seizures and other neurological abnormalities of the human brain. The proper 
diagnosis of epilepsy is crucial due to its distinctive nature and the subsequent negative effects of 
epileptic seizures on patients. The classification of minimally pre-processed, raw multichannel EEG 
signal recordings is the foundation of this article’s unique method for identifying seizures in pre-
adult patients. The new method makes use of the automatic feature learning capabilities of a three-
dimensional deep convolution auto-encoder (3D-DCAE) associated with a neural network-based 
classifier to build an integrated framework that endures training in a supervised manner to attain 
the highest level of classification precision among brain state signals, both ictal and interictal. A pair 
of models were created and evaluated for testing and assessing our method, utilizing three distinct 
EEG data section lengths, and a tenfold cross-validation procedure. Based on five evaluation criteria, 
the labelled hybrid convolutional auto-encoder (LHCAE) model, which utilizes a classifier based on 
bidirectional long short-term memory (Bi-LSTM) and an EEG segment length of 4 s, had the best 
efficiency. This proposed model has 99.08 ± 0.54% accuracy, 99.21 ± 0.50% sensitivity, 99.11 ± 0.57% 
specificity, 99.09 ± 0.55% precision, and an F1-score of 99.16 ± 0.58%, according to the publicly 
available Children’s Hospital Boston (CHB) dataset. Based on the obtained outcomes, the proposed 
seizure classification model outperforms the other state-of-the-art method’s performance in the same 
dataset.

Seizures are a common symptom of epilepsy, a neurological disorder. This disease affects more than 1% of the 
world’s population. Medical treatment and surgical treatment are available for patients suffering from this dis-
ease. More than 30% of patients with seizures who develop subsequent seizures are unable to control them with 
medication or surgical procedures, even when seizures have  occurred1. The importance of predicting subsequent 
seizures is therefore extremely important in order to be able to prevent them with medication before they occur. 
A brain’s electrical activity can be monitored by recording electroencephalogram (EEG) signals. Patients’ scalp 
EEGs or intracranial EEGs (iEEGs) signals can be recorded using electrodes inserted into their brain tissues or 
placed on their scalps. When the brain has neurological issues, the electrical signals inside can suddenly change. 
This change shows up in EEG  readings2. The Fig. 1 shows three lines representing 1 h of brain wave activity 
recorded from EEG signal. The lines cover three conditions: Pre-seizure condition: the 30 min before a seizure 
happens. During-seizure condition: the beginning and end of the actual seizure. Post-seizure condition: The 
period right after a seizure. The time before a seizure occurs can provide valuable  clues3. Preictal state refers to 
the period right before a seizure takes place. It can offer information about what triggers a person’s seizures and 
how soon they may happen. Epileptic seizures and brain disorders can be identified using EEG signals. EEG tests 
are non-invasive, have good time resolution, are low cost, and are safe. Epileptic seizures happen when groups of 
brain cells suddenly send abnormal  signals4. This causes temporary changes in how the brain works. Sometimes 
seizures go unnoticed or can be mixed up with other brain conditions like meningitis or stroke that cause similar 
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symptoms. EEG signals are useful for identifying many health problems including schizophrenia, Alzheimer’s 
disease, sleep issues, seizures, brain tumors, and infections of the brain and nervous  system5.

The passage talks about detecting epilepsy from brain wave signals. It says precise analysis of brain waves 
from people with epilepsy can provide useful facts. The brain waves are complex, so analyzing them needs look-
ing at many factors. Doctors checking brain waves themselves has helped spot patterns. But this requires high 
skills and knowing many analysis tools. Recently, automating how computers detect epilepsy a seizure has got-
ten researchers  interested6. The text talks about how EEG signals are analyzed. EEG signals measure electrical 
activity in the brain. Over time, technology has improved to allow digital analysis of EEG data. This helps detect 
seizures in the brain. The digital EEG analysis has three main steps: pre-processing, feature extraction, and clas-
sification. Pre-processing involves preparing the raw data by removing noise and enhancing the signal. Feature 
extraction identifies important characteristics in the data. This helps identify patterns related to seizures. Some 
features may be removed during optional feature selection to improve the analysis. Classification assigns the 
data to different groups. The classification model looks for patterns in the features to identify seizures. Overall, 
digital EEG analysis uses signal processing and machine learning techniques to detect seizures and other brain 
conditions from EEG data. The text describes the general workflow of pre-processing, feature extraction and 
 classification7. The proposed framework uses a 3D deep convolution auto-encoder (3D-DCAE) to detect epileptic 
seizures from EEG recordings. The auto-encoder (AE) is trained once in a supervised way to do two things at 
the same time. First, it learns the best features from the EEG signals. It then summarizes them into a simple, 
low-dimensional representation. This helps it classify the signals efficiently. Training the auto-encoder to do both 
tasks at once has proven very helpful. It improves how well the model learns. This leads to better accuracy when 
classifying the EEG signals. The advantages of our approach are as follows: First, our LHCAE model trains faster 
than standard supervised methods since it trains only once. Second, to limit parameters, we use convolutional 
layers instead of fully connected layers. This helps the model learn features from the EEG data. Third, our system 
can compress the original high-dimensional signals using the low-dimensional latent representations from the 
decoder part. Fourth, training autoencoder in a supervised way helps learn structured latent representations. This 
allows us to use simple classifiers with high precision for seizure detection. Finally, we considered performance 
and hardware resources to make our system suitable for real-time use and hardware implementation. This can 
help with deployment as well. The two models aim to detect seizures in minors. They both differentiate between 
ictal and interictal brain states by classifying EEG data. A combination of simple multi-layer perceptron and 
hooked-up 3D convolutional layers helps classify data in Model 1. 3D convolutional layers are also utilized by 
Model 2. For performing the classification task, their attachment with a Bi-LSTM layer is necessary. We evalu-
ate these models’ efficacy by comparing their performance to two other standard deep learning algorithms with 
identical architectures. The decoder layers were taken out. Supervised training has restricted the use of these 
models to just classification tasks. Our approach of utilizing LHCAE shows promise for precise seizure detection 
by experimenting with various EEG segment lengths.

Figure 1.  Seizure states like interictal, preictal, ictal, and postictal from three channels, each of which was 
recorded for an hour.
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Related work
Detecting seizures early presents a critical obstacle in the management of epilepsy. Numerous scientists have 
attempted to discover methods for precisely predicting seizure onset. A seizure prediction mechanism that 
utilizes deep learning methods is suggested by the research. To execute this method, first pre-process the scalp 
EEG signals. Then extract features by employing a convolutional neural network followed by classification of 
the data via support vector machines. The method was successful in achieving an average sensitivity of 92.7% 
and specificity of 90.8%, as demonstrated by testing on data from 24  subjects8. Intracranial EEG data from 10 
patients was analyzed as part of a pseudo prospective seizure prediction study in another research effort. A 
deep learning classifier was trained initially to distinguish preictal and interictal signals Afterward, the classi-
fier’s performance was evaluated on EEG data that were held out from all patients and compared to a random 
predictor. The prediction system may be calibrated to prioritize sensitivity or time in alerting, depending on the 
needs of the patient. The system’s prediction achieved a mean sensitivity of 69% and time in warning of 27%, 
surpassing a random predictor’s performance by 42% for all patients. An ultra-low power neuromorphic chip for 
wearables to run the prediction system was demonstrated as feasible by the  researchers9. The model suggested 
was designed to enhance the quality and simplify technical terms. Two different algorithms were employed to 
test the model: K-nearest neighbours (KNN) and Support Vector Machines (SVM). Both algorithms produced 
comparable outcomes. SVM and KNN have shown that our method of extracting features using feature engineer-
ing techniques in the three different domains was highly accurate in its measurements of specificity and sensitiv-
ity. The contribution of t-test and sequential forward feature selection cannot be underestimated in the success 
achieved. With just five features it’s possible to create a trustworthy model that achieves excellent results; SVM 
delivered perfect scores for accuracy, sensitivity and specificity while KNN scored an impressive overall result of 
more than 99%. Our approach is effective in achieving high accuracy using minimal  features10. Differentiating 
between epileptic seizures through varying characteristics was the main thrust behind reviewing literature on 
feature selection. They put together a classification of standard solutions used when dealing with this problem, 
while the main focus of this analysis was on how classifiers operate on distinct open-source datasets. In their 
conclusion regarding predictive methods for epilepsy the research identified opportunities along with potential 
gaps and  challenges11. Epilepsy results in recurrent and sudden seizures, and anticipating seizure activity sooner 
can significantly enhance patients’ health outcomes. After many years of studying the problem remains: how to 
predict seizures? The cause of this issue may be due to limited data accessibility. However, exciting new machine 
learning (ML) based tools give us a better chance at predicting seizures early and accurately. Using EEG signals 
and machine learning methods to detect seizures as early as  possible12.

Different machine learning methods were applied to examine information about epileptic seizures. When 
compared with other algorithms like K nearest neighbours, naive bayes, logistic regression, decision tree, ran-
dom tree and J48; the random forest model stood out for its superior performance. Stochastic gradient descent 
underwent testing as well. With an accuracy level of 97.8%, a ROC score at 0.96, and root mean squared error at 
0.527, the random forest model performed very well. Additional examination was conducted on several models 
to evaluate their ability to classify the epileptic seizure data. Their parameters underwent minor  changes13. The 
HVD single elements’ instantaneous amplitude is affected by movement artifacts in brainwave signals. The iden-
tification of epileptic seizures and normal human activities is aided by analyzing the statistical features acquired 
through instantaneous amplitude. To choose the features, we rely on a Q-score based on correlation, and subse-
quently classify them through an LSTM model in deep learning. Maximizing the accuracy is achieved through 
feature-based weight update. Our Sensor Networks Research Lab data was utilized for epilepsy diagnosis using 
the Bonn dataset, and our proposed method achieved test classification accuracies of 96.0% through activity rec-
ognition. A test classification accuracy of 83.0% is achieved by the proposed method for recognizing  activities14.

The proposed approach was tested on numerous genuine EEG readings. Sensitivity, specificity and accuracy 
are the criteria for evaluating performance. Different scenarios are utilized to run various experiments, such as 
healthy individuals with eyes open or closed. When there are no seizures originating from two specific areas of 
the brain, patients with epilepsy experience this. Additional scenarios are tested with extra background noise 
generated by physical and environmental elements. The identification of seizure and non-seizure segments 
shows great results with an excellent performance. It shows great resilience against sources of  noise15. A seizure 
detection and prediction method were attempted to be created by researchers using the stacked bidirectional 
long short-term memory technique. Analyzing time series data using this method solves the vanishing gradient 
problem in recurrent neural networks. For the detection and prediction experiments, data from Bonn University 
was gathered. The seizure detection accuracy of our model was the highest, reaching 99.08%, with precision at 
98%, recall at 99.5% and an ROC AUC score of 0.84346. Exceeding 90%, an accuracy in a binary classification 
is considered outstanding. By identifying preictal states of EEG readings from both interictal and ictal states, 
seizure prediction was performed using the same  data16. Data mining methods are applied to EEG signal analysis 
in order to detect seizures automatically based on the information presented in this passage. To extract features 
from time series data, the developers designed a versatile tool called Training Builder. By using signal process-
ing techniques combined with a sliding window approach and both feature extraction and selection methods 
alongside Support Vector Machines the trained classifier was able to operate successfully. The seizure detection 
accuracy of the model was over 99% during testing on public EEG datasets, demonstrating outstanding  results17. 
The new method for seizure detection using Stein kernel-based sparse representation (SR) is introduced in the 
paper for EEG recordings. The construction of SR within the SPD matrix space is done by this framework, unlike 
traditional methods that operate with data within a flat-space. A space that curves is formed by these matrices. 
Curved geometries are embedded in a high-dimensional feature space using the Stein kernel to perform SR. 
This framework represents EEG samples as CovDs. The representation of the test sample using training data in 
a sparse way is followed by classification into a category that exhibits minimum discrepancy between its initial 
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and restored  version18. The content discusses comparing different ways to extract features from EEG seizure 
data with the goal of detecting seizures. Both direct extraction of features from the original signals and using 
adaptive decomposition methods were evaluated. The outcomes of the various decomposition techniques evalu-
ated were relatively similar overall, but VMD and CEEMDAN yielded somewhat better results. Inferior class 
separability was observed when extracting features solely from the original signals without any decomposition. 
Nevertheless, certain classifiers enabled accurate predictions. By presenting a standardized methodology, this 
study enables more accurate comparisons between different EEG seizure detection methods. We employed the 
same classifiers, parameters, spectral features in both time  domain19. The investigators established a technique 
to classify seizures that operates rapidly and dependably. They merged deep neural networks with higher-order 
statistics. This method involves extracting key structural features from third-order cumulant coefficient matrices 
using a sparse autoencoder neural network. The softmax classifier can effectively categorize EEG signals into two 
or three groups with high accuracy. The scientists conducted an experiment using EEG data that was publicly 
available from the University of  Bonn20.

The study aims to use MFCCs for classification purposes after computing them during the feature extraction 
phase. A filter bank with bandwidths close to the critical bandwidths of the human ear is used in calculating 
MFCCs through frequency analysis. Most prior research employing this identical data set have been outper-
formed by our suggested approach concerning classification accuracy, sensitivity and specificity. Extracting 
features using cepstral analysis was instrumental in achieving this success. Real-time seizure detection systems 
can benefit from the potential of this system. The inherent nature of the proposed method’s neural network is 
non-iterative21. Author employed a two-step process in our methodology. Initially, we utilized labelled multi-
lead EEG short samples to train squeeze-and-excitation networks (SENet), aiming to extract short-term fea-
tures. Concurrently, we trained long short-term memory networks (LSTM) using compressed data, focusing 
on extracting long-term characteristics and constructing a classifier. During the inference phase, we introduced 
an additional step. Initially, we adjusted the LSTM feature mapping using adversarial learning. This process 
involved a dynamic interaction between the LSTM and the clustering subnet. Its purpose was to align the EEG 
data from the target patient with the EEG data in the database, ensuring that they follow the same distribution 
within the deep feature space. In the concluding step, the adapted classifier is deployed to ascertain the specific 
type of seizure. Our experiments encompassed the utilization of both the TUH EEG Seizure Corpus and the 
CHB-MIT seizure database. The empirical results unequivocally demonstrate that the proposed domain-adaptive 
deep feature representation significantly enhances the classification accuracy of the hybrid deep model within the 
target dataset, yielding an impressive 5%  improvement28. The author harnessed the automatic feature learning 
capabilities of a two-dimensional deep convolution autoencoder (2D-DCAE) integrated with a neural network-
based classifier. This integration formed a unified system that underwent supervised training to achieve optimal 
classification accuracy between ictal and interictal brain state signals. In the pursuit of evaluating our technique, 
we constructed and tested two distinct models. These models were assessed using three different EEG data 
segment lengths and a rigorous tenfold cross-validation scheme. After comprehensive evaluation based on five 
assessment criteria, the highest-performing model emerged as the supervised deep convolutional autoencoder 
(SDCAE) model. This model featured a bidirectional long short-term memory (Bi-LSTM)—based classifier 
and employed EEG segment lengths of 4  s29. The aim of this endeavour is to develop hardware-implementable 
machine learning classifiers capable of accurately predicting seizure onsets with high sensitivity. The proposed 
classification methodology involves a multi-step process, which includes channel selection tailored to each 
patient, feature extraction from EEG data, the identification of the optimal feature combination for each patient, 
and subsequent training of the selected support vector machine (SVM) classifier. Upon evaluating the perfor-
mance of this classification approach, the results are highly encouraging. In several cases, the achieved accuracy 
exceeds 95%, signifying the robustness and effectiveness of the proposed  methodology30.

This paper presents a novel automated seizure-detection technique that provides users with three distinct tac-
tics, allowing them to choose the most suitable one for a specific categorization task. Notably, the feature extrac-
tion process encompasses both linear and nonlinear measures, extracted directly from the EEG signals. Addi-
tionally, features can be derived from the sub-bands of the tunable-Q wavelet transform (TQWT) or even from 
the intrinsic mode functions (IMFs) obtained through multivariate empirical mode decomposition (MEMD). 
The classification task is carried out efficiently using a support vector machine (SVM). Author evaluated the 
performance of our proposed method using a publicly available database, considering six binary classification 
scenarios designed to distinguish between healthy, seizure, and non-seizure EEG signals. In comparison to state-
of-the-art techniques, our results showcase superior accuracy (ACC), sensitivity (SEN), and specificity (SPE)31. In 
this article, we employ the Superlet Transform (SLT) in conjunction with a deep convolutional neural network, 
specifically VGG-19, for the purpose of detecting both seizure and non-seizure events. Our proposed approach is 
rigorously validated using an electroencephalogram (EEG) dataset sourced from the University of Bonn. Remark-
ably, our suggested technique exhibits exceptional performance, achieving a perfect 100% accuracy across all 
seven instances of seizure and non-seizure detection studied in this research. Notably, it outperforms other estab-
lished methods when dealing with three and five-class classification challenges. Furthermore, to further assess 
the robustness of our technique, we applied it to the CHB-MIT scalp EEG database. In this context, our proposed 
method demonstrated a remarkable classification accuracy of 94.3% in effectively discriminating between seizure 
and non-seizure  episodes32. This paper introduces a novel hybrid technique that combines higher-order statistics 
(HOS) with sensitivity analysis and the residual wavelet transform (RWT). The sensitivity analysis approach 
focuses on specific segments of the brain signal primarily influenced by transient and burst events, measuring 
a set of frequencies associated with underlying nonlinear dynamics. Leveraging these frequency standards, the 
proposed method assesses brain output across two distinct regions. Additionally, the RWT is employed to analyze 
non-stationary time series in time-scale space, effectively detecting transient and impulsive changes. The results 
demonstrate the effectiveness of this approach, achieving an impressive discriminating accuracy of 99.76% on the 
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Bern Barcelona EEG  database33. The proposed network is constructed upon an autoencoder, delving deep into the 
exploration of the intricate non-linear dynamics inherent in electroencephalogram (EEG) inputs. This approach 
leverages established deep neural domain expertise to distil valuable insights from raw data, ultimately culminat-
ing in the development of a sophisticated deep neural network-based learning model. This model is designed 
to effectively predict the nature of unknown seizures. Within this framework, EEG waves are channelled into a 
neural network founded on autoencoder principles. Notably, this network inadvertently uncovers and harnesses 
pertinent properties that prove instrumental in the subsequent operation of the softmax  classifier34. The objective 
of this chapter is to delve into the analysis of brain activity dynamics derived from electroencephalogram (EEG) 
signals, with a specific focus on identifying the seizures associated with epilepsy. Consequently, the primary aim 
of this article is to perform robust seizure classification. In pursuit of this goal, we propose a nonlinear higher-
order spectral approach in this paper to scrutinize the intricate dynamics inherent in nonstationary EEG data. 
From the prominent realm of higher-order spectra, a diverse array of statistical characteristics is meticulously 
extracted. This extraction process is executed through the data reduction technique known as location-sensitive 
discriminant analysis (LSDA)35.

Materials and methods
Materials
Assessing and measuring the effectiveness of proposed models involved using patient data obtained from the 
CHB-MIT database. Assessing and measuring efficacy of obtained data was done using proposed models. The 
dataset contains long-term EEG scalp readings collected from 23 paediatric patients suffering from intractable 
seizures and was captured by Boston Children’s  Hospital22. Using the modified combinatorial nomenclature, the 
International 10–20 electrode positioning system specifies the names of 21 electrodes that collect 3 channels 
of EEG signals. The naming convention is presented in Fig. 2. Using data from the Children’s Hospital Boston-
Massachusetts Institute of Technology database, this study utilized a sampling rate of 256 Hz that underwent 
filtering via bandpass method between frequencies ranging from 0 to 128 Hz in order to test how effective our 
model proposals were. The database contains long term electroencephalogram recordings from the scalps of 23 
young patients suffering from seizures that cannot be controlled. The recordings were taken at Boston Children’s 
Hospital. The electroencephalogram readings were captured using 21 electrodes placed on the patients’ heads 
following the International 10–20 system, a standardized method to place the electrodes. The electrodes are 
labelled using specific names as shown in Fig. 2. The electroencephalogram signals were sampled at 256 Hertz 
and filtered between 0 and 128 Hertz. 16 of the 23 paediatric patients were chosen to assess the classification 
models. Table 1 has more details on the selected  patients23. Chb16’s seizures lasted less than 10 s so none were 
considered for testing. Chb12 and Chb13’s seizures were left out due to changes in channel names and electrode 
placements. Four patients aged 16 and up (Chb04, Chb15, Chb18, and Chb19) were excluded since the focus is 
on detecting seizures in young children.

Typically, epileptic patients experience fewer seizures which last much shorter compared to periods of sei-
zure-free. There is often an imbalance between the count of seizure EEG data and non-seizure data segments. 
To address bias when training classification models where models lead to favour the class where the most 

Figure 2.  Using modified combinatorial nomenclature, 21 EEG electrode placements based on the 10–20 
system were identified.
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segments, interictal segments equal the count of ictal segments to form the last dataset. Previous studies have 
down sampled the original interictal dataset to achieve this  balance24. For testing the proposed models, 1, 2, and 
4 s stipulation were used for non-overlapping EEG segments. The representation of a single EEG segment is a 
matrix with a dimension of ( I × J) , here I, is the length of sequence = 256 × segment, J is the channel count. Let 
us considered, a 512 × 23 matrix represents one 2-s segment. The EEG dataset is then created by combining all 
of the ictal and interictal segments into a single matrix with the dimensions (2MN × x23), where M is the total 
number of ictal or interictal segments and N is the same as previously described. To prepare the EEG dataset 
prior the training phase, all segments merged undergo the pre-processing through normalization of z-score for 
all channel to guarantee that all values are standardized by holding a zero-mean ( zm) and unit standard deviation 
(sd) employing the following Eq. (1),

The entire dataset values are then scaled together to the 0 to 1 range using Min–Max scaling. This ensures 
that the original and reconstructed segments have similar value ranges. Finally, an extra column is added to the 
segment’s channels dimension to make it more suitable for the autoencoder model. Publicly available datasets 
were examined in this study. This information can be found here: https:// physi onet. org/ conte nt/ chbmit/ 1.0. 0/.

Methods
The proposed framework aims to develop precise and dependable deep learning models for detecting epilep-
tic seizures. The differentiation of two classes of brain states into interictal and ictal is what enables this to be 
achieved. The powerful features learned by the proposed models contribute to attaining high classification accu-
racy for minimally pre-processed EEG signals. Our focus is on eliminating the requirement for manual feature 
extraction by deploying auto-encoders (AEs) in place of complex and time-intensive methods. This will result in 
faster, simpler, and highly effective systems. A combination of an encoder and decoder make up the AE neural 
network. The compression of input information (EEG signals) into a lower dimension is done by the encoder, 
while the decoder decompresses it to recreate the original signal. The network is trained to minimize the loss 
between the original and reconstructed inputs for AE-based compression. Proposed 3D-DCAE-based models can 
learn inherent signal features from labelled EEG segments during supervised training. The incorporation of both 
an encoder producing latent representations and a multilayer perceptron network for classification enables the 
3D-DCAE to accurately classify data. Figure 3 portrays the primary proposed model that employs a 3D-DCAE. 
Also passed into a multilayer perceptron network is the latent space representation that was extracted by the 
encoder. The classification task can be completed using the MLP. The proposed model featured in the diagram 
showcases a 3D-DCAE. The latent space representation of the encoder is fed into a Bi-LSTM recurrent neural 
network for performing classification Shown in Fig. 4. This model’s performance will be evaluated alongside 
two others. A two-dimensional deep convolutional network (3D-DCNN) along with an MLP is demonstrated 
in Fig. 5. Figure 6 displays a Bi-LSTM incorporated 3DDCNN.

3 Dimensional deep neural network AE
For the purpose of processing multidimensional data like images and multi-channel EEG signals with high 
efficiency—convolutional neural network stand out as a well-suited special class among the feedforward neu-
ral networks, and very impressive results have been obtained by employing CNNs in various fields including 

(1)y =
y − zm

sd
.

Table 1.  The selected patients’ seizure data.

Patient ID Sex-age Seizure count Duration of seizure

Chb01 Male-11 8 439

Chb02 Male-12 3 181

Chb03 Female-12 6 399

Chb05 Female-10 6 560

Chb06 Male-14 9 156

Chb07 Male-8 4 319

Chb08 Female-9 5 917

Chb09 Female-6.5 5 279

Chb10 Female-7 6 444

Chb12 Female-12 4 801

Chb13 Female-10 7 172

Chb16 Male-5 4 298

Chb19 Female-9.5 9 299

Chb21 Female-11.5 5 201

Chb22 Female-13 3 208

Chb23 Female-4 8 434

Total 92 6107

https://physionet.org/content/chbmit/1.0.0/
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computer vision and pattern recognition. The excellent representation of various types of data through the 
hierarchical learning of accurate spatial characteristics is what makes deep learning so powerful. Because they 
rely on parameter sharing and sparse connections where fully connected MLP networks do not, CNNs conserve 
much more memory, and to improve upon previous models standard AE models are eschewed in favour of those 
incorporating both convolutions along with pooling so as to provide various added benefits: thus, resulting into 
an output much superior by employing the proposed 3D Convolutional Auto-Encoder. To build an autoencoder 
architecture in the form of a CNN consisting of eight different types (four each) respectively alternated with 
each other are utilized for its encoder component and to analyze input EEG signal segments using deep learning 
methods, the convolutional layer acquires knowledge about their spatio-temporal properties while max-pooling 
reduces dimensional requirements via downsampling. A group of filters (kernels), each consisting of tunable 
weights called filters or kernels constitutes one convolutional layer that slides over and convolves with input data 
to produce numerous characteristic maps identical to this count, and how much sliding of the filter window 
occurs over the input is determined by an adjustable parameter (stride). The dimensions of feature maps are 
reduced through downsampling by the pooling layer in order to decrease computational complexity, and either 
‘latent space representation’ or ‘bottleneck’ can be used to refer to a reduced-dimensionality result from an encod-
ing network. The process of reconstructing an original input from a set of interchangeable instructions demands 

Figure 3.  3D-DCAE + MLP architecture of seizure detection.

Figure 4.  3D-DCAE + Bi-LSTM architecture of seizure detection.
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both 4 convolutional as well as 4 up sampling operations within the decoder subnetwork. All models employ 
an encoder network that features four convolutional layers with filter sizes of 32 and 64 in alternating order for 
optimal performance and the framework of decoder neural network comprises of initial three convolutional 
processes incorporating filters in descending order from 64 to dual instances of 32 and preceding them is last 
single filtered-layer. The fixed parameters for each convolutional layer include a 3 × 2 kernel size and using the 
default value for stride, so throughout training to preserve the dimensions of feature maps at constant values 
each convolutional layer uses an identical padding approach. All convolutional layers use rectified linear unit 
(ReLU) as their activation function except for the final layer, so this can be seen from Eq. (2). The combination 
of sparsity property with computational simplicity and immunity to noisy input signals makes it.

where y is the weighted sum of the inputs and g(y) is the ReLU activation function. The sigmoid activation func-
tion specified in equation is used in the third and final convolutional layer of the 3D-DCAE. Equation (3) to 
produce an output in the [0, 1] range.

where y is the weighted sum of the inputs and x is the output of the activation function. In order to reduce input 
dimensions, we use max-pooling layers configured with windows sized at (2, 2) throughout all but one phase: 
The last-layer pooling utilizes larger-sized (2, 3) filters and the task of interpolating both rows and columns in 
input data is completed via usage by means with an interpolation factor set at (2, 3) in the foremost up-sample 
location. A constant scalar value is used for subsequent up-sampler locations while the utilization of Batch 

(2)g
(
y
)
= max

{
0, y

}
,

(3)x =
1

1+ e−y
,

Figure 5.  3D neural network with multilayer perceptron.

Figure 6.  3D neural network with Bi-LSTM neural network.
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Normalization (batch norm) techniques in our models accelerates and stabilizes the training process while 
ensuring top-notch performance.

The batch normalization transform Eq. (4) is shown. Here, the input vector is yi , and the mini-batch is MB, 
and the mean, variance can be γMB and α respectively. Then α and ⅄ are the two jointly learned parameters are 
used to scale and shift the normalised value, and Є is added for numerical stability. The encoder subnetwork’s 
four convolutional and max-pooling layers are separated by four batch normalization layers.

Proposed three‑dimensional deep convolution autoencoder with MLP
The initial model presented in Fig. 7 leverages a flatten layer to transform the multi-dimensional latent space 
representation produced by the decoder subnetwork into a vector shape which is then passed through an MLP-
based classifier and in an MLP network architecture there are two hidden fully-connected layers which have a 
capacity of having up to (or exactly) fifty and thirty-two neurons for each layer respectively. In this model’s both 
layers make use of the ReLU activation function and the last stage in a neural network’s processing of data is 
when it produces an ultimate decision through its output layer. The MLP’s use of a sigmoid activation function 
allows for computation of class probabilities based on input EEG segments.

Three‑dimensional deep convolution autoencoder with Bi‑LSTM network
LSTM refers to an exclusive design of the recurrent neural network’s structure so to mitigate issues such as 
gradient explosion/vanishing and information morphing that occur while using vanilla RNNs for training with 
BPTT; it was developed. By proposing the use of memory cells (units) equipped with three controlling gates 
for LSTMs networks, it’s possible to maintain gradients values computed by backpropagation during network 
training and preserve long-term temporal dependencies between inputs, and the configuration for a single LSTM 
cell is shown in Fig. 8.

( )
√ 2+Є

+ ⅄ 
(4)

Figure 7.  3D-DCAE with MLP architecture.
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where yi is the input at time i in a sequence Y = (y1; y2; y3;…;  yn) of n time steps. hi−1 and bi−1 are the hidden 
state output and cell state at the previous time step, respectively. hi and bi are the current hidden state and cell 
state. ji , ki , and li are the forget, input, and output gates. X and a represent the weights and biases matrices and 
vectors while σ is the sigmoid (logistic) function and ⊙ is the Hadamard product operator. The memory cell starts 
operation by selecting which information to keep or forget from the previous states using the forget gate ji . Then, 
the cell calculates the candidate state b̃i . After that, using the prior cell state bi−1 and the input gate ki , the cell 
decides what further information to write to the current state bi . Finally, the output gate li calculates how much 
state information hi will be transported to the next time step. Figure 8 is significantly simplified by removing the 
biases, weight matrices, and operations for multiplication between the concatenated input matrix and the hidden 
state. The decoded subnetwork’s result from Fig. 9 is fed into a Bi-LSTM recurrent neural network-based clas-
sifier for classification according to our second prototype. The architecture of this classification model involves 
a single-layer Bi-LSTM network that has been designed with two LSTM cells and the structure of a Bi-LSTM 
architecture is almost identical to that of its counterpart (unidirectional) except it uses dual symmetrically placed 
Stacked Long Short-Term Memory (LSTM) nodes each receiving input from two opposing other nodes at every 
instant during processing. The process for classifying an incoming data segment is to combine each block’s output 
into one array and take its average over all time steps.

Bi-LSTMs are able to improve the accuracy of classifications by considering how each current input relates 
to those before and after it in time, and Fig. 10 illustrates the unrolling of a single-layer Bi-LSTM network over 
n time steps. By utilizing dropout regularization method with a value set at 0 and alongside configuring our Bi-
LSTM layer as prescribed in our model architecture documentation, namely consisting of fifty neurons (units), 
we were able to prevent over-fitting. In predicting the EEG segmentation’s category label just as in Model 1, 
the sigmoid activation feature was employed. Designing the proposed models with a focus on minimizing two 
losses during network training was necessitated by the simultaneous performance of input reconstruction and 
classification by the LHCAE, so at the first stage in evaluating performance we use CL labelled classification to 
assess prediction accuracy. Choosing a loss function was resolved via selecting binary cross entropy from Eq. (11),

where x̂i is the predicted model output for a single EEG segment, and xi is the corresponding actual class label 
in a training batch equals M.

The mean square error specified by Eq. (12) is used to calculate the second loss, which is the loss of recon-
struction  (RLC) between the original EEG segments and their recreated counterpart decoded by the DCAE.

(5)ji = σ
(
Xj ·

[
hi−1, yi

]
+ aj

)
,

(6)ki = σ
(
Xk ·

[
hi−1, yi

]
+ ak

)
,

(7)li = σ
(
Xl ·

[
hi−1, yi

]
+ al

)
,

(8)b̃i = tanh
(
Xb ·

[
hi−1, yi

]
+ ab

)
,

(9)bi = ji ⊙ bi−1 + ki ⊙ b̃i ,

(10)hi = li ⊙ tanh(bi),

(11)CLoss = −
1

M

M−1∑

j=0

xi · log
(
x̂i
)
+ (1− xi) · log

(
1− x̂i

)
,

Figure 8.  LSTM architecture.
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Here, the original value xjk where the position is indexed by j, k, in a given EEG input and the segment matrix 
size is (q × r), and the reconstructed value is x̂jk and the total number of segments is denoted by M. Both training 
processes for deep learning models are quite similar whether it be for models with single or multiple outputs. In 
similarity to our proposed SDCAE models described earlier in this context—weighting both CL & RL according 
to Eq. (13) forms TL.

(12)RCL =
1

M

M−1∑

i=0

1

qr

q−1∑

j=0

r−1∑

k=0

(xjk − x̂jk)
2.

Figure 9.  Bi-LSTM recurrent neural network-based classifier for classification according to our second 
prototype.

Figure 10.  Unrolling of a single-layer Bi-LSTM network over n time steps.
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where the weights can have a value in the regular interval (0, 1), and the proposed model weightcl is assigned as 
0.5, while  weightrlc is equal to 1. The backpropagation procedure of loss in both subnetworks we must compute 
two partial derivatives (gradients): namely, ∂TL

∂CL and, ∂TL
∂RLC and weights and biases updates of this model follow 

the same procedure as typically seen in deep learning that involves calculating all remaining gradients using the 
chaining rule. Experiments conducted while training the LHCAE included testing different optimizers such as 
Stochastic Gradient Descent (SGD), root mean square propagation (RMSprop), ADAM and ADADELTA. The 
selection process took into consideration various model’s performances and resulted in choosing Adam optimizer 
as the better option compared to others; this included setting its learning rate to 0.0001.

Training phase
The effectiveness of our newly-proposed seizure-detection system was measured by comparing it to existing 
systems using four different types of deep-learning architecture: 3D-DCAE with MLP; 3D-DCAE with Bi-LSTM; 
3D-DCNN with MLP; 3D-DCNN with Bi-LSTM. Using diverse performance measurements, we have to test and 
evaluate 12 different types of models. To guarantee accurate classification of unseen data during model evaluation 
in the training stage and beyond requires utilizing a tenfold cross-validation methodology with stratification. The 
methodology adopted for investigating the EEG dataset involves randomization of its contents into ten equally 
sized subsamples or folds to maintain balance between the two classes—ictal and interticial—within each subset. 
We have split our dataset into ten parts wherein one-tenth data points are reserved for testing purposes and rest 
of them are combined together as a training set. The steps involved in cross-validation are performing this action 
ten times requires each one of the 10-folds to be utilized solely as our test data set. The creation and subsequent 
training procedure involves conducting iterations where all the models undergo training using batches consisting 
of only thirty-two samples. The final estimations for various evaluation metrics are derived using the average as 
well as the standard deviation of the classification outcomes from the 10 iterations.

Performance metric evaluation
To assess how well models classify testing sets during ten iterations of tenfold cross-validation, we calculated 
various widely-used statistical metrics like sensitivity (Se), precision (Pr), accuracy (Acc), specificity (Sp), and 
F1-score. These performance metric evaluations are expressed as follows,

In Eqs. (14) to (18), the corresponding shorthand notations are as follows: α represents true positive, β 
denotes true negative, δ signifies false positive, and µ stands for false negative. The notation P stands for positive 
(ictal) EEG segment count while N denotes negative (interictal). When we talk about TP or TN, we refer to a 
positive or negative case that is actually correct whereas FP or FN denotes a case that is incorrect in terms of 
being positive or negative. The meaning of accuracy in this study is based on correctly identifying and classifying 
EEG segments that belong to a specific state (either interictal or ictal), sensitivity gauges successfully identified 
seizure-like activities in an electroencephalogram (EEG) whereas specificity assesses accurate classification of 
non-seizure-related events. Precision tells us how many actual seizures were spotted in a cluster. Finally, the 
F1-score combines the values of precision and recall in a single metric.

Implementation
By using Python programming language alongside additional support software such as the TensorFlow machine-
learning library with its Keras Deep Learning API we have developed our model. Because of the diversity of 
hardware resources and various GPU specifications that were used during training and testing of our suggested 
models; we have chosen not to utilize computation time as a metric for comparisons. Google Colaboratory is 
an online environment that runs on Google’s cloud servers and provides us with external resources to develop 
our models.

(13)TL = weightcl × CL + weightrlc × RLc ,

(14)Acc =
α + β

α + β + δ + µ
× 100,

(15)Se =
α

α + µ
× 100,

(16)Sp =
β

β + δ
× 100,

(17)F1score = 2×
Pr × Se

Pr + Se
× 100,

(18)Pr =
α

α + δ
× 100.
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Experimental results and discussion
The range of values for five performance metrics, calculated based on classification results drawn from a tenfold 
cross-validation for EEG segments that were either 1, 2 or 4 s long. These calculations pertain to each of four 
models. The EEG segments were utilized to derive the performance metrics for the four models. Across the 
tenfold, Table 2 shows the calculated mean and standard deviation of all metrics. Results indicate that LHCAEs 
such as 3D-DCEA with MLP & DCEA-Bi LSTM incorporating auto encoders have greatly outperformed com-
petitors without auto encoders across all EEG segmentation length s and assessment measures. Furthermore, 
Table 2 highlights that the 3D-DCAE model with Bi-LSTM achieved the highest performance among all evalu-
ation metrics at a segment length of 4 s. All other model combinations. It’s worth mentioning that a 4 s EEG 
segment size is the superior option for optimal classification performance in all LHCAE models. By and large, 
it can be perceived that all the models which made use of Bi-LSTM for classification realized more favourable 
consequences as opposed to the models that used MLP-based classifiers employing corresponding EEG seg-
ment lengths. EEG signal classification is more effective when using the Bi-LSTM model as compared to MLP-
based classifiers. The capability of Bi-LSTM networks to accurately learn temporal patterns from latent space 
sequences may explain the phenomenon. Figure 11, depicts the different EEG segment lengths of classification 
results. They perform better than MLP networks. The comparison of standard deviations in evaluation metrics 
for all models suggests that the LHCAE models tend to demonstrate less dispersion compared to other models. 
This demonstrates that the LHCAE models’ consistency is maintained during cross-validation iterations. Clas-
sification accuracy, classification loss and reconstruction curve data for an achieved model is seen in Fig. 12 
which resulted from one of many iterations during a tenfold cross-validation. The employed model consisted of 
3D-DCAE and a Bi-LSTM. Both the training and testing datasets were used to accomplish these achievements 
while in training. The process of first training on a set of data and then evaluating performance with another 
set—the test data—was applied to this model.

Performance metric comparison of proposed and state-of-the-art-methods
Seizure classification algorithm performance is evaluated using different metrics in literature. The challenge 
arises when trying to differentiate results obtained from various studies due to this factor. Accuracy, sensitivity 
and specificity are the three widely used metrics that we will use for comparisons in this section. The comparison 
in Table 3 demonstrates how our highest-performing model stacks up against various advanced methods that 
use deep neural networks to extract and classify seizures features. Figure 13 depicts the visualization of metric 
outcome comparison of existing and proposed model with the same dataset. Compared different SSDAEs to 
assess their feature extraction and classification capabilities. STFT was utilized for pre-processing. They achieved 
their highest accuracy at 93.82% by randomly selecting the training and testing  datasets24. Combining feature 
extraction, global maximal information coefficient (MIC), and visual geometry group network (VGGNet), ena-
bles classification of data. Utilizing fivefold cross-validation allowed them to achieve high levels of accuracy 
(98.21%), sensitivity (98.91%), and specificity (97.51%)25. Examined frequency domains using FFT and clas-
sified personalized ictal or interictal signal patterns using CNN. An average accuracy, sensitivity, and specific-
ity of 97.62%, 96.92%, and 98.22% respectively were obtained for all patients using a six fold cross-validation 
approach for  evaluation26. Spectral and temporal features were extracted by the authors from EEG signals via 
a 2D-CNN model. A group of training and testing datasets were selected at random for patient-specific clas-
sification. Consistently, the cross-patient study produced an accuracy rate, sensitivity rate, and specificity rates 
as follows: 98.15%, 90.11%, and 91.71%  respectively27. Some of the most advanced systems were outperformed 
by our model’s results in the previous comparison. Not one has the accurate statistical analysis required for 
conducting a test of significance.

Table 2.  Results of classification using various EEG segment (length).

Segment (length) Methods Se (%) Sp (%) Acc (%) Pr (%) F score (%)

1 s

3D-DCAE + MLP 97.81 ± 0.79 98.26 ± 0.34 98.23 ± 0.33 98.24 ± 0.32 97.81 ± 0.31

3D-DCAE + BiLSTM 97.91 ± 0.48 98.57 ± 0.47 98.54 ± 0.46 98.55 ± 0.45 98.12 ± 0.44

3DCNN + MLP 97.53 ± 1.62 97.15 ± 1.22 97.12 ± 1.21 97.13 ± 1.20 96.7 ± 0.92

3DCNN + BiLSTM 98.23 ± 0.97 97.52 ± 1.13 97.49 ± 1.12 97.5 ± 1.11 97.07 ± 0.71

2 s

3D-DCAE + MLP 97.91 ± 0.70 98.66 ± 0.94 98.63 ± 0.93 98.64 ± 0.92 98.21 ± 0.51

3D-DCAE + BiLSTM 97.93 ± 0.48 98.93 ± 0.54 98.9 ± 0.53 98.91 ± 0.52 98.48 ± 0.75

3D-DCNN + MLP 97.33 ± 1.58 97.2 ± 1.25 97.17 ± 1.22 97.18 ± 1.23 96.75 ± 0.99

3D-DCNN + BiLSTM 96.23 ± 1.10 97.6 ± 1.58 97.57 ± 1.55 97.58 ± 1.56 97.15 ± 1.11

4 s

3D-DCAE + MLP 99.08 ± 0.79 98.91 ± 0.65 98.88 ± 0.62 98.89 ± 0.63 98.46 ± 0.54

3D-DCAE + BiLSTM 99.21 ± 0.50 99.11 ± 0.57 99.08 ± 0.54 99.09 ± 0.55 99.16 ± 0.58

3D-DCNN + MLP 97.10 ± 1.40 97.77 ± 1.24 97.74 ± 1.23 97.75 ± 1.22 97.32 ± 0.52

3D-DCNN + BiLSTM 98.25 ± 0.93 97.9 ± 1.32 97.87 ± 1.31 97.88 ± 1.30 97.45 ± 1.23
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Conclusion
A novel approach for detecting seizures in paediatric patients using deep-learning is being proposed. The detec-
tion of epileptic seizures is achieved through a novel approach that uses a 3D-LHCAE. This method classifies 
minimally pre-processed raw multichannel EEG signal recordings. Seizure detection accuracy and efficiency 
can be improved potentially with this technique. The ability of an AE to learn features automatically while also 
classifying between ictal and interictal brain state EEG signals is exploited by training it in a labelled hybrid 
manner. It does this with impressive efficiency. The creation and evaluation of two LHCAE models utilizing 
BiLSTM and MLP network-based classifiers were based on three different EEG data segments lengths. Two 
regular deep learning models with the same layers’ structure are compared to both proposed models for their 
performance. The entire decoder network is taken out with no layers remaining. Training and evaluating the 
twelve models involve applying a tenfold cross-validation technique. The model that performed the best across 
all five-evaluation metrics was the LHCAE model incorporating a Bi-LSTM and 4 s EEG segments. The accuracy, 
sensitivity, specificity, precision and F1 score percentages of this design are: 99.08%, 99.21%, 99.11%, 99.09% 

Figure 11.  Various EEG segment lengths of classification outcomes.
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and 99.16% respectively. Most of the existing state-of-the-art systems using the same dataset are outperformed 
by our proposed LHCAE model, which is quite apparent.

Figure 12.  3D-DCAE with Bi-LSTM model accuracy and loss curves while training.

Table 3.  Performance metric outcome comparison of existing and proposed model using the same dataset.

Author Dataset Selection of data Feature extraction Se (%) Sp (%) Acc (%)
24 CHB-MIT Randomized SSD auto-encoder with STFT 93.89 94.01 93.82
25 CHB-MIT Cross validation—fivefold VGGNet with MIC 98.91 97.51 98.21
26 CHB-MIT Cross validation—sixfold Fast Fourier transform with CNN 96.92 98.22 97.61
27 Figshare Randomized Two-dimensional CNN 90.11 91.71 98.15
28 TUH EEG Seizure Corpus Randomized Squeeze-and-excitation networks 95.82 96.11 97.80

29 University of Bonn Randomized Supervised deep convolutional 
autoencoder 98.72 98.86 98.79

30 TUH EEG Seizure Corpus Randomized Support vector machines and 
convolutional neural networks 94.22 94.81 95.0

31 CHB-MIT Six binary classifications SVM with tunable-Q factor wave-
let transform 96.56 97.34 98.78

32 CHB-MIT Three and five-class classification Superlet transform and VGG19 – – 94.3

Proposed model CHB-MIT Cross validation—tenfold 3D-DCAE with BiLSTM 99.21 99.11 99.08
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