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Robust process capability indices 
Cpm and Cpmk using Weibull process
Muhammad Kashif 1, Sami Ullah 2, Muhammad Aslam 3* & Muhammad Zafer Iqbal 1

Process Capability Indices (PCIs) are very helpful to measure the manufacturing capability and 
production quality of the products in many manufacturing processes. These PCIs are calculated by 
using a relationship between process mean and standard deviation, provided that process follows 
a normal distribution. In case of non-normal processes many researchers recommended the use of 
robust PCIs by modifying the classical PCIs. In case of robust PCIs most of the work is reported on first- 
and second-generation PCIs but less work is reported on third generation PCIs. The objective of this 
work was to evaluate the efficiency of three dispersion measures, namely median absolute deviation 
(MAD), interquartile range (IQR), and Gini’s mean difference (GMD), as a measure of dispersion in 
third generation PCIs and construct their bootstrap confidence intervals (CIs). The efficacy of these 
measures is compared with quantile-based PCIs under different asymmetric behaviour of the Weibull 
process. The results showed that quantile-based PCIs are strongly influenced by high asymmetry 
and IQR method provides a poor estimator across all sample sizes. On the other hand, the GMD 
method performed well under low, moderate, and high asymmetry of the Weibull process, but its 
irregular behavior needs to be addressed carefully. Among all selected four methods MAD-method 
performed better under low and moderate asymmetric conditions. In case of interval estimation, 
bias-corrected percentile (BCPB) CIs was recommended for quantile-based PCIs, while percentile (PB) 
and percentile-t (PTB) CIs were recommended for MAD-based PCIs under all asymmetric conditions. To 
validate the simulated findings, two real-world datasets were analyzed that supported the simulation 
results.

The Process Capability Indices (PCIs) are statistical measures used to assess the ability of a process. These indi-
ces provide an indication of how well a process meets customer requirements and helpful to identify areas for 
improvement. The term PCI was first introduced by1 and after that there has been extensive research on the usage 
and implementation of PCIs in various industries and sectors. Researchers and practitioners2–7 have explored 
different aspects of PCIs to enhance their effectiveness and applicability in different contexts. Several indices 
have been defined but most commonly used are Cp,Cpk ,Cpm and Cpmk

2. defined a supersaturated generalized 
PCI based on two non-negative parameters (�, v) for these four indices as

All four basic PCIs can be generated by putting � and v as 0 and 1. These indices rely on the assumption that 
the underlying process data follows a normal distribution. In this case, the PCIs are calculated using the mean 
and standard deviation of the data3,7. However, it’s worth noting that there are alternative methods available for 
estimating PCIs when the normality assumption is violated or when dealing with non-normal data7. Various 
methodological avenues have been investigated for non-normal quality characteristics which can be categorized 
into different categories (i) Transform non-normal data into normal and use the traditional PCIs. Box-Cox 
transformation, Johnson transformation system and Clement’s methods using Pearson curves are commonly 
used transformations to make data normal8–11. preferred to compute PCIs from the transformed data (ii) Develop 
some modified or robust PCIs useful for non-normal data3,4,10,12–18. have used some robust measures to compute 
PCIs. Comparison of different approaches is given in7,17,19–21 and references therein. Focusing on the alternate 
measures to compute PCI under non-normality, the most attractive method was suggested by12. The modification 
of replacing natural interval (6σ) by the width of 99.865th and 0.135th percentile of distribution in Cp proved 
to be more reliable for Pearson family of the distribution. The method is simple and attractive for practical and 
theoretical point of view because it does not require the transformation of the data. Later on, Pearn and Kotz22 

(1)Cp(�, ν) =
d − �|µ−M|

3
√

σ 2 + ν(µ− T)2
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used Clement’s approach and defined other two indices Cpm and Cpmk
23. modified the Clements idea and used 

single measure for all cases and defined all four PCIs. It is shown that the three processes, one on-target and 
the other two off-target, proved that the modified estimator outperforms the original Clements estimators. In 
another study, Kashif et al.4 examine the effectiveness of modified PCIs based on the Pearn-and-Chen quantile 
method. They discovered that the Gini’s mean difference is a more trustworthy indicator of Weibull-based data 
variability. A very limited application is available for PCIs based on Clements approach for different asymmetric 
behavior of non-normal distributions24. Moreover, the sample standard deviation is based on the assumption of 
normality and is sensitive to outliers. In case of non-normal data or data contain outliers, the sample standard 
deviation may not accurately represent the dispersion of the underlying population and alternative estimator 
of population variability is recommended in the literature3,4,7,25,26. Among these alternatives, median absolute 
deviation (MAD) is one of the robust measures which is less sensitive to extreme values and does not assume a 
specific distribution. It provides a more robust estimate of the spread of the data and is less affected by outliers. 
More details on these topics can be seen in27–36.

For some non-normal distributions, various modified PCIs based on robust location and dispersion measures 
have demonstrated promising results. Kashif et al.3,4 has presented comparison of first and second generation 
PCIs by which are based on some robust measures for Weibull distribution.

But the performance of third generation PCIs (Cpm & Cpmk) is yet need to be evaluated for different asymmet-
ric behavior of different non-normal distributions. In this study, the hypothesis is that utilizing robust measures 
to estimate process variability can yield more accurate estimates for the third generation PCIs in non-normal 
distribution. For this purpose, Median Absolute Deviation (MAD), Gini’s Mean Difference (GMD) and Inter 
Quartile Range (IQR) are considered as robust measures that may perform well under non-normality.

Keeping in view the presented problem the present study is planned to evaluate the performance of three 
robust scale measures: MAD, GMD and IQR in third generation PCIs and compare their performance with 
quantile-based PCIs using Weibull process. Further to construct bootstrap confidence intervals of processed 
robust PCIs using different asymmetric behavior of Weibull processes. The rest of the paper is structured as fol-
lows: “Material and methods” section explains the third generation PCIs based on the aforementioned robust 
measures. “Results and discussion” section reports the comparison of the robust third generation PCIs to the 
PC method, along with their interval estimation.

Material and methods
Robust process capability indices
The idea of the use of robust measures in PCIs was introduced by16. However, the possible effects on PCIs are 
somewhat less known. On the other hand, the robust methods have been successfully utilized in the develop-
ment of control chart theory25,37–39. As noted by39 some robust measure of variability should be used when using 
median as measure of central tendency instead of sample mean. Here in this study three robust measures for 
dispersion, Median Absolute Deviation (MAD), Inter Quartile Range (IQR) and Gini’s Mean Difference (GMD) 
are considered to derive robust PCIs.

Quantile based PCI
Suppose that y is a random variable with probability distribution f (x, θ) , where θ  is a single unknown parameter. 
Let [y1, y2, . . . ., yn] be an i.i.d random sample selected from the process having density f (x, θ) . θ = (θ1, . . . , θk)

τ 
is the transpose of the column vector of process parameters. The likelihood and log likelihood function of θ are 
given by

respectively. The α-quantile of the process distribution is defined implicitly by the function

Then the quantile-based PCI superstructure is a function of the population parameter θ . That is

Let θ̂ =
(
θ̂1, θ̂2, . . . , θ̂k

)τ
 which maximizes L(θ) or l(θ) , be the MLE of θ . The maximum likelihood estimator 

of quantile Qα is defined to the Q̂α = Qα

(
θ̂

)
 . Therefore, the parametric maximum likelihood estimators of the 

supersaturated PCI is
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f
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)
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Note that CNp(η, κ , θ) is a real-valued function of quantile, Qp1 ,Qp2 , and Qp3 which are a continuous real-
valued function of the parameter θ . Since θ̂  is a consistent MLE of θ , ĈNp

(
η, κ , θ̂

)
 is a consistent MLE of 

CNp(η, κ , θ) under some regularity conditions40.

Median absolute deviation (MAD) based PCI
Suppose that the sample median (MD) is computed from a random sample (x1, x2, . . . . . . , xn) . Then MAD from 
the sample median is defined as25,26,41.

The value of constant b in (7) is used to make it as a consistent estimator. In case of normal distribution, MAD 
is an unbiased estimator of σ if b = 1.4826 . For any non-normal distribution, this value changes to b = Q−1

0.75
, where Q0.75 is the 75th quantile of any underlying distribution. In case of normality, Q−1

0.75 = 1.4826 . Thus, the 
unbiased estimator of σ is

Using (8) the MAD based estimators for supersaturated and third generation PCIs can be defined as

Inter quantile range (IQR) based PCI
The population IQR for any continuous distribution is defined as

where both upper and lower quantiles are found by solving the following integrals

Using (12) the IQR based estimators for supersaturated and third generation PCIs can be defined as

Gini’s mean difference (GMD) based PCI
The Gini’s Mean Difference for a set of n ordered observations,  {x1, x2, · · · , xn} of a random variable X which 
arranged in ascending order of magnitude, is defined as

(6)
ĈNp

(
η, κ , θ̂

)
=

d − η

∣∣∣Qp2(θ̂ )−m
∣∣∣

3

√[
Qp3 (θ̂)−Qp1 (θ̂)

6

]2
+ κ

(
Qp2(θ̂ )− T

)2

(7)MAD = b ∗median{|xi −MD|}.

(8)σ̂ = 1.4826(MAD)

(9)ĈMAD(η, k) =
d − η|M −m|

3
√
σ̂ 2 + k(M − T)2

(10)ĈpmMAD =
USL − LSL

6
√
σ̂ 2 + (M − T)2

(11)ĈpmkMAD =
min(USL−M,M − LSL)

3
√
σ̂ 2 + (M − T)2

(12)IQR = Q3 − Q1

(13)

Q3∫

−∞

f (x)dx = 0.75.

(14)

Q1∫

−∞

f (x)dx = 0.25.

(15)ĈpmIQR =
USL− LSL

2(IQR + |M − T|)

(16)ĈpmkIQR =
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2(IQR + |M − T|)

(17)Gn =
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n∑
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If the random variable x follows normal distribution with mean µ and variance σ 2 , then42, suggests as a pos-
sible unbiased estimator of standard deviation (σ ) is

where c =
√
π = 1.77245 and latter on43 proved that

is an unbiased measure of variability. Using (21) GMD based estimators for supersaturated and third generation 
PCIs can be defined as

Case studies for non‑normal distribution
One of the most suitable distribution that fits the quality parameters is Weibull distribution. The two parameter 
Weibull distribution, with γ and β as shape and scale parameters, is given as

The cumulative distribution, quantile function for (24) respectively are defined as

The maximum likelihood estimator of γ and β are defined as

The IQR of Weibull process
The IQR for Weibull process defined in (24) is defined as

The Gini’s mean difference of Weibull process
By following the procedure of44, the unbiased estimator of GMD for Weibull distribution is,

To evaluate the performance of robust third generation PCIs at different skewness behaviour of Weibull dis-
tribution, shape and scale parameters are selected so that the skewness level may be categorized as low, moderate 
and high as shown in Fig. 1.

(18)Gn =
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Methods of bootstrap confidence interval
The bootstrap technique originated from45. Morove Efron45 and Hall et al.46 provide theoretical details about the 
bootstrap technique. This technique can be used to construct confidence intervals for parameters when the usual 
interval estimation approach is not feasible. BCIs are commonly applied in constructing the confidence intervals 
for various PCIs. Suppose that ς1, ς2, ..., ςn constitute a random sample with n observations taken from a distri-
bution of interest, say φ , i.e. ς1, ς2, . . . , ςn ∼ φ . Let θ̂ represent an estimator of an arbitrary PCIs say CpmorCpmk.

Then the bootstrap technique is implemented as follows:

	 i.	 A bootstrap sample with n observations (with replacement) is taken from the original sample by using 1n 
as the mass at each point, where this bootstrap sample is denoted as ς∗

1 , ς
∗
2 , . . . , ς

∗
n.

	 ii.	 From the kth bootstrap sample, for 1 ≤ k ≤ n , the kth bootstrap estimator of θ (an arbitrary PCI) can be 
denoted as θ̂∗ = θ̂

(
ς∗
1 , ς

∗
2 , . . . . . . , ς

∗
n

)
.

	 iii.	 If the number of resamples in the bootstrap technique is B, then a total of B estimates of θ̂∗ can be obtained. 
Arranging the whole collection from the smallest to the largest value constitutes an empirical bootstrap 
distribution of θ̂13. B = 1000 bootstrap resamples is considered in this article. The confidence intervals of 
θ̂ can be constructed using any of the following three bootstrap techniques.

Method 1: Standard bootstrap (SB) confidence interval
The sample average and sample standard deviation are computed as follows using the 1000 bootstrap estimates 
of θ̂∗:

Consequently, the 1 00(1− α)% SB confidence interval is obtained as

where z(1− α
2 )

 is the 
(
1− 1

α

)
th quantile of the standard normal variable.

Method 2: Percentile bootstrap (PB) confidence interval
Since there is a total of B resamples of θ̂∗ , these resamples will produce B estimates of θ̂∗ . An arrangement of 
these estimates from the smallest value to the largest value will form an empirical distribution of θ̂∗ . From the 
ordered empirical distribution of θ̂∗ , choose the 100

(
α
2

)
 and 100

(
1− α

2

)
 percentiles as the end points of the 

interval, which results in the 100(1− α)% PB confidence interval for θ̂∗ given as

For example, the 95% confidence interval with 1000 bootstrap estimates is

where θ̂∗(25) and θ̂∗(975) represent the 25th and 975th ordered collection of the bootstrap estimates of θ̂∗.

(31)θ
∗ = (1000)−1

1000∑

i=1

θ̂∗

(32)s
θ̂∗ =

√√√√ 1

999

1000∑

i=1

(
θ̂∗(i)− θ

∗
)2

(33)CISB = θ
∗ ± z(1− α

2 )
s
θ̂∗ ,

(34)CIPB =
(
θ̂∗
1000( α

2 )
, θ̂∗

1000(1− α
2 )

)

(35)CIPB =
(
θ̂∗(25), θ̂

∗
(975)

)

Figure 1.   PDF plots of Weibull distributions with different asymmetry levels along with shape and scale 
parameters.
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Method 3: Bias‑corrected percentile bootstrap (BCPB) confidence interval
This technique was established to address the potential bias that could occur as the bootstrap distribution is 
based on a sample from the complete bootstrap distribution, which may be shifted higher or lower than would 
be expected. The following steps explain the implementation of this technique:

	 i.	 By means of the (ordered) distribution of θ̂∗ , calculate

	 ii.	 By letting ρ−1 as the inverse distribution function of the standard normal variable, calculate

	 iii.	 The lower percentile and upper percentile of the ordered distribution of θ̂∗ are

and

respectively, where ρ, z( α
2 )

 and z(1− α
2 )

 are the distribution function, 
(
α
2

)
th quantile and 

(
1− α

2

)
th quan-

tile, respectively, of the standard normal distribution. Consequently, the 100(1− α)% BCPB confidence 
interval is constructed as

The average width (AW) is considered to compare the three different types of BCIs. The AW of the BCI is 
computed using a total of M trials. Next, the estimated AW is computed as

where Lwi and Uwi are the estimated lower confidence limit and upper confidence limit of the 100 (1− α)% 
confidence interval for any of the three types of BCIs based on the ith replicate.

Results and discussion
The point and interval estimation of modified PCIs based on Quantile (PC), MAD, IQR and GMD for different 
asymmetric behavior of Weibull distribution is given in Tables 1, 2, 3, 4.

Following47 target values equal to 1.33 corresponding to existing processes were considered for the point 
estimation of indices Cpm , and Cpmk . The performance of each modified PCI under different asymmetric behavior 
is evaluated by using 10,000 simulated samples of size 25, 50,75 and 100. The R-Statistical language was used 
to complete simulation study. Bias and Mean Square Error (MSE) criteria has been used for the comparison 
purpose. The simulations have been performed on the following steps

1.	 C o l l e c t  1 0 , 0 0 0  s amp l e s  o f  s i z e  2 5  f rom  We i bu l l  pro c e s s  w i t h  p ar am e t e r s [(
Shape, Scale

)
= (2.8, 3.5), (1.80, 2.00), (1.00, 1.30)

]
.

2.	 Compute Ĉpm & Ĉpmk based on the measures of MAD (Median Absolute Deviation), IQR (Interquartile 
Range) and GMD (Ginni’ s Mean Differnce).

(36)l0 = Pr
(
θ̂∗ ≤ θ̂

)

(37)q0 = ρ−1(l0)

(38)PL = ρ

(
2q0 + z( α

2 )

)

(39)PU = ρ

(
2q0 + z(1− α

2 )

)

(40)CIBCPB =
(
θ̂∗1000(PL), θ̂

∗
1000(PU )

)

(41)AW =
∑M

i=1(Upi − Lwi )

M

Table 1.   The statistical indicators of index Cpm and Cpmk for different asymmetric level of Weibull process 
based on PC-method.

n

Cpm Cpmk

Low Moderate High Low Moderate High

Mean (SD)

25 1.5237 (0.2053) 1.51261 (0.2657) 1.3263 (0.3990) 1.4424 (0.2110) 1.4196 (0.2546) 1.1932 (0.3444)

50 1.4957 (0.1375) 1.4721 (0.1806) 1.2574 (0.2674) 1.4419 (0.1418) 1.3988 (0.1750) 1.1368 (0.2351)

75 1.4862 (0.1114) 1.4611 (0.1474) 1.2330 (0.2126) 1.4434 (0.1153) 1.3949 (0.1439) 1.1160 (0.1877)

100 1.4829 (0.0956) 1.4552 (0.1226) 1.2179 (0.1801) 1.4452 (0.0989) 1.3927 (0.1246) 1.1033 (0.1599)

MSE (bias)

25 0.0375 (0.1601) 0.0334 (0.1790) 0.0000 (− 0.0028) 0.0126 (0.0929) 0.0080 (0.0879) 0.0187 (− 0.1052)

50 0.0275 (0.1369) 0.0202 (0.1393) 0.0053 (− 0.0558) 0.0125 (0.0925) 0.0047 (0.0674) 0.0373 (− 0.1486)

75 0.0244 (0.1291) 0.0172 (0.1286) 0.0094 (− 0.0764) 0.0129 (0.0937) 0.0042 (0.0363) 0.0458 (− 0.1646)

100 0.0234 (0.1264) 0.0157 (0.1228) 0.0126 (− 0.0862) 0.0133 (0.0952) 0.0039 (0.0615) 0.0514 (− 0.1744)
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3.	 Calculate average and standard deviation of the computed PCIs.
4.	 Repeat the entire process for sample size of 50, 75 and 100.

Results for PC based PCIs
Simulation results of quantile approach as suggested by23 are presented in Table 1 for Weibull distribution. These 
tables depict the simulated mean, MSE, standard deviation and bias in parenthesis, bias and mean square error 
(MSE) corresponding to the target value equal to 1.33 for both indices for low, moderate and high asymmetric 
behavior of Weibull distribution.

In the case of index Cpm, the PC-method gives good results under low and moderate asymmetric behavior, 
however, underestimates the target value in case of high asymmetry. As the sample size increases, the estimated 
values come close to the target values and ultimately produce less bias and mean square error. For the index Cpmk , 
the PC-method is more accurate as compared to other three indices and gives lowest bias and MSE under low 
and moderate asymmetric conditions for the sample (n = 100) . For the three asymmetric levels of the Weibull 
distribution, following conclusions can be drawn; the PC-method gives a lower bias and MSE for indices Cpmk 
under lower and moderate asymmetric behaviors when the target value is 1.33.

Table 2.   The statistical indicators of index Cpm and Cpmk using selected asymmetric level of Weibull process 
based on MAD-method.

Indicator n

Cpm Cpmk

Low Moderate High Low Moderate High

Mean (SD)

25 1.4353 (0.4066) 1.4930 (0.4093) 1.8529 (0.4674) 1.3748 (0.4003) 1.4184 (0.3986) 1.7126 (0.4384)

50 1.3562 (0.2616) 1.4037 (0.2637) 1.7759 (0.3218) 1.3147 (0.2587) 1.3451 (0.2562) 1.6412 (0.2952)

75 1.3329 (0.2091) 1.3739 (0.2103) 1.7647 (0.2629) 1.2988 (0.2068) 1.3201 (0.2040) 1.6301 (0.2396)

100 1.3189 (0.1768) 1.3621 (0.1768) 1.7491 (0.2302) 1.2893 (0.2068) 1.3105 (0.1710) 1.6159 (0.2083)

MSE (bias)

25 0.0111 (0.0870) 0.0266 (0.1598) 0.2735 (0.4022) 0.0020 (0.0370) 0.0078 (0.0867) 0.1465 (0.2943)

50 0.0008 (0.0217) 0.0054 (0.0722) 0.1988 (0.3430) 0.0003 (− 0.0126) 0.0002 (0.0148) 0.0969 (0.2394)

75 0.0000 (0.0024) 0.0020 (0.0431) 0.1889 (0.3344) 0.0010 (− 0.0258) 0.0001 (− 0.0097) 0.0901 (0.2309)

100 0.0000 (− 0.0091) 0.0010 (0.0315) 0.1756 (0.3224) 0.0017 (− 0.0336) 0.0004 (− 0.0191) 0.0817 (0.2199)

Table 3.   The statistical indicators of index Cpm and Cpmk using selected asymmetric level of Weibull process 
based on IQR-method.

Indicator n

Cpm Cpmk

Low Moderate High Low Moderate High

Mean (SD)

25 2.9605 (0.8281) 2.9599 (0.8038) 3.2494 (0.8607) 2.8406 (0.8349) 2.8171 (0.8082) 3.0078 (0.8275)

50 2.8289 (0.5401) 2.8060 (0.5248) 3.0483 (0.5607) 2.7457 (0.5495) 2.6921 (0.5353) 2.8206 (0.5351)

75 2.7869 (0.4344) 2.7499 (0.4238) 2.9739 (0.4449) 2.7176 (0.4438) 2.6451 (0.4351) 2.7504 (0.4229)

100 2.7843 (0.3787) 2.7281 (0.3561) 2.9410 (0.3812) 2.7236 (0.3884) 2.6285 (0.3675) 2.7179 (0.3606)

MSE (bias)

25 2.6586 (1.3475) 2.6566 (1.5979) 3.6840 (1.4764) 2.2820 (1.2485) 2.2115 (1.4580) 2.8150 (1.2906)

50 2.2466 (1.2387) 2.1786 (1.4471) 2.9527 (1.3218) 2.0043 (1.1700) 1.8553 (1.3354) 2.2220 (1.1466)

75 2.1224 (1.2040) 2.0160 (1.3920) 2.7025 (1.2646) 1.9421 (1.1517) 1.7295 (1.2893) 2.0175 (1.0926)

100 2.1149 (1.2019) 1.9546 (1.3707) 2.5954 (1.2392) 1.9254 (1.1468) 1.6862 (1.2731) 1.9263 (1.0676)

Table 4.   The statistical indicators of index Cpm and Cpmk using selected asymmetric level of Weibull process 
based on GMD-method.

Indicator n

Cpm Cpmk

Low Moderate High Low Moderate High

Mean (SD)

25 1.8424 (0.2821) 1.5221 (0.2492) 2.1500 (0.5351) 1.7667 (0.2945) 1.4483 (0.2597) 2.0039 (0.5637)

50 1.9145 (0.2048) 1.5651 (0.1802) 2.1877 (0.3918) 1.8567 (0.2135) 1.5006 (0.1920) 2.0334 (0.4186)

75 1.9388 (0.1664) 1.5838 (0.1460) 2.1973 (0.3316) 1.8896 (0.1748) 1.5226 (0.1580) 2.0380 (0.3544)

100 1.9539 (0.1463) 1.5901 (0.1266) 2.1966 (0.2833) 1.9106 (0.1525) 1.5307 (0.1381) 2.0348 (0.3023)

MSE (bias)

25 0.2626 (0.4235) 0.0369 (0.1884) 0.6724 (0.6307) 0.1907 (0.3609) 0.0140 (0.1160) 0.4542 (0.5184)

50 0.3416 (0.4830) 0.0553 (0.2305) 0.7358 (0.6598) 0.2774 (0.4353) 0.0291 (0.1673) 0.4948 (0.5411)

75 0.3707 (0.5032) 0.0644 (0.2488) 0.7522 (0.6671) 0.3131 (0.4625) 0.0371 (0.1883) 0.5013 (0.5446)

100 0.3893 (0.5156) 0.0677 (0.2550) 0.7509 (0.6666) 0.3371 (0.4798) 0.0403 (0.1968) 0.4967 (0.5421
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Results of MAD base PCIs
Table 2 summarize the results of MAD- based estimators of both PCIs i.e., Cpm and Cpmk . Unlike the PC-method, 
MAD-based estimators of two indices showed a different pattern for Weibull process. Summing up the overall 
results, it can be concluded that performance of MAD based estimators is consistently better than that of PC-
based estimator from low to high asymmetry.

For index Cpm , except for high asymmetry, the MAD-based estimator is closer to the target value and less 
biased for large samples. The MAD-based estimator of index Cpmk showed good performance for small sample 
sizes only. It showed accurate results under low and moderate asymmetric condition whereas for the new process 
it deals better with high asymmetry. In both cases, it slightly underestimates the target values for a large sample.

Results for IQR based PCIs
The simulation results of IQR based PCIs Cpm , and Cpmk for Weibull distribution under low, moderate and high 
asymmetric levels are reported in Table 3. The simulation results of both indices using IQR-method for all asym-
metric levels of three distributions show the overestimation using all sample sizes. So, these estimators do not 
consider as good estimators. In all cases, large bias and MSE for all sample sizes is observed. The situation tends 
to worse estimation for all indices as asymmetry level turns from low to high level. Moreover, the findings of the 
simulation results indicate that IQR-method could not be a useful and attractive method for practical point of 
view due to large bias and MSE.

Results for GMD based PCIs
In this section, the performance of both PCIs, Cpm and Cpmk based on GMD-method has been assessed and 
compared under low, moderate and high asymmetric condition of Weibull distribution. The results are presented 
in Table 4. The results indicate that GMD-based PCIs perform better under the moderate asymmetric condition 
for the index Cpm for large samples. The bias and MSE reduce as sample size increases. In case of index Cpmk , the 
GMD-based estimator slightly overestimates the target value of 1.67 for small samples under low asymmetry, 
but bias increases as sample size increases. For moderate asymmetry this method underestimates, and for high 
asymmetry, it again overestimates the target value of new processes. Based on the above observations, GMD-
based estimators of indices Cpm and Cpmk have the following results

1.	 The GMD-method performed well for new processes under moderate conditions for large samples sizes for 
index Cpm.

2.	 In case of index Cpmk , this method is good for small samples under low asymmetric conditions.
3.	 As compared to other methods, in case of GMD-method, the mean estimated values increases as sample 

size increases. However, for the efficient process in which there is a very low amount of product is outside 
the specification limits, GMD is recommended under high asymmetry.

Bootstrap confidence intervals for Cpm and cpmk

In this section, four bootstrap confidence intervals, namely standard, percentile, bias-corrected percentile and 
percentile-t bootstrap confidence intervals are discussed for indices Cpm and Cpmk using PC, MAD and GMD 
method. For the simulation, Weibull process are used under low, moderate and high asymmetric conditions for 
sample sizes n = 25, 50, 75 and 100 . The results are presented in Tables 5, 6, 7, 8, 9, 10 which indicate true index 
value, 95% confidence limits, and coverage probability of each index under low, moderate and high asymmetric 
conditions for all sample sizes. These results are based on 1000 replications and different values of USL and LSL 
for the three types of processes which are given in Table 2 above.

Tables 5 to 6, present the 95% BCIs for the Weibull process using PC-method, while the coverage probability 
of each method is reported below each interval. Similarly, Tables 7 to 8 presents the 95% BCIs for Weibull pro-
cess along with coverage probabilities using the MAD method. The results presented in all these tables indicate 
that the average width of all confidence intervals, which is the difference between lower and upper specification 
limit, reduces when the sample size increases in all cases under study. Moreover, the asymmetric levels effect the 
average width, where the average width increases as asymmetry increases.

BCIs for Weibull distribution
From the results of Weibull distribution, followings conclusions have been drawn.

	 i.	 Among the PC-based estimators of both indices Cpm and Cpmk , BCBP method explicated least average 
width, under low, moderate and high asymmetric behavior of Weibull process.

	 ii.	 Based on the average with, the four bootstrap methods are ranked as BCPB < PB < PTB < SB.
	 iii.	 The coverage probability is directly proportional to sample size and reached to the nominal level 0.95 for 

large sample size in the case of SB and BCPB method. However, other two methods did not reach to a 
nominal level, particularly for small samples.

	 iv.	 In the case of the MAD method, both BCPB and PB CIs showed less average width as compared to SB and 
PTB. Based on the average with, the four bootstrap methods are ranked as BCPB < PB < PTB < SB.

	 v.	 Among BCPB and PB CIs, former showed lower coverage probability than later. Consequently, PB CI 
performed better for MAD-method.

	 vi.	 In both methods, when the transition is made from low to high asymmetric conditions the average width 
approximately increased by two times. It means under high asymmetry; the width of CI is larger as com-
pared to low and moderate asymmetry.
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In general, BCPB CI is recommended for all asymmetric condition when PC-method is used. On the other 
hand, PB CI is recommended for MAD-method under low, moderate and high asymmetric behavior of Weibull 
process. The recommendation is made on the basis of low average width and high coverage probability among 
four BCIs.

Application of proposed methodology using practical data
A data sets was analysed using GMD, MAD and PC based PCIs. The results are appended in the following section.

Data: strength measures in GPA for single fibres data
In this section, a real-life example is presented to demonstrate the application of the MAD, PC and GMD- meth-
ods for the indices Cpm , and Cpmk . The data which represents the strength measures in GPA for single fibres and 
impregnated 1000-carbon fibre tows. Single fibres were tested under tension at a gauge length of 20 mm with 
sample size n = 69  and are given in Table 1148–50.

To select the appropriate distribution, the different goodness of fit statistics51 were used and reported in 
Table 12 along with summary statistics of the data. Based on AIC and BIC values, it is confirmed that two- param-
eter Weibull distribution is suitable for this data as compared to other distributions. By fitting two- parameter 
Weibull distribution, the maximum likelihood estimator for shape and scale parameters are γ̂ = 5.504809, β̂ = 
2.650830, respectively.

To evaluate the adequacy of the data K-S goodness of fit test is used. The K-S distance value for this data is 
0.056 with p-value 0.9816, which also in favor of Weibull distribution. The lower and upper specification limits 
used for the calculations of PCIs were (0.3989, 4.4960). The estimates of both indices using three methods and 
their corresponding bootstrap CIs are reported in Table 13. Likewise, simulation study, the performance of MAD 
and GMD method are more accurate than PC-method. Both indices Cpk , Cpmk showed better performance and 
estimated value is close to existing process target values. Based on the average width of CIs, the four bootstrap 
methods are ranked as BCPB<PB<PTB< SB . Overall, MAD and GMD, based estimator showed the wider 
spread of CIs.

Table 5.   The 95% bootstrap confidence intervals with coverage probabilities for Weibull distribution using PC 
methods for index Cpm.

n Cpm SB PB BCPB PTB

Low asymmetry

 25 1.4698
(1.1651–1.9902) (1.2153–2.0443) (1.1738–1.9472) (1.2131–2.0440)

0.9300 0.8870 0.9230 0.8880

 50 1.4698
(1.4106–2.0276) (1.4485–2.0576) (1.4189–1.9837) (1.4482–2.0576)

0.9500 0.9210 0.9490 0.9220

 75 1.4698
(1.2606–1.6766) (1.2697–1.6879) (1.2604–1.6779) (1.2690–1.6878)

0.9550 0.9350 0.9470 0.9380

 100 1.4698
(1.3014–1.6658) (1.3164–1.6703) (1.3088–1.6658) (1.3113–1.6703)

0.9550 0.9450 0.9510 0.9450

Moderate asymmetry

 25 1.4363
(1.0654–2.1746) (1.1521–2.2337) (1.0559–2.0786) (1.1427–2.2336)

0.9210 0.8770 0.9240 0.8810

 50 1.4363
(1.3643–2.1552) (1.4059–2.1740) (1.3731–2.0997) (1.4059–2.1737)

0.9470 0.9180 0.9450 0.9180

 75 1.4363
(1.1620–1.7091) (1.1747–1.7261) (1.1548–1.7024) (1.1741–1.7261)

0.9510 0.9360 0.9490 0.9370

 100 1.4363
(1.2166–1.6956) (1.2312–1.7033) (1.2251–1.6938) (1.2298–1.7032)

0.950 0.9450 0.9500 0.9470

High asymmetry

 25 1.1859
(0.6305–2.4033) (0.8222–2.5510) (0.6989–2.2146) (0.8096–2.5507)

0.9260 0.8650 0.9170 0.8720

 50 1.1859
(1.0577–2.3025) (1.1503–2.3454) (1.0957–2.2058) (1.1479–2.3449)

0.9480 0.9140 0.9430 0.9180

 75 1.1859
(0.8015–1.5847) (0.8376–1.6159) (0.8135–1.5858) (0.8366–1.6159)

0.9560 0.9330 0.9500 0.9360

 100 1.1859
(0.8765–1.5654) (0.9122–1.5944) (0.9024–1.5711) (0.9101–1.5943)

0.9520 0.9400 0.9480 0.9450
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Summary and conclusion
Statistical Process Control (SPC) is an attractive statistical tool and commonly used to monitor the processes in 
many industries now a days. Among SPC, PCIs have become an attractive and important tool to measure the 
quality of any product within specified limits. It seems difficult to choose the proper PCI that performs accurately 
in non-normal distribution while process variability and mean are being affected by non-normality. Moreover, 
any PCI which does not provide high target value (> 1.33) even then its importance cannot be neglected. So, the 
conditions under which PCI performs poorly it opens a new research horizon for the researchers.

The pragmatic attempt has been conducted to address the non-normality issues in PCIs using quantile (PC), 
MAD, IQR and GMD methods under asymmetric conditions of Weibull distribution. Moreover, the point and 
interval estimation of modified PCIs were assessed using simulation studies. The point estimation of quantile-
based PCIs using PC-method has been observed an effective approach under low and moderate asymmetric 
conditions of Weibull process. PC-based estimator tends to be an under-estimation. However, this trend increases 
as sample size increases. Results not only indicate that PC-based estimator produces large bias but also explain 
under and overestimation of target values. Moreover, the PC-based estimator is influenced by high asymmetry 
and explains the worst estimation for all three distributions.

The simulation studies reveal that the results of MAD-method can be successfully used and has a great poten-
tial to deal with non-normality for Weibull process under low and moderate asymmetry. Overall, MAD-based 
estimators tend to produce very accurate results under low and moderate asymmetric conditions. In the case of 
high asymmetry, MAD-estimator of index Cpm has shown good performance only for a sample of size less than 50.

The simulation studies for PCIs show that IQR-method gives overestimation problem for selected asymmetric 
levels of Weibull distribution. Moreover, a large bias and MSE has been observed for all sample sizes. The situa-
tion became worse when asymmetry level turned from low to high. Therefor, the IQR based estimators were not 
considered as good estimators for dealing non-normality.

Table 6.   The 95% bootstrap confidence intervals with coverage probabilities for weibull distribution using PC 
methods for index Cpmk.

n Cpmk SB PB BCPB PTB

Low asymmetry

 25 1.4554
(0.9733–1.8714) (1.0207–1.9094) (1.0054–1.8893) (1.0173–1.9090)

0.9660 0.9440 0.9390 0.9450

 50 1.4554
(1.3495–1.9846) (1.3875–1.9991) (1.4141–2.0399) (1.3861–1.9990)

0.9670 0.9640 0.9580 0.9650

 75 1.4554
(1.2105–1.6442) (1.2282–1.6597) (1.2722–1.7527) (1.2256–1.6596)

0.9720 0.9720 0.9700 0.9720

 100 1.4554
(1.2560–1.6359) (1.2710–1.6420) (1.2949–1.6728) (1.2636–1.6420)

0.9610 0.9590 0.9560 0.9590

Moderate asymmetry

 25 1.3793
(0.9006–1.9330) (0.9649–1.9944) (0.9065–1.9005) (0.9642–1.9944)

0.9400 0.9180 0.9250 0.9180

 50 1.3793
(1.2952–2.0763) (1.3380–2.0837) (1.3065–2.0313) (1.3354–2.0837)

0.9550 0.9450 0.9390 0.9470

 75 1.3793
(1.1087–1.6442) (1.1191–1.6589) (1.1196–1.6589) (1.1148–1.6589

0.9640 0.9550 0.9580 0.9550

 100 1.3793
(1.1533–1.6284) (1.1665–1.6435) (1.1662–1.6431) (1.1656–1.6435)

0.9580 0.9500 0.9440 0.9510

High asymmetry

 25 1.0751
(0.5711–1.9452) (0.7001–2.0426) (0.6175–1.8186) (0.6993–2.0426)

0.9240 0.8810 0.9170 0.8820

 50 1.0751
(0.9739–2.0683) (1.0468–2.1030) (0.9806–1.9341) (1.0401–2.1027)

0.9460 0.9140 0.9380 0.9180

 75 1.0751
(0.7394–1.4334) (0.7655–1.4683) (0.7412–1.4328) (0.7645–1.4682)

0.9560 0.9360 0.9530 0.9390

 100 1.0751
(0.7961–1.4105) (0.8192–1.4461) (0.7943–1.4058) (0.8194–1.4461)

0.9490 0.9380 0.9490 0.9380
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Finally, we demonstrated the application of GMD as a measure of variability in PCIs Cpm and Cpmk for Weibull 
distribution under low, moderate and high asymmetric conditions. The results indicate that GMD-method works 
well to some extent under high asymmetry but to get a better estimation of PCIs more research is required.

Beside point estimation, interval estimation of all PCIs was constructed. Moreover, four types of bootstrap 
confidence intervals i.e., SB, PB, BCPB and PTB and their coverage probabilities using simulation studies were 
calculated. The selection of the appropriate confidence interval for each method has been made by low average 
width and higher coverage probability.

The simulations illustrated that BCPB CIs produce the smallest average widths and highest coverage prob-
abilities under all asymmetric levels of Weibull distribution for quantile-based (PC) indices Cpm , and Cpmk . On 
the other hand, the PB and PTB CIs are recommended for MAD-based indices. Both asymmetric behavior and 
sample size effect the width and coverage probabilities of confidence intervals. Moreover, coverage probabilities 
approach to nominal levels with the increase of sample size. The BCPB and PB CIs provides higher coverage 
probability with a smaller width in case of GMD-based estimators.

Recommendations
By conducting a comprehensive study, we concluded the following two recommendations.

1.	 The performance of both modified PCIs is highly effected by asymmetric behavior of the distributions. 
However, the accurate performance of a particular method for one distribution does not necessitate accurate 
results for another distribution having different tail behavior.

2.	 To deal with high asymmetry, more care is needed both for point and interval estimation. In general, in the 
case of point estimation, quantile-based PC-method leads towards under-estimation, while robust methods 
like MAD, IQR, and GMD leads towards over-estimation. For interval estimation, a wider spread of CIs was 
observed under high asymmetry as compared to low and moderate asymmetry.

Table 7.   The 95% bootstrap confidence intervals with coverage probabilities Weibull distribution using MAD 
methods for index Cpm.

n Cpm SB PB BCPB PTB

Low asymmetry

 25 1.6850
(0.7549–2.7134) (1.0117–2.9333) (1.0776–3.2092) (1.0024–2.9330)

0.9950 0.9970 0.6410 0.9970

 50 1.3511
(0.9347–1.9961) (1.0374–2.1091) (1.0981–2.2579) (1.0359–2.1089)

0.9990 0.9990 0.7290 0.9990

 75 1.3106
(0.8629–1.5873) (0.9056–1.6296) (1.3334–1.8542) (0.9056–1.6292)

0.9990 0.9990 0.7010 0.9990

 100 1.3890
(1.0642–1.8442) (1.1250–1.9052) (1.3114–2.2145) (1.1241–1.9051)

0.9990 0.9990 0.7170 0.9990

Moderate asymmetry

 25 1.3241
(0.8180–2.7150) (1.0610–2.9917) (1.2165–3.5732) (1.0459–2.9913)

0.9990 0.9890 0.6780 0.9890

 50 1.5686
(0.9721–2.0213) (1.0816–2.1281) (1.0837–2.1358) (1.0751–2.1281)

0.9970 0.9990 0.6580 0.9990

 75 1.2530
(0.8630–1.6250) (0.9132–1.6991) (1.2205–1.9495) (0.9124–1.6991)

0.9980 0.9890 0.7050 0.9900

 100 1.4080
(1.1123–1.8855) (1.1807–1.9295) (1.3373–2.2095) (1.1802–1.9292)

0.9990 0.9990 0.7040 0.9990

High asymmetry

 25 1.6086
(1.1658–3.0107) (1.3042–3.1582) (1.5482–3.9350) (1.3018–3.1572)

0.9970 0.9860 0.6620 0.9860

 50 2.3319
(1.2383–2.4590) (1.2835–2.4720) (1.2174–2.3975) (1.2832–2.4717)

0.7080 0.8010 0.5240 0.8010

 75 1.6320
(1.0152–2.1191) (1.0803–2.1536) (1.3098–2.5419) (1.0782–2.1535)

0.9960 0.9960 0.6820 0.9960

 100 1.7448
(1.4418–2.3105) (1.4757–2.3331) (1.6590–2.5127) (1.4718–2.3332)

0.9990 0.9990 0.6930 0.9990
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Table 8.   The 95% bootstrap confidence intervals with coverage probabilities Weibull distribution using MAD 
methods for index Cpmk.

n Cpmk SB PB BCPB PTB

Low asymmetry

 25 1.2356
(0.7060–2.6356) (0.9548–2.8347) (1.0699–3.4150) (0.9528–2.8341)

0.9990 0.9880 0.7170 0.9890

 50 1.3382
(0.9047–1.9467) (1.0083–2.0613) (1.1229–2.3601) (0.9994–2.0610)

0.9990 0.9990 0.7400 0.9990

 75 1.2981
(0.8120–1.5375) (0.8517–1.5681) (1.2662–1.7983) (0.8514–1.5679)

0.9990 0.9990 0.7200 0.9990

 100 1.3758
(1.0311–1.8081) (1.0801–1.8654) (1.3041–2.1524) (1.0782–1.8653)

0.9950 0.9990 0.7290 0.9990

Moderate asymmetry

 25 1.2764
(0.7482–2.6184) (0.9888–2.9091) (1.1589–3.4544) (0.9868–2.9088)

0.9990 0.9910 0.7000 0.9910

 50 1.5121
(0.9354–1.9541) (1.0337–2.0592) (1.0449–2.1236) (1.0269–2.0588)

0.9890 0.9960 0.6710 0.9960

 75 1.2079
(0.8283–1.5918) (0.8723–1.6497) (1.2253–1.8861) (0.8721–1.6496)

0.9990 0.9930 0.7150 0.9930

 100 1.3573
(1.0564–1.8088) (1.1181–1.8412) (1.2883–2.1193) (1.1168–1.8412)

0.9990 0.9990 0.7180 0.9990

High asymmetry

 25 1.4849
(1.0335–2.8191) (1.2165–3.0159) (1.4586–3.8360) (1.2129–3.0157)

0.9990 0.9880 0.6650 0.9890

 50 2.1526
(1.1548–2.2882) (1.2131–2.3258) (1.3118–2.2236) (1.2103–2.3257)

0.6590 0.7940 0.5320 0.7940

 75 1.5065
(0.9831–2.0209) (1.0445–2.0683) (1.2746–2.4786) (1.0434–2.0681)

0.9990 0.9990 0.6680 0.9990

 100 1.6106
(1.3212–2.1212) (1.3559–2.1524) (1.5212–2.3450) (1.3526–2.1524)

0.9990 0.9990 0.6820 0.9990
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Table 9.   The 95% bootstrap confidence intervals with coverage probabilities for Weibull distribution using 
GMD methods for index Cpm.

n Cpm SB PB BCPB PTB

Low asymmetry

 25 1.9943
(1.1839–2.1826) (1.2355–2.2286) (1.6804–2.5488) (1.2350–2.2284)

0.7800 0.7940 0.8630 0.7940

 50 1.9943
(1.2926–1.9813) (1.3112–1.9795) (1.4245–2.0751) (1.2999–1.9795)

0.8620 0.8690 0.9110 0.8690

 75 1.9943
(1.6411–2.2868) (1.6496–2.3191) (1.7458–2.4024) (1.6493–2.3191)

0.9040 0.9100 0.9290 0.9100

 100 1.9943
(1.6762–2.2282) (1.6811–2.2247) (1.7463–2.3232) (1.6799–2.2245)

0.9110 0.9150 0.9180 0.9150

Moderate asymmetry

 25 1.6168
(0.9099–1.7562) (0.9510–1.7821) (1.2663–2.1426) (0.9478–1.7820)

0.8090 0.8190 0.9120 0.8190

 50 1.6168
(1.0442–1.6258) (1.0494–1.6232) (1.1305–1.6979) (1.0469–1.6230)

0.8880 0.8900 0.9400 0.8900

 75 1.6168
(1.3248–1.9010) (1.3365–1.9099) (1.3803–1.9487) (1.3363–1.9097)

0.9170 0.9230 0.9550 0.9230

 100 1.6168
(1.3494–1.8315) (1.3570–1.8418) (1.3880–1.8808) (1.3558–1.8418)

0.9150 0.9220 0.9580 0.9220

High asymmetry

 25 2.2016
(0.8183–2.3964) (0.9231–2.5203) (1.4090–3.3803) (0.9134–2.5201)

0.8840 0.9030 0.9680 0.9030

 50 2.2016
(1.3227–2.4681) (1.3586–2.5004) (1.4367–2.6364) (1.3435–2.5001)

0.9280 0.9390 0.9780 0.9390

 75 2.2016
(1.6003–2.9287) (1.6822–2.9891) (1.6710–2.9833) (1.6728–2.9890)

0.9350 0.9440 0.9960 0.9450

 100 2.2016
(1.6483–2.7022) (1.7111–2.7622) (1.7396–2.8331) (1.7094–2.7622)

0.9220 0.9330 0.9940 0.9350
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Table 10.   The 95% bootstrap confidence intervals with coverage probabilities for Weibull distribution using 
GMD methods for index Cpmk.

n Cpmk SB PB BCPB PTB

Low asymmetry

 25 1.9752
(1.0094–2.1142) (1.0459–2.1601) (1.2499–2.4180) (1.0439–2.1600)

0.7330 0.7600 0.8810 0.7600

 50 1.9752
(1.2475–1.9406) (1.2551–1.9416) (1.4418–2.0930) (1.2538–1.9416)

0.8370 0.8510 0.9190 0.8510

 75 1.9752
(1.5711–2.2543) (1.5740–2.2701) (1.7515–2.4090) (1.5708–2.2700)

0.8830 0.8910 0.9430 0.8910

 100 1.9752
(1.6213–2.1952) (1.6181–2.1903) (1.7194–2.3028) (1.6173–2.1903)

0.8830 0.8880 0.9370 0.8880

Moderate asymmetry

 25 1.5586
(0.7536–1.6695) (0.8098–1.7033) (0.9204–1.9741) (0.8080–1.7031)

0.8020 0.8180 0.9020 0.8180

 50 1.5586
(0.9916–1.5839) (0.9972–1.6045) (1.0865–1.6691) (0.9855–1.6045)

0.8880 0.8950 0.9110 0.8950

 75 1.5586
(1.2433–1.8697) (1.2482–1.8664) (1.3259–1.9342) (1.2466–1.8663)

0.9270 0.9280 0.9330 0.9280

 100 1.5586
(1.2587–1.7949) (1.2729–1.8054) (1.2917–1.8377) (1.2716–1.8054)

0.9180 0.9250 0.9280 0.9250

High asymmetry

 25 2.0322
(0.6327–2.2261) (0.7685–2.3532) (0.8566–2.7143) (0.7611–2.3523)

0.8940 0.9160 0.8710 0.9160

 50 2.0322
(1.1603–2.3715) (1.2321–2.4308) (1.3061–2.6090) (1.2300–2.4308)

0.9290 0.9440 0.9130 0.9450

 75 2.0322
(1.3962–2.8201) (1.4870–2.9124) (1.5264–2.9711) (1.4781–2.9122)

0.9280 0.9440 0.9380 0.9460

 100 2.0322
(1.4502–2.5718) (1.5251–2.6254) (1.5293–2.6289) (1.5195–2.6253)

0.9270 0.9390 0.9410 0.9390
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