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Smart city construction and urban 
green development: empirical 
evidence from China
Youzhi Zhang 1, Yinke Liu 1*, Jing Zhao 2 & Jingyi Wang 1

Smart city construction represents an advanced stage of China’s urbanisation process and plays 
an important role in promoting green economic growth and sustainable development. Propensity 
score matching is combined with the difference-in-difference method to analyse the data of 221 
prefecture-level cities in China from 2006 to 2020 to assess the impact of smart city construction on 
urban green development. We found that smart city construction can significantly contribute to urban 
green development; this contribution has long-term benefits. Further analysis shows that smart 
city construction promotes urban green development via industrial structure and green technology 
innovation and that smart city construction has a significant positive spatial spillover effect, i.e., 
it promotes urban green development locally while significantly contributing to urban green 
development in neighbouring regions.

Since the reform and opening up, the quality of China’s urban development has rapidly improved, but the vari-
ous urban diseases that accompany this development cannot be ignored. Furthermore, while environmental 
pollution has become an increasingly serious problem, urban green development has been severely constrained. 
By the end of 2022, China’s urbanisation level, driven by large-scale industrialisation, reached 65.22%, creating 
rapid economic growth while causing the urban ecology to severely deteriorate and environmental problems to 
increase; this traditional, unsophisticated urban development model needs to be changed1. The current trend for 
innovative urban development models addresses the deteriorating ecological environment. As an advanced stage 
of China’s new urbanisation, smart city construction is characterised by innovation-driven and environmentally 
sustainable development. "Smart" refers to a new urban development mode featuring intelligence, digitalisation 
and informatisation. The core of smart cities involves using big data, the Internet of Things, cloud computing 
and other information technologies to promote city development via digitalisation and intelligence and improve 
city operation efficiency2. To define smart cities, Yigitcanlar et al. state that smart cities represent a new concept 
in which technological progress and urban development are integrated; furthermore, they act as advanced sys-
tems that are socially driven, technologically driven, and policy driven3. Lom et al. categorise the concept of the 
smart city as an information-physical system, one of whose main objectives is to enable collaboration between 
sectoral systems and the systems to which they belong, thus improving the quality of urban life, saving energy 
and reducing carbon emissions4.

Literature review
Since the US company IBM put forwards the idea of a “Smart Earth” in 2008, countries worldwide have been 
gradually promoting the construction of intelligent cities. As early as 2012, China’s Ministry of Housing and 
Urban‒Rural Development officially began piloting smart cities and gradually expanded the scope of the pilot in 
2013 and 20145–7. Most of the current academic research on smart city construction focuses on the concept and 
implementation of smart city construction; in assessing the effectiveness of smart city construction, economic 
benefits are mainly determined from the input‒output perspective, with few studies focusing on the concur-
rent social and ecological benefits. We executed an empirical investigation regarding the impact of smart city 
construction on urban green development and its mechanism of action. Therefore, the relevant studies on smart 
cities are sorted out and grouped into three categories: economic effect, innovation effect and environmental 
effect. In terms of economic effects, some studies have shown that smart city construction can significantly 
improve the quality of urban development, adjust the industrial structure and promote sustainable economic 
development8–10. Jo et al. studied the impact of smart city construction on the industrial ecosystem in Korea 
and found that smart industries are becoming pillar industries that create new value chains; furthermore, smart 
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city construction is energising smart industries and promoting the transformation and upgrading of industrial 
structures11. Liu et al. noted that smart city construction plays a significant role in promoting high-quality 
economic development in China12. Furthermore, Zhao et al. empirically tested the mechanism and long-term 
dynamic effects of smart city construction on China’s high-quality economic development, thus showing that 
the impact of smart city construction on China’s high-quality economic development has increased over time13. 
In terms of innovation effects, Caragliu et al. used European patent data as a measurement of the level of tech-
nological innovation and found that smart city construction accelerates urban innovation; this effect is more 
pronounced in areas of high-tech patents14. Chu et al. empirically tested the relationship between smart city 
construction and urban innovativeness in China and pointed out that smart city construction mainly enhances 
urban innovativeness through smart government15. For the environmental effect, with the increasingly severe 
problem of "big city disease", the connotation of smart cities has gradually evolved into a new urban develop-
ment mode that emphasises green and sustainable development. Liu et al. noted that smart city construction can 
significantly contribute to green economic growth and is regionally heterogeneous16. Shen et al. and Wu et al. 
treated smart city construction as a quasinatural experiment, and their empirical results showed that smart city 
construction contributed significantly to environmental pollution17,18.

At present, most of the research on green development in academia focuses on horizontal measurement 
and impact factors. The first method of measuring green development is to establish an input‒output indicator 
system and use the data envelope analysis (DEA) method to measure total factor productivity to characterise 
urban green development19–21. The second is to adopt a comprehensive indicator evaluation system, using the 
entropy method to measure comprehensive indicators to characterise urban green development22–24. In terms of 
the analysis of influencing factors, Qiu et al. showed that low-carbon city pilot policies are important for achieving 
environmentally friendly economic transformation and are conducive to urban green development25. Zhang used 
a spatial econometric approach to analyse the impact of technological innovation on urban green development 
and found that green technological innovation that enhances urban eco-efficiency is more conducive to urban 
green development in China’s eastern region; furthermore, efforts to promote this kind of development were 
received favourably at the administrative level of the city26. Current academic research regarding the impact of 
smart city construction on urban green development is relatively scarce, but in-depth promotion of green smart 
city construction is an inevitable trend for future urban construction and development27. Du et al. measured the 
level of urban green development with the GML index and used the panel data of 172 cities in China from 2007 
to 2017 to empirically analyse the impact of smart city construction on urban green development efficiency; 
their results showed that smart city construction has a positive effect on urban green development efficiency28. 
Zhang et al. used the SBM-DEA model to measure the efficiency of urban green innovation and analysed the 
impact of constructing smart cities; they obtained similar conclusions29.

In view of the abovementioned information, this paper makes the following marginal contributions. First, 
using panel data of 221 prefecture-level cities from 2006 to 2020, the study scope and time are expanded, and 
a combination of the difference-in-difference (DID) method and propensity score matching (PSM) is used 
to overcome sample selection bias. Second, a mediating effect analysis is conducted to explore the important 
channels through which smart city construction influences urban green development. Third, a spatial Durbin 
double difference model is developed to control for spatial dependence, which allows for a spatial spillover 
effects analysis of the impact of pilot smart city construction areas on urban green development in neighbour-
ing nonpilot area cities.

Theoretical analysis and research hypothesis
Information technology and big data network platforms, which are intrinsic to smart cities, link the various 
economic agents in the city and fully emphasise the intelligence of governance, the convenience of residents’ 
lives and the digitalisation of enterprise production. In terms of government governance, smart city construc-
tion promotes intelligent governance that can more effectively promote environmental regulation and energy 
management, improve the structure of energy consumption and promote the use of clean energy. In terms of 
residential life, smart cities provide residents with smart homes that reduce energy consumption by intelligently 
regulating indoor temperature, lighting and electricity consumption. In addition, smart cities improve the trans-
port system and reduce traffic congestion, thereby reducing fuel consumption and carbon emissions. In terms of 
enterprise production, enterprises can invest in factors of production more efficiently through industrial IoT and 
big data analysis, expanding the stage of increasing returns to scale and thus reducing the waste of resources. On 
the other hand, smart city construction helps enterprises carry out supply chain management more effectively 
and use digital tools to conduct environmental impact assessments, thus promoting the transition to green and 
sustainable development. The above factors are conducive to high-quality economic and sustainable resource 
development and promote green urban development. We further classify the theoretical mechanisms of smart 
city construction for urban green development into industrial structure effects, technological innovation effects 
and policy spillover effects.

The industrial structure effect is an important channel through which smart city construction influences 
urban green development. Many scholars have noted that industrial structure upgrading is the basis for economic 
growth. This upgrading leads to a reduction in environmental pollution and an increase in production efficiency, 
thus promoting green total factor productivity30. Furthermore, smart city construction can use information 
technology and technological innovation to rationalise, and thus upgrade, industrial structures. In addition, 
smart city construction generates new technology that can impact traditional industries; new industries act 
in a "demonstration role", forcing traditional industries to adjust and upgrade. For example, traditional high 
pollution and high energy consumption enterprises can use modern information technology to adjust their 
industrial structure and adapt to the market, thus allowing them to move towards high technology, low energy 
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consumption and low pollution. Therefore, the industrial structure of the city can be transformed and upgraded, 
thus promoting green economic development.

The effect of technological innovation is an important driving force that causes smart city construction to 
influence urban green development. To promote smart city construction, the government provides financial and 
policy support for technological innovation. It is willing to invest in multiple research and development resources 
to accelerate the Internet of Things, cloud computing and big data and promote the innovative development 
of a new generation of information technology. However, technological innovation will in turn stimulate the 
level of green economic development in cities31. In the framework of Schumpeter’s theory, enterprises are the 
main body of innovation. To adapt to city development trends and gain competitive advantages, enterprises will 
seize development opportunities, maximise information technology and continuously promote technological 
innovation. These actions will reduce the cost and improve the ability of enterprises to treat pollution, which 
will benefit the development of the green economy. In addition, the government encourages green production 
and living and low-carbon consumption under smart city construction, which subtly forms and strengthens 
people’s awareness of environmental protection. These actions generate new demand for green products and 
give rise to various new production processes and technologies while reducing the amount of resources con-
sumed, improving energy use efficiency, providing new growth drivers for economic development and helping 
to promote urban green development.

From the perspective of economic geography, the implementation of smart city construction in the region 
will promote urban green development in other neighbouring regions. On the one hand, smart city construc-
tion originates from the Internet of Things, cloud computing and other big data network platform support. 
Information technology and other intelligent elements are not restricted by time and space, which can break 
the barriers to factor flow and is conducive to promoting cobusiness, cobuilding and sharing between regions 
and strengthening economic ties. On the other hand, the construction of smart cities can optimise the internal 
systems of cities, such as the financial development environment, education level and infrastructure construction 
in the pilot areas, continuously attracting the inflow of various resource elements. These elements then give rise 
to the clustering of new industries such as smart industries and modern service industries led by new business 
models, which in turn drive urban green development in neighbouring cities through knowledge, technology 
and other spillover radiation (Fig. 1).

Based on the abovementioned information, we propose the following hypotheses:

Hypothesis 1: Smart city construction plays a significant role in promoting urban green development.
Hypothesis 2: Smart city construction promotes urban green development through industrial structure and 
green technology innovation.
Hypothesis 3: Smart city construction has a positive spatial spillover effect on urban green development in 
neighbouring areas.

Figure 1.   Theoretical analysis.
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Research design
Variable selection
Dependent variable: Since urban green development data are not directly available, we construct an indicator 
evaluation system from three dimensions: socioeconomic, quality of life and ecological environment, based on 
the research literature, and use the entropy value method to measure green development data32–34, with the fol-
lowing calculation steps (Table 1).

a.	 Data standardisation
	   The aim of standardising the data is to remove the effects of dimensionality, thus making the data more 

comparable. In addition, data standardisation can make the data homogenous so that indicators of different 
natures have the same direction of action on the evaluation results. We use the extreme difference stand-
ardisation method for dimensionless processing with the following formula.

where i and j are prefectures and indicators, respectively xij and x′ij denote raw data and extreme deviation 
normalised data, respectively, and Min(xj) and Max(xj) denote the minimum and maximum values of raw 
data, respectively.

b.	 Calculating information entropy ej
	   A sample of n prefecture-level cities and m evaluation indicators is assumed, and the weighting of the 

characteristics of prefecture-level city i under indicator j is shown below.

	   The information entropy value is calculated for indicator j.

c.	 Calculation of weights and overall score
	   The weight wj of the j-th index is calculated and the comprehensive score Scorei of green development of 

prefecture-level city i is determined.

	   As the coefficient is too small due to the small indicator of the independent variable, we treat measurement 
A by multiplying it by 10 (Table 1).

Positive indicators : x′ij =
xij −Min(xj)

Max(xj)−Min(xj)

Negative indicators : x′ij =
Max(xj)− xij

Max(xj)−Min(xj)

Pij =
x′ij∑n
i=1 xij

(i = 1, 2, 3, ..., n; j = 1, 2, 3, ...,m)

ej = −
1

ln n

n∑

i=1

Pij ln Pij , 0 ≤ ej ≤ 1 (j = 1, 2, 3, ...,m)

wj =
1− ej∑m

j=1 (1− ej)

Scorei =

n∑

i=1

wjxij (i = 1, 2, 3, ...,m; j = 1, 2, 3, ..., n)

Table 1.   Urban green development evaluation index system.

First-level indicators Second-level indicators Measurement indicators Attribute

Socioeconomic

Economic development Regional GDP  + 

Resident income Per capita disposable income  + 

Government investment Fixed asset investment  + 

Income distribution Gini coefficient −

Quality of life

Cultural facilities Library collections per capita  + 

Convenient transportation Road area per capita  + 

Internet popularity Internet penetration  + 

Employment stability Unemployment rate −

Ecological environment

Atmospheric pollution Emissions per unit of exhaust gas −

Water contamination Unit effluent discharge −

Greenhouse gas Emissions per unit of CO2 −

Environmental regulation Industrial pollution control intensity  + 

Urban greenery Green space per capita  + 
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Core independent variable The core explanatory variable in this paper is the smart city pilot policy and is 
assigned a dummy variable in the form of a location dummy of 1 if the city is on the smart city list and 0 otherwise 
and a time dummy of 1 if the time is after the implementation of the smart city pilot policy and 0 otherwise, with 
the interaction term representing the policy variable for smart city construction, denoted as Smartcity. The coef-
ficient of the interaction term is the estimated value that is the focus of this paper; if it is significantly positive, 
then the smart city pilot policy can significantly contribute to urban green development.

Control variables Based on a review of the literature, the control variables selected for this paper are as follows: 
(1) urbanisation rate, measured as the ratio of the urban population to the total population, denoted as town; 
(2) level of financial development, measured as the ratio of total loans of all balances of financial institutions 
to GDP at the end of the year, denoted as fin; (3) investment in scientific research, measured as expenditure 
on science and technology, denoted as rd; (4) level of education of the population, measured as expenditure on 
education, denoted as edu; (5) the degree of government intervention, measured using public budget expenditure 
in municipalities as a percentage of GDP, denoted govern; and (6) population size, measured using year-end 
population numbers, denoted peop.

Intermediate variables In this paper, industrial structure and green technological innovation are selected as 
mediating variables for analysis. Referring to Ye et al., the industrial structure is measured by the share of the 
secondary industry in GDP35. Green technological innovation is measured by adding one to the logarithm of 
green patent applications in prefecture-level cities and then analysing the mechanism of action involved in the 
impact of smart city construction on urban green development (Table 2).

Data use
China officially promoted the construction of smart cities in 2012, and the second and third batches of smart 
city pilots were announced in 2013 and 2014, respectively. This paper treats the smart city pilot policy as a 
quasinatural experiment and uses the asymptotic DID method to analyse the impact of smart city construction 
on urban green development (Fig. 2).

As the pilot list includes counties and urban areas, the following treatment is performed when selecting the 
empirical sample: to avoid underestimating the impact of the smart city pilot policy on urban green develop-
ment and to make the regression results more robust, the prefecture-level cities where the counties and urban 
areas are located in the list are excluded from the study sample, and only prefecture-level municipal units are 
retained in the final sample (Table 3).

Based on the above procedure, this paper uses a panel of 221 prefecture-level cities in China from 2006 to 
2020 to analyse the possible impact of smart city pilot policies on urban green development. The analysis in this 
paper does not consider Tibet or Hong Kong, Macao or Taiwan due to serious data deficiencies in these regions. 
While processing the data, data from relevant autonomous prefectures, county-level cities and urban areas are 
excluded, and only the city data are retained for analysis. A small amount of missing data is interpolated using 
the linear interpolation method. Data for the study were obtained from the wind database, the China Urban 
Statistics Yearbook and data publicly available from provincial statistical bureaus (Table 4).

Model setting
To analyse the impact of smart city construction on urban green development, this paper adopts a progressive 
DID method to treat smart city construction as a quasinatural experiment to analyse its treatment effects on 
urban green development. This paper further constructs a model to assess whether smart city construction has 
promoted urban green development by comparing the differences between pilot areas and nonpilot areas. The 
econometric model constructed in this paper is as follows.

Of these, UGDit is the city green development index for city i at time t; Smartcityit is the policy variable in the 
DID method, the interaction term mentioned above, which represents smart city construction; Xit is the control 

UGDit = β0 + β1Smartcityit + X ′
itβ2 + µi + δt + εit

Table 2.   Variable definitions and descriptions.

Variable properties Variable name Abbreviations Measurement methods

Dependent variable Urban green development UGD Calculated by entropy method

Core independent variable Interaction term Smartcity –

Control variables

Urbanisation rate town Urbanisation rate = number of urban population/total 
population

Financial development level fin Financial development level = total balance loans/GDP

Research and development lnrd Logarithm of science and technology expenditure

Education level of the population lnedu Logarithm of education expenditure

Level of government intervention govern Level of government intervention = public budget 
expenditure/GDP

Population size lnpeop Logarithm of year-end population

Intermediate variables
Industrial structure indus Industrial structure = secondary GDP/total GDP

Green technology innovation lngti Logarithm of the number of green patent applications 
in prefecture-level cities plus one
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variable mentioned above; µi is the time fixed effect; δt is the location fixed effect; and εit is the random error 
term. β1 is the coefficient estimate that is the focus of this paper, for which a significant positive value indicates 
that smart city construction can significantly contribute to urban green development.

Figure 2.   Sample distribution.

Table 3.   Sample distribution. Figures in brackets indicate the number of prefecture-level city samples in the 
treatment and comparison groups.

Treatment group Comparison group

Hebei(5) Shanxi(6) Inner Mongolia(4) Liaoning(1) Jilin(3) Heilongjiang(3) Jiangsu(6) Zhejiang(3) Anhui(10) 
Fujian(3) Jiangxi(4) Shandong(4) Henan(6) Hubei(6) Hunan(2) Guangdong(1) Guangxi(6) Sichuan(6) Yun-
nan(1) Guizhou(3) Shaanxi(5) Gansu(6) Ningxia(4) Xinjiang(2)

Hebei(5) Shanxi(3) Inner Mongolia(4) Liaoning(11) Jilin(2) Hei-
longjiang(6) Jiangsu(1) Zhejiang(5) Anhui(3) Fujian(4) Jiangxi(2) 
Shandong(5) Henan(8) Hubei(6) Hunan(5) Guangdong(13) 
Guangxi(8) Hainan(2) Sichuan(10) Yunnan(6) Shaanxi(5) Gansu(5) 
Qinghai(1) Ningxia(1)

Table 4.   Descriptive statistics.

Variables

Full sample Comparison group Treatment group

N obs Mean SD N obs Mean SD N obs Mean SD

UGD 3315 0.8087 0.4824 1815 0.7393 0.4249 1500 0.8927 0.5320

Smartcity 3315 0.2431 0.4290 1815 0.0000 0.0000 1500 0.5373 0.4988

town 3315 0.5018 0.1516 1815 0.4775 0.1458 1500 0.5312 0.1532

fin 3315 1.9915 1.4613 1815 1.9612 1.3378 1500 2.0282 1.5978

lnrd 3315 9.5863 1.4537 1815 9.3331 1.3057 1500 9.8926 1.5613

lnedu 3315 11.4639 1.0202 1815 11.3071 0.9447 1500 11.6537 1.0748

govern 3315 0.1952 0.1170 1815 0.2125 0.1316 1500 0.1743 0.0923

lnpeop 3315 5.7699 0.6825 1815 5.7416 0.6621 1500 5.8042 0.7052

indus 3315 0.4713 0.1224 1815 0.4555 0.1134 1500 0.4903 0.1300

lngti 3315 2.0741 1.5399 1815 1.7520 1.3688 1500 2.4638 1.6423
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Empirical analysis
DID results analysis
The use of the DID method presupposes that the treatment and comparison groups should have the same trend 
of change before the policy shock, i.e., they should pass the parallel trend test. The parallel trend test conducted 
in this paper demonstrates the applicability of the double difference method in this study; the parallel trend 
test is shown in the robustness test below. Table 5 shows the baseline regression for this paper, and columns 
(1)–(7) show the regression results after the control variables are gradually added. The estimated coefficient of 
the policy variable Smartcityit is still significantly positive at the 1% level after the control variables are gradually 
added, indicating that smart city construction significantly promotes urban green development. Hypothesis 1 
is argued in this paper.

Looking further at the regression coefficients of the control variables in this paper, the urbanisation rate and 
investment in research significantly contribute to green urban development, while financial development and 
the degree of government intervention have negative impacts on green urban development. The coefficient of 
the urbanisation rate (town) is significantly positive because smart city construction represents an advanced 
stage of China’s new urbanisation process. The manner in which the ecological environment is emphasised in 
new urbanisation is different from that in traditional urbanisation, which develops the economy at the expense 
of the environment. The reason why scientific research investment (lnrd) plays a significant role in promoting 
urban green development is that scientific research investment promotes technological innovation in smart city 
construction and policy formulation, which is conducive to improving the efficiency of energy use, optimising 
the allocation of resources, and providing decision support for the green attributes of smart city construction. 
The estimated coefficient of the degree of government intervention (govern) is significantly negative because the 
government’s public budget expenditure is aimed at safeguarding and improving people’s livelihood and pro-
moting the country’s economic and social development. Along with infrastructure improvements and steadily 
developing economic levels, environmental problems are becoming increasingly serious, thus hindering urban 
green development to some extent. The reason for the significantly negative estimated coefficient on the level 
of financial development (fin) is that financial institutions are more inclined to focus on short-term returns on 
investment, whereas the green development of smart cities tends to require longer investment cycles and slower 
rates of return. Therefore, financial institutions may be reluctant to invest in long-term, potentially less rewarding 
green projects for smart city construction if they are overly concerned with short-term returns. In addition, the 
implementation and effectiveness of green projects in smart cities may be difficult for financial institutions to 
accurately assess due to information asymmetry, which in turn may curb investment willingness.

Robustness tests
Parallel trend test
The core assumption of the DID model is that the treatment and comparison groups should have the same trend 
of change before the policy is implemented. The parallel trend test model constructed in this paper is shown 
below.

UGDit = α +

8∑

k≥−5

βkD
k
it +

∑
�jXit + φTjt + µi + δt + εit

Table 5.   DID Results analysis. Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Variables

Dependent variable: UGD

(1) (2) (3) (4) (5) (6) (7)

Smartcity 0.1162*** (0.0100) 0.1138*** (0.0100) 0.1094*** (0.0099) 0.0984*** (0.0099) 0.0984*** (0.0099) 0.0937*** (0.0098) 0.0933*** 
(0.0098)

town 0.3279*** (0.0908) 0.2735*** (0.0895) 0.2326** (0.0911) 0.2366*** (0.0914) 0.2158** (0.0903) 0.2369*** 
(0.0916)

fin − 0.0414*** (0.0059) − 0.0325*** (0.0059) − 0.0329*** (0.0060) − 0.0243*** (0.0060) − 0.0238*** 
(0.0060)

lnrd 0.0425*** (0.0063) 0.0433*** (0.0065) 0.0447*** (0.0067) 0.0429*** 
(0.0067)

lnedu − 0.0061 (0.0089) 0.0039 (0.0094) 0.0014 (0.0094)

govern − 0.3649*** (0.0845) − 0.3554*** 
(0.0844)

lnpeop 0.0908 (0.0552)

Constant 0.7804*** (0.0035) 0.6164*** (0.0456) 0.7273*** (0.0486) 0.3256*** (0.0711) 0.3862*** (0.1095) 0.3243*** (0.1202) − 0.1673 
(0.3257)

City FE Yes Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes Yes

Observations 3315 3315 3315 3315 3315 3315 3315

R-squared 0.915 0.915 0.918 0.920 0.920 0.921 0.921
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where Dk
it is the dummy variable for the current period of smart city construction, k < 0 is the year before smart 

city construction, k > 0 is the year after smart city construction, Tjt is the time trend variable, and the remaining 
variables are consistent with the previous expression. Figure 3 shows the parallel trend test graph. Before smart 
city construction began, the treatment group and the control group have a consistent trend of change; in 2012 for 
the current period of smart city construction and in 2013, urban green development has no significant impact, 
indicating that the policy has a time lag. After smart city construction, a long-term positive effect is found. 
Therefore, smart city construction can significantly promote urban green development, with a long-term effect.

Placebo test
Smart city construction may be influenced by unobservable factors; hence, this paper refers to Li et al. to con-
duct random sampling to ensure that the impact of smart city construction on a particular city is randomised, 
which eliminates the influence of unobservable factors36. The coefficient estimates of Smartcityit are as follows.

where Xit is the control variable mentioned above and θ is an unobservable factor. If β̂ is to be an unbiased esti-
mator to avoid inconsistent estimates, then parameter θ = 0 should be made. However, direct testing of param-
eter θ is less tractable; thus, random sampling is performed to generate smart city construction cities to make 
parameter β = 0 . If β̂ = 0 exists, then parameter θ = 0 can be introduced37. Figure 4 shows the kernel density 
plots of the coefficient estimates obtained after 1000 (left panel) and 2000 (right panel) random samplings. The 
β̂random coefficient estimates are concentrated at approximately 0 and approximately obey a normal distribution 
after random sampling is conducted; thus, the parameter θ = 0 can be inferred, indicating that the findings of 
this paper are robust.

Nonrandom selection impact test
Although the use of the DID method to evaluate the impact of smart city construction on urban green develop-
ment can, to a certain extent, avoid the unobservable endogenous factors that belong to the "common trend" 
between the treatment and control groups, smart city construction is policy-oriented, and the list of construction 

β̂ = β + θ ×
cov(Smartcityit , εit |Xit )

var(Smartcityit |Xit )

Figure 3.   Parallel trend test.

Figure 4.   Placebo test.
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areas is not randomly generated. Based on this situation, the interaction term of urban factors and time trends 
is introduced and the following econometric model is constructed.

where Ci denotes the city attribute factor, Ci includes provincial capitals, subprovincial cities and areas east of 
the Hu Huanyong line, Timt is the time trend variable, and the remaining variables are the same as in the previ-
ous statement. As shown in Table 6, the interaction term Smartcityit coefficient is still significantly positive after 
controlling for the city attribute factors, and the conclusions of this paper are robust.

In addition, to further demonstrate the robustness of the regression results, a combination of PSM and the 
DID method is adopted to analyse the effect of smart city construction on urban green development, which can 
overcome the effect of selection bias. In this paper, three matching methods, kernel matching, radius matching 
and local linear regression matching, were used to perform PSM-DID estimation. Figure 5 shows the results of 
the equilibrium test after kernel matching, which shows that the standardised deviations of the covariates are 
reduced and concentrated to approximately 0 after matching (Fig. 5 left) and that the samples of the treatment 
and control groups mostly lie within the common range of values (Fig. 5 right), which is a good matching result. 
All other matching methods passed the balance test.

Columns (2)–(5) in Table 6 show the regression results after radius matching, nearest neighbour matching, 
kernel matching and local linear regression matching. The coefficients of the policy variables are still significantly 
positive at the 1% level, indicating that the effect of smart city construction on urban green development is not 
affected by selection bias and that the regression results in this paper are still robust.

Heterogeneity analysis
As different locations of cities have different economic development, Chinese prefecture-level cities are divided 
into three subsamples, namely, eastern, central and western, based on their geographical locations and then 
separate regressions for geographical location heterogeneity analysis are performed. As shown in Table 7, smart 
city construction has a significant impact on urban green development in the eastern, central and western 
regions of China, with the greatest impact on urban green development in the eastern region, followed by the 

UGDit = β0 + β1Smartcityit + Ci × Timt + X ′
itβ2 + µi + δt + εit

Table 6.   Nonrandom selection effects test. Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, 
*p < 0.1.

Variables

Dependent variable: UGD

(1) Nonrandom factors (2) Radius (3) Nearest (4) Kernel (5) llr

Smartcity 0.1038*** (0.0265) 0.0248*** (0.0074) 0.0358*** (0.0115) 0.0310*** (0.0054) 0.0314*** (0.0053)

Provincial capitals ×Tim 0.2041*** (0.0368)

Subprovincial cities ×Tim 0.5870*** (0.0683)

East of Hu Huanyong Line 
×Tim

− 0.0495* (0.0269)

Constant − 0.1056 (0.3072) − 1.8266*** (0.2556) − 1.3914*** (0.3578) − 1.7944*** (0.2060) − 1.8868*** (0.2069)

Control Yes Yes Yes Yes Yes

City FE Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes

Observations 3315 3299 3301 3301 3301

R-squared 0.927 0.915 0.820 0.949 0.956

Figure 5.   Propensity score matching balance test.
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central region and finally by the western region. The reason for this is that eastern China has a better founda-
tion in high-tech industries and is gradually transforming and upgrading to smart manufacturing, the internet, 
artificial intelligence and other fields, which provides strong technological support for promoting the construc-
tion of smart cities. For example, the application of big data, the Internet of Things, artificial intelligence and 
other technologies can not only optimise city operations and improve efficiency but also promote industrial 
transformation and upgrading and green development. On the other hand, after a long period of high-intensity 
industrialisation and urbanisation, the ecological environment in eastern China is under greater pressure. The 
construction of smart cities can effectively prevent and repair ecological problems with information technol-
ogy. In the new infrastructure of big data, Internet of Things, cloud computing, etc., the new infrastructure of 
the eastern part of the country is growing in parallel with the urban scale and industrial structure of the eastern 
part of the country, forming a coupling state, thus maximising the policy effect of smart city construction on 
urban green development.

Endogeneity issues
The nonrandom nature of smart city construction may lead to endogeneity problems when analysing the impact 
of smart city construction on urban green development. Therefore, in this paper, instrumental variable estimation 
(IV) is used to address possible endogeneity problems. Topographic relief (rdls) is chosen as the instrumental 
variable for the core explanatory variable Smartcityit. On the one hand, topographic relief is closely related to the 
location of smart city construction, and the relevance assumption of the instrumental variable is satisfied; on the 
other hand, topographic relief, as geographical data, does not affect urban green development, and the exogeneity 
assumption of the instrumental variable is satisfied38. Furthermore, as topographic relief data do not change over 
time and have research limitations, the interaction term T-rdls is introduced between the instrumental variables 
and each year’s time dummy variable and is then used as the instrumental variable for the empirical analysis 
to measure changes in the time dimension. The instrumental variable model is constructed as shown below.

where parameters ξ1 , ξ 11 and ξ 21  denote the ordinary least square estimates, IV estimates the regression coefficients 
for the first and second stages, and the remaining variables are the same as above.

Column (1) of Table 8 shows the results of the one-stage regression, where the estimated coefficients of the 
interaction term T-rdls for the topographic relief and time dummy variables are significantly positive. Column (2) 
shows the results of the two-stage regression, where the regression coefficient of the interaction term Smartcityit is 
smaller than the case of the previous benchmark regression, indicating that the impact of smart city construction 
on urban green development will be overestimated if the endogeneity issue is not accounted for.

Further analysis
Mechanism analysis
In this paper, to further explore the possible mechanisms of the impact of smart city construction on urban green 
development, green technology innovation is measured by adding one to the number of green patent applications 
in prefecture-level cities and taking the proportion of secondary industry in GDP as the measurement variable 
of industrial structure. The mechanism effect model is shown below.

UGDit = ξ0 + ξ1Smartcityit +
∑

ξjXit + εit

Smartcityit = ξ 10 + ξ 11T − rdlsit +
∑

ξ 1j Xit + µi + δt + ε1it

UGDit = ξ 20 + ξ 21 Smartcityit − hat +
∑

ξ 2j Xit + µi + δt + ε
2

it

ln gtiit = α0 + α1Smartcityit + X ′
itα2 + µi + δt + εit

UGDit = γ0 + γ1Smartcityit + γ2 ln gtiit + X ′
itγ3 + µi + δt + εit

indusit = ϕ0 + ϕ1Smartcityit + X ′
itϕ2 + µi + δt + εit

Table 7.   Heterogeneity analysis. Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Variables

Dependent variable: UGD

(1) Eastern (2) Central (3) Western

Smartcity 0.1457*** (0.0167) 0.0754*** (0.0141) 0.0737*** (0.0141)

Constant − 2.7974*** (0.8030) 0.3389 (0.3915) 0.9205 (0.6801)

Control Yes Yes Yes

City FE Yes Yes Yes

Year FE Yes Yes Yes

Observations 1035 1140 1140

R-squared 0.942 0.908 0.915
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Column (1) of Table 9 shows the impact of smart city construction on green technology innovation, and the 
findings show that smart city construction significantly promotes green technology innovation. Column (2) 
shows that the coefficients of policy variables and green technology innovation are both significant at the 1% 
level, indicating that green technology innovation is an important channel through which smart city construc-
tion affects urban green development and that smart city construction significantly contributes to urban green 
development through green technology innovation. Column (3) shows the impact of smart city construction 
on industrial structure, and the empirical results show that smart city construction has a negative impact on 
industrial structure, which is the same as theoretical expectations. Column (4) shows that the coefficients of 
both industrial structure and policy variables are significant, indicating that industrial structure is an important 
channel through which smart city construction affects urban green development and that smart city construc-
tion significantly contributes to urban green development through industrial structure. Hypothesis 2 of this 
paper is argued.

Spatial econometric analysis
In the above section, the causal relationship between smart city construction and urban green development is 
identified using the progressive DID model, but the spatial factors of smart city construction affecting urban 
green development are not considered. In this section, a DID spatial Durbin model (SDMDID) is established to 
introduce and decompose these spatial factors according to how their impact on smart city construction influ-
ences urban green development; this process can analyse the urban green development spillover effect of smart 
city construction. The model is set as follows.

UGDit = φ0 + φ1Smartcityit + φ2indusit + X ′
itφ3 + µi + δt + εit

UGDit = β0 + ρW × UGDit + β1Smartcityit + β2X
′
it + γ1W × Smartcityit

+ γ2W × X ′
it + µi + δt + εit

Table 8.   Instrumental variable estimation. Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, 
*p < 0.1;The Kleibergen‒Paap rk LM statistic was used for the underidentification test, and the numbers in [] 
are their p values; the weak identification test refers to the Donald Wald-F statistic, and the Stock-Yogo test 
10% level thresholds are in {}.

Variables

Instrumental variable: T-rdls

(1) (2)

Smartcity 0.0648*** (0.0224)

T-RDLS 0.4866*** (0.0161)

Constant − 1.1616*** (0.0729) − 2.2750*** (0.0881)

Control Yes Yes

City FE Yes Yes

Year FE Yes Yes

Underidentification test 446.556 [0.000]

Weak identification test 2082.340 {16.38}

Observations 3315 3315

R-squared 0.516 0.905

Table 9.   Mechanism analysis. Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1.

Variables

(1) (2) (3) (4)

Lngti UGD indus UGD

Smartcity 0.2286*** (0.0362) 0.0866*** (0.0098) − 0.0148*** (0.0031) 0.0913*** (0.0101)

lngti 0.0291*** (0.0044)

indus − 0.1306** (0.0583)

Constant − 9.9744*** (1.2226) 0.1224 (0.3256) 0.4136*** (0.0925) − 0.1133 (0.3317)

Control Yes Yes Yes Yes

City FE Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Observations 3315 3315 3315 3315

R-squared 0.888 0.922 0.872 0.921
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where W is the spatial weight matrix, the binary adjacency matrix is selected as the spatial weight matrix in 
this paper, W × UGDit denotes the spatial lag term of urban green development, W × Smartcityit denotes the 
spatial lag term of smart city construction, W × X ′

it denotes the spatial lag term of the control variables, and the 
remaining variables are the same as in the previous expressions.

Global spatial correlation test
The premise of using the SDMDID model is that the explanatory variables are spatially correlated, i.e., Moran’s 
I should be significantly nonzero. This paper uses Moran’s I to test the spatial correlation between smart city 
construction and urban green development. Table 10 shows that the Moran’s I values of both urban green devel-
opment and smart city construction are greater than zero, indicating that both are spatially correlated, i.e., the 
implementation of smart city construction will not only have an impact on the implementation of smart city 
construction and affect urban green development in this region but also affect other adjacent regions.

Spatial econometric model analysis
The paper further examines and analyses whether the DID spatial Durbin model degenerates into either a 
DID spatial lag model or a DID spatial error model. Table 11 illustrates that both the LR test and the Wald test 
significantly reject the original hypothesis, fully demonstrating the applicability of the spatial Durbin model in 
this study. Based on the results of the Hausman test, time and space double fixed effects are chosen to analyse 
the spillover effects of urban green development of smart city construction.

Column (1) of Table 12 shows the overall regression results, while columns (2)-(4) show the results after 
decomposition by partial differencing, indicating the direct effect, the spatial spillover effect and the total effect, 
respectively. The direct effect indicates that smart city construction has a significant contribution to urban green 
development, which is consistent with the findings from the previous baseline regression. The spatial spillover 
effect indicates that the implementation of smart city construction will benefit urban green development in 
neighbouring cities. The implementation of smart city construction will cause neighbouring cities to change their 
industrial structure, eliminate inefficient production capacity and improve energy efficiency through imitation 
and learning, thus promoting urban green development in neighbouring cities. Therefore, smart city construc-
tion has a good spatial radiation effect on neighbouring areas.

Conclusions
Smart city construction has given rise to the emergence and concentration of new industries and injected new 
momentum into the development of the digital economy. With the in-depth development of the digital economy 
and information technology, smart city construction has gradually become an important trend in urban devel-
opment. Therefore, this paper uses the panel data of 221 prefecture-level cities in China from 2006 to 2020 to 
employ the asymptotic double difference method to empirically analyse whether smart city construction will pro-
mote urban green development The following conclusions are drawn. First, smart city construction significantly 
promotes urban green development and has a long-term promotion effect. Second, an analysis of intermediary 

Table 10.   Global spatial correlation test.

Year

Urban green development Smart city construction

Moran’s I Moran’s I

2012 0.195 0.643

2013 0.206 0.736

2014 0.212 0.806

2015 0.212 0.806

2016 0.201 0.806

2017 0.162 0.806

2018 0.155 0.806

2019 0.145 0.806

2020 0.144 0.806

Table 11.   SDMDID model applicability test.

Type of tests Statistical values

LR_spatial_ lag 42.32***

LR_spatial_ error 42.24***

Wald_spatial_lag 59.24***

Wald_spatial_error 17.03***

Hausman test 428.97***
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effects shows that urban industrial structure and technological innovation are important channels through which 
smart city construction affects urban green development. Third, urban green development in neighbouring areas 
is promoted by the positive spatial spillover effect of smart city construction. In summary, this paper proposes 
corresponding policy recommendations at three levels: macro, meso and micro:

First, the government should actively expand the scale of smart city construction, expand the scope of smart 
city pilots, further promote the development process of smart cities, and further introduce relevant policies to 
support the construction of smart cities. In promoting the construction of smart cities, the use of “one city, one 
policy” should be tailored to local conditions to create a smart city program. For example, the eastern region of 
China benefits the most from policy; hence, smart city construction can be prioritised in the eastern region as a 
way to promote urban green development to a greater extent. At the same time, governments worldwide should 
also deepen cooperation and abandon the “fragmented, beggar-thy-neighbour” development model. Regional 
governments of smart city construction should promote their construction experience to support the digitalised 
intelligent construction of neighbouring cities, deepen cobusiness, coconstruction and sharing among resource 
elements, actively expand the positive spatial spillover effect brought by smart city construction, and jointly 
promote urban green development.

Second, major industries need to fully embrace the policy dividend and promote digital industrialisation and 
industrial digitisation. Traditional resource-intensive and labour-intensive industries must take full advantage 
of the smart economy and transformation opportunities to fully benefit from the industrial structure effect, thus 
creating more ecological and social benefits while promoting industrial upgrading. These actions will promote 
regional green development.

Third, enterprises, universities and research institutes should continue to develop intelligence, digitalisa-
tion and informatization, improve research and development of pollution prevention technology and further 
promote the overflow of green technology and knowledge. They should encourage other enterprises to follow 
their example via the catfish effect and competition effect. Moreover, they should continue to support the spatial 
spillover effect, which allows the impact of green development to radiate to neighbouring areas, thus increasing 
urban green development.
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